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This paper investigates the combination-combination synchronization of four nonlinear complex chaotic systems. Based on
the Lyapunov stability theory, corresponding controllers to achieve combination-combination synchronization among four
different nonlinear complex chaotic systems are derived. The special cases, such as combination synchronization and projective
synchronization, are studied as well. Numerical simulations are given to illustrate the theoretical analysis.

1. Introduction

In 1982, Fowler et al. [1] generalized the real Lorenz model to
a complex Lorenz model, which can be used to describe and
simulate the physics of a detuned laser and the thermal con-
vection of liquid flows [2, 3]. After that, many new chaotic and
hyperchaotic complex systems have been reported and inten-
sively studied, including the complex Van der Pol oscillators
[4], the complex Chen and complex Lii systems [5], complex
detuned laser system [6], complex hyperchaotic Lorenz sys-
tem [7], complex modified hyperchaotic Lii system [8], and a
novel hyperchaotic complex-variable system [9] which gen-
erates 2-, 3-, and 4-scroll attractors.

Since Pecora and Carroll [10] first proposed the drive-
response concept for constructing synchronization of cou-
pled chaotic systems, synchronization in chaotic systems has
been extensively investigated due to their potential applica-
tions in the fields of secure communications; optical, chemi-
cal, physical, and biological systems; neural networks; and so
forth [11-13]. When applying the complex systems in com-
munications, the complex variables will double the number
of variables and can increase the content and security of
the transmitted information. Based on the Lyapunov stability
theory, linear feedback controller was derived to achieve
hybrid projective synchronization in a chaotic complex

nonlinear system [14]. The authors [15] achieved adaptive
antisynchronization of a class of chaotic complex nonlinear
systems described by a united mathematical expression with
fully uncertain parameters. In [16], the author investigated
the modified projective phase synchronization of chaotic
complex nonlinear systems. Based on the passive theory,
the authors studied the projective synchronization of hyper-
chaotic complex nonlinear systems and its application in
secure communications [17]. In [18], the authors achieved
fast synchronization of a novel hyperchaotic complex system
based on finite-time stability theory.

However, most of the existing synchronization schemes
are based on the usual drive-response synchronization mode,
which has one drive system and one response system. In [19],
Luo et al. proposed the combination synchronization scheme,
which has two drive systems and one response system. Zhou
et al. investigated combination synchronization of three non-
linear complex hyperchaotic systems in [20]. Sun et al. [21]
extended the combination synchronization scheme to the
combination-combination synchronization scheme, where
synchronization is achieved between two drive systems and
two response systems. This synchronization scheme has
advantages over the other synchronization schemes, such that
it can provide greater security in secure communication.
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For the nonlinear complex chaotic or hyperchaotic sys-
tems, there are no work on combination-combination syn-
chronization for them. This paper aims to study the combina-
tion-combination synchronization of four nonlinear complex
chaotic systems. The rest of this paper is organized as
follows. Section 2 introduces the scheme of combination-
combination synchronization. In Section 3, we investigate
combination-combination synchronization of four com-
plex nonlinear chaotic systems. Numerical simulations are
conducted in Section 4. Finally, conclusions are given in
Section 5.

2. The Scheme of Combination-Combination
Synchronization

In the scheme of combination-combination synchronization,
there are four nonlinear dynamical systems, two drive sys-
tems, and two response system.

The two drive systems are, respectively, given by

X = fi (Xl)’ ¢))
% = fr(%;). ()

The two response systems are, respectively, described by

y1=91(n)+ o 3)

$2=9:(0) + 9" (4)

_ T _ T

where x; = (X1, X155 X1,) > X3 = (X1, X905+ 05X5,) >

=0 - ’}’m)T: and y;, = (y21, Y225 - ))’2n)T are the
state vectors of the systems (1), (2), (3), and (4), respectively;
F16 (), 91(), g2(-) : R* — R" are four continuous vector
functionsand ¢, ¢* : R"XR"xR"xR" — R"are two controller
vectors which will be designed.

Definition 1 (see [21]). If there exist four constant matrices A,
B,C,and D € R" and C # 0 or D # 0 such that

tErPoo |Ax, + Bx, — Cy, - Dy,| =0, (5)

the drive systems (1) and (2) are realized combination-com-
bination synchronization with the response systems (3) and
(4), where | - || represents the matrix norm.

Remark 2. The combination-combination synchronization
can be reduced to combination synchronization, projective
synchronization, and even control problem, if we choose
specific values of A, B, C, and D.

3. Combination-Combination Synchronization
of Four Nonlinear Complex Chaotic Systems

In this section, we investigate the combination-combination
synchronization of four nonlinear complex chaotic systems.
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The first drive system [22] is given by

Xqp = oy (g = Xq1) + X0,
X12 = "X~ X2 T X11¥3s (6)
. 1, _
X3 = —Prxgs + 5 (X1 %05 +x11%12) 5
and the second drive system [23] is described as follows:
X1 = A1 Xy + byxyy X3,

Xpp = @Xp + byxy X3, @)

by

Xp3 = A3%y; + 5 (%31 %00 + X1 %55) -
The first response system [6] takes the following form:
yn = 03y1, — 03 (1=i63) yiy + ¢y + iy,
Y12 = (a5 = y13) yiy = (L +083) yip + @3 + iy, (8)

. 1 _ —

Vi3 =By + 5 Oy +yndn) +¢s
and the second response [9] is given by

Va1 = Yoo = a1 + Paynyas + @) +ig,,

Vo = VaVor = Y Vo3 + Vo3 + @3 + iy, (9)

. Oy _ .
Va3 = > ()’21)’22 + J’zl)’zz) —04)3 T P5>

whereay, B,y a1, a4y, a3, by, by, by, a3, B3, 03, 03, 4y Py, V45 04
and §, are system parameters; x,; = U, + itdy, X, = Uz + iUy,
Xy =V F V), Xy = V3 Vg, Y1 = W) F Wy, Yy = Wy iy,
Vo1 = W +iu,y, and y,, = s + iy, are complex variables; i =
V~1; and U, Vi, Wy, 1 (1= 1,2,3,4), X135 = Us, Xp3 = Vs, Y13 =
ws, and y,; = ps are real variables. The overbar represents
complex conjugate function. ¢; and ¢; (i = 1,2,3,4,5) are
real controllers to be determined. Their chaotic attractors are
illustrated in Figures 1, 2, 3, and 4, respectively.

For the convenience of our discussions, we assume A =
diag(k,, k,, k;), B = diag(l,,1,,1;), C = diag(m,, m,, m,), and
D = diag(n,, n,,n;) in our synchronization scheme.

We define error states between the drive systems (6) and
(7) and the response systems (8) and (9) as

e; +iey = kyxy + x5 —myy —ny,,
ey +ie, = kyxp, + Lxyy —m, Y1, — 1,05, (10)
es = k3xy3 + 305 — M3y — 13 )03,
such that
tlingo ||k1x11 +1xy —myyy - ”1)’21“ =0,
tlin(}o ko2 + LXyy =My y15 = 1y y5 | = 0, (11)

tllnc}o k315 + L3y = m3 13 = 393 = 0.
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F1GURE 1: Chaotic attractor for system (6). (a)-(c) Projections in 3D space; (d)-(f) projections in 2D plane.

Thus, we have the following error dynamical system:
€y +iéy = kyXyy + 1%y —my Yy — 1y P,
€3 +iéy = kyXyy + Xy —my Y1, — My, (12)
€5 = ksXys + 3% — my i3 — 1393

Substituting (6)-(9) into (12) and separating the real and
imaginary parts yields

e = ky [oy (ug —uy) + usus] +1 (ayvy +byvyvs)
- my [o3 (w3 - w, - 63w,) + ¢ ]
=1y (3 — oy + Paphstis + 91 s

&, = ky [a (uy —uy) + ugus| + 1 (ayvy + byvyvs)
-m, [o3 (wy —w, + 83wy + ¢, ]

=y (py — gty + Byt + ‘P;) >

&=k, (y,u;—usu;—uy) +1, (ayv5+b,v,vs)
- m, [(a3-wWs) Wy W3 =85 W, +g;]
=1y (Vabbs—py s s+ 93 ) 5
ey = ky (\yuy — ustty —uy) + 1, (ayvy + byv,vs)
-m, [(05 — ws) wy — wy — S3w5 + @]
=11y (Vabhs — balis + ¢4) »
és = ky (—Pus + tyuy + uyuy)
+1 [agvs + by (vivy + vyvy)]
—my (—Baws + ww; + Wyw, + @s)
=113 [ (s + thaba) = Ouis + 5] -
(13)

Denote U; = m;p; + n; (i = 1,2, 3,4, 5); then we obtain
the following results.
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FIGURE 2: Chaotic attractor for system (7). (a)—(c) Projections in 3D space; (d)-(f) projections in 2D plane.

Theorem 3. If the controllers are chosen as follows:
Uy = kyuy + vy —mpwy =y

+ay (kyuy + Lvy — mw, — )

+ky [oy (s —uy) + usus] + 1 (ayv; + byvsvs)

=m0 (w3 — wy = S3w,) —ny (p3 = aupy + Papiapis)
U= kjuy+lyv,—mywy—ny

- ay (kyuy+, vy —-mywy—ny ;)

- a, (kyuy+l,v3—mywy—n,u;)

+ky [ (u—u,) +ugus ]+ (av,+b,v,vs)

- my 05 (Wy=W,+83wp ) —ny (py—0ypt,+Bypyphs) »
Us = kyuz + vy — myws — nypis

+ay (kyuy + vy — myw, — )

+as (kyuy + Lvy — myw, — nyu,)

+hy (Yo — usty —us) + 1 (ayvy + byvyvs)
= my [(o — ws) wy —w; — S3w,]
=1y (Vabhs = phiphs + pis) »
U,=kyu,+Lv,—m,w—n,u,
- a5 (kyuz+l,v3—m,wy—nyu;)
= b, (kyus+l;vs—maws—nsp;)
+k, (y,uy—usuy—uy) +1, (a,v,+b,v,v5)
—my [(o—ws5) Wy~ w,—83ws]
=1y (Vaby=taths)
Us = kyus + I3vs — myws — n3 s
+ by (kyuy + Lvy — myw, — nyy)
+ ks (=Byus + ugus + uyuy)

+ 13 [asvs + by (vivs + vyvy)]



Abstract and Applied Analysis
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FIGURE 3: Chaotic attractor for system (8). (a)-(c) Projections in 3D space; (d)-(f) projections in 2D plane.

=y (=Bsws + w w; + wyw,)

=1y 8y (py 3 + phothy) — 4]
(14)

then the drive systems (6) and (7) will achieve combination-
combination synchronization with the response systems (8) and

9).
Proof. Construct the following Lyapunov function:
1
V:E(ef+e§+e§+ei+e§). (15)

Taking the time derivative of V along the trajectory of the
error dynamical system (13) yields

V =eé) +e,6, +e3é; +e,é, +esés
= ey {ky [0 (us = uy) + usus] +1, (ayvy +byvsvs)
- my [03 (w3 - w, - 8w,) +¢,]

=1y (p3 = oypty + Baphsis + 1)}

+e, {ky o (g — uy) + uyus]
+1, (ayv, + byvyvs)

-m, (o3 (wy — w, + 83wy + ¢, ]
=y (pg = opy + Pattals + ¢,)}

+e; {ky (yyug — usuy —us) + 1, (ayvs + byvyvs)
=, [(ag — ws) wy —w; — S3w, + 5]
=1 (yabhs = tths + s + 93}

+ ey {ky (Y11t — ustty — uy) + 1 (a9, + by, v5)
= my [(ag — ws) w, —w, = S3w; + ¢y
=1y (Yats — tabis + )}

+ es {ky (= Bius + uyus + uyuy)

+ 13 [asvs + by (v, vs + vyv,)]
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FIGURE 4: Chaotic attractor for system (9). (a)-(c) Projections in 3D space; (d)-(f) projections in 2D plane.

= my (=f3ws + ww; + wyw, + Ps)

=115 (8 (115 + pophy) — Oypis + ‘P;]}

= e {ky [ (uy —uy) + usus] + 1) (ayv) + byvsvs)

—my [0 (w3 - w; - S3w,)]
=y (p3 = gty + Papisphs)
= (mypy + mey)}
+ e, {ky (o (g — 1) + uyus] + 1, (ayvy + byvyvs)
-m, o3 (wy — w, + 3w,)]
=y (py = gty + Papiaphs)
= (mypy + me; )}
+e5 {ky (yyug — usuy —us) + 1, (ayvs + byvyvs)

—m, [(“3 - w5) W) —ws — 53“’4]

=1y (Vaths = phphs + pis)
= (myps + g3 )}
+ ey {ky (Y1 — usuy —uy) + 1, (ayvy + byvyvs)
—my [(ag — ws) w, — w, — S3ws]
=11y (Vaphy = taths) = (magy + )}
+ es {ky (= Bius + uyus + uyuy)
+1 [agvs + by (vivy + vyvy)]
= my (= Psws + wyws + wyw,)
=13 8y (it + paphs) — 04is]

= (my 5 + ”3‘/’;)} .
(16)
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Substituting (14) into (16) leads to
V= ey {ky [o (3 — uy) + usus]
+1; (ayvy + byvsvs)
- my [o3 (w3 —w; - 3w,)]
=y (p3 = gy + Pupispis)
= [kyuy + vy = myw, —nyy
+ay (kyuy +Lvy, —myw, —nyu,)
+ky [og (us — uy) + uzus)
+1; (ayvy + byvsvs)
= my [o3 (w; —wy - 3w,)]
=y (s — auph + Papisis)]}
+ e, {ky (o (uy — 1) + uyus)
+1; (ayvy + byv,vs)
= my [0 (wy —w, + S3wy)]
=y (py = gty + Paiaphs)
= [kyuy + vy — myw, —nyp,
= ay (kyuy + vy = mywy —mypy)
= ay (kyuz + Ly — myws — mypy)
+ky (o (uy — vy) + uyus)
+1; (ayv, + byv,vs)
= my [o3 (wy —w, + O5w,)]

=1y (py = Oyt + Baphaths)]}

+ ey 1k, (Y — usuy —uz) +1, (ayv3 + byvyvs)

—my [(ag — ws) wy —w; — O3w,]
=1, (Vatts — s + ps)
= [kyus + Lyvy — myw; — nypy
+a, (kyuy + 1vy — myw, —nyu,)
+ ay (kytty + Ly — myw, —nypy)
+ky (yi1ay = ustay = u3)
+1, (ayvs + byvvs)
= my [(o5 — ws) wy —w; — S3w,]

— 11y (Yalts — phphs + pis)]}

+eq {ky (11 — usuy —uy) +1, (ayvy + byv,vs)

- my [(ag — ws) w, —w, — O3ws]

=1y (Vabhs = thatts)

= [kyuy + vy — myw, —myp,
= a (kyuz + Ly — myws — mypy)
= by (kyus + Lyvs — myws — nys)
+ky (yyuy — sty — uy)
+1, (ayvy + byv,vs)
- my [(o — ws) w, —w, — S3ws]
— 11y (Vathy — thotts)]}

+ es {ks (=Pyus + uyus + uyy)

+ 1 [agvs + by (vv; +v,0,)]

= 13 (=3 ws + wyws + wyw,)

=13 [0 (s + phabty) — O4pts]

= [kyus + lyvs — myws — nyps
+by (kyuy + Ly, — myw, — nypy)
+ ks (—Byus + ugus + uyuy)
+1; [azvs + by (vivs + vyvy)]
- my (-Bws + w w; + wyw,)

=115 (8, (py 5 + papy) — 0uis) 1}

and we get

V=¢ (-e, —ae,) +e, (e, +ae, +ae;)
+e; (—e3 — aye; — azey)
+ey (e, +aze; +bies) +es(—es — bey)

_ 22 2 2 2
=—€ -6 —€; ¢ —€5.

17)

(18)

Since V. < 0ast — 00, according to the Lyapunov
stability theory, we knowe; — 0 (i = 1,2,3,4,5); that is,
lim, _, . llell = 0. Therefore, the drive systems (6) and (7) will
achieve combination-combination synchronization with the

response systems (8) and (9).
This completes the proof.

O

If we choose specific values of k;, I;, m;, and n; (i = 1,2, 3),

then we can have the following corollaries.



Corollary 4. (i) Suppose that n, = n, = ny = 0, and if the
controllers are chosen as follows:

1
= — ik, +1L,v, —-mw
¢1 ml{ll "1 1wy

+a; (kyuy + 1Ly, —mw,)
+ky [ay (uy = ) + w35
+1, (ayvy + byvsvs)

-m 03 (w3 - w, - 8,w,)},

1
= —1iku, +1,v, —muw
P2 ml{lz 1V2 1W>

—a, (kyu, + Ly, —mw,)
- a, (kyus + Lvy — myw,)
+ky (o (g — 1) + uyuis]
+1, (ayv, + byvyvs)

-myo; (wy — w, +8;w,)},

1
@3 = — {kyus + Lvs — myw,
m,

+ay (kyuy + 1v, — myw,)
+as (kyuy + Ly, — myw,)
+ky (Y0 — usuy — us)

+ 1, (ayv; + byv, vs)

—m, [(“3 - ws) Wy — w; — 63“’4]})

1
@y = — {kyuy + Ly, - myw,
m,

- a; (kyus + Lvy — myw,)
= by (ksus + Lyvs — myws)
+ky (yyuy — sty — uy)
+1, (ayvy + byv,vs)

—m, [(“3 - ws) Wy — Wy — 83“’3]}’

Ps = mi3 {esus + Lyvs — myws
+ by (kyuy + Ly, — myw,)
+ ks (= Byus + uyus + uytiy)
+15 [agvs + by (vyvy + vyv,)]
—my (—Bsws + wyws + wywy)},
19)

then the drive systems (6) and (7) will achieve combination syn-
chronization with the response system (8).

Abstract and Applied Analysis

(ii) Suppose that m, = m, = m, = 0, and if the controllers
are chosen as follows:

P |
Pr1=— {lgu, +vi—np,
n;

+a, (k1“2+11V2_n1P‘2)
+1I (o (u3—u;) +uzus)
+1; (a,v,+b,v3v5)

-0y (py—aup+Bapsps)}

« 1
¢, =— {kuy+lv,—n,p,
n;

—ay (kyuy+1vi-ny )
- ay (kpuy+1,v3—ny ;)
+Xy [og (ug-u,) +u,us]
+1; (a,v,+byv,vs)

-y (pg—oyp,+Bapiatis)}

P |
P3=— {k,u, +l,v3—n,u,
n,

+a, (kjuy+l,v,—n, )
+a; (kyuy+L,v,—n,p,)
+k, (y,u;—usu; —uy)
+1, (ayv;+b,vyvs)

—ny (yatts—ppstps)}

« 1
¢y =— {kug+lv,—nyp,
n,

— a3 (kyus +l,v3—n,p;)
- b, (kyus+l;vs—nspus)
+k, (y,uy—usu,—uy)
+1, (a,vy+b,v,ve)

-, (Y4P‘4_l‘2”5)} >

P |
Ps=— {k;us +l3vs—ns ;5
n;

+by (k2u4+lzv4—n2y4)
+ k3 (=B us+u uz+uyuy)
+15 [a3v5+bs (vyv;+v,vy)]

—n; [0y (py 15+ 1o p8,) —0 445}
(20)

then the drive systems (6) and (7) will achieve combination syn-
chronization with the response system (9).
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Corollary 5. (i) Suppose thatk, = k, = k; = 0, n; = n, =
ny = 0, and m;, = m, = my = 1, and if the controllers are
chosen as follows:

o =Ly, —w, +a; (v, —w,)
+1; (ayvy + byvsvs)
- 05 (w; —w, - 83w,),
0, =Ly, —w, —a, (v, —w,)
—a, (Lvy —wy) + 1 (a;vy + byvyvs)
- 05 (wy —w, + 83w,),
@3 =Ly —ws +a, (1, — w,)
+ay (L, —w,) + 1 (ayvs + byvyvs) (21)
— (o — ws) w; — w; — S3wy],
Py = Ly —wy — a3 (Lys — w;)
= b (Iyvs —ws) + 1, (ayvy + byv,vs)
= [(o3 — ws) w, — wy - Swy],
s = Lyvs —ws + by (L, - w,)
+1; [asvs + by (vivs + vyvy)]
- (-Bsws + wyw; + wywy),

then the drive system (7) will achieve projective synchroniza-
tion with the response system (8).

(ii) Suppose that |, =1, =1, = 0, n; = n, = ny = 0, and
m, = m, = ms = 1, and if the controllers are chosen as follows:

@ = kjuy, —w; + oy (kjuy, —w,)
+ky [oy (13 — 1)) + uzis]
- 05 (w; —wy - 83w,),
¢y = kg, —w, — o (kyuy —w,)
= Bs (kyuts —ws3) + ky [y (g — 115) + ugs]
- 05 (wy —w, + 85w,),
¢3 = kouz —ws + By (kyuy — wy)
+ 85 (kyuy —wy) + ky (yyug — sy — us) (22)
- [(og = ws) w; —w; — S3w,],
¢4 = kyuy —wy = 05 (kytis — w;)
= 03 (kyus —ws) + &y (11 — ustty — 1y)
= [(o3 - ws) w, — wy - Sywy],
@5 = kyus —ws + 03 (kyuy — wy)
+ ks (= Byus + uyus + uyuy)
- (-Bsws + wyw; + wyw,),

then the drive system (6) will achieve projective synchroniza-
tion with the response system (8).

(iii) Suppose that k, = k, = ky = 0, m; = m, = m; =0,
and ny = n, = ny = 1, and if the controllers are chosen as
follows:

¢r =hvy—p +ay (v, — )
+1, (a;vy + byvsvs)
= (3 — aqpy + Papistis) »

@, =hvy—pp—ay (hvy — )
—a, (Lvs — p3) +1, (ayv, + byvyvs)
= (s — auphy + Bapatis) »

¢y =Ly~ +ay (v, — )
+a (Lvy — pg) + 1 (ayvs + byvyvs)
= (yatts = thtts + pis)

¢y = Lvy—py - a; (Lvs — )
b, (Iyvs — ps) + L, (ayvy + byv,yvs)
= (Vatta — thatts)

@5 =Lyvs —ps + by (v — py)
+1 [agvs + by (vyvy + vyv,)]

= (84 (phs + toty) = Outs)
(23)

then the drive system (7) will achieve projective synchroniza-
tion with the response system (9).

(iv) Suppose thatl, =1, = 1; = 0, m; = m, = m; = 0, and
ny =n, = ny = 1, and if the controllers are chosen as follows:

o1 = kyuy =y + a5 (kyuy — )
+ky [oy (3 = 1y) + uzs]
= (5 — atgpy + Papapis)

@, = kyuy — py — o (kyuy — pay)
= Bs (kyu — p3)
+ky (o (uy — 1) + uyus)
= (s — auphy + Bapatis) »

@3 = kotiy — pis + B3 (kyuy — 1)
+ 05 (kg — pty)
+ky (y11ay = ustay — u3)

— (yapts — s + s) »
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FIGURE 5: Combination-combination synchronization errors e, e,, e;, e, and e; between the drive systems (6) and (7) and the response
systems (8) and (9), wheree; = u; + v, —w; — y; (i = 1,2,3,4,5).

@5 = kyuy — py — 85 (kyuy — pi3) Corollary 6. (i) Suppose thatk, =k, =k, =0,1, =1, =1, =
0,1, =ny, =ny =0, andm, =m, = my = 1, and if the con-
— 03 (ksus — pis) + ky (yy1y — ustsy — ) trollers are chosen as follows:
— (Vatta = thaths) P = —w; — oW, — 03 (W — W — 3w,),
¢y = —w, + G, + Biws — 05 (Wy —w, + Sw,),

ﬁ"; = kyus — ps + 03 (Kyuty — piy)
P3 = —w; — 3w, — S3w,

+ k3 (= Pyus + uus + uyuy) s - ws) wy - w; — 85w, (25)
= (84 (i3 + toths) = Ouis) » Py = — Wy + B3w; + 03ws
(24) - [(a5 — ws) wy — wy — S3ws],
Ps =~ ws — 03w, — (—=f3ws + Wi w; + Wyw,),

then the drive system (6) will achieve projective synchroniza-
tion with the response system (9). then system (8) is stabilized to the equilibrium O(0, 0, 0,0, 0).
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FIGURE 6: Combination synchronization errors ey, e,, e, e,, and e; between the drive systems (6) and (7) and the response system (8), where

e, =u;+v,—w; (i=12,3,4,5).

(ii) Suppose that k;, = k, = ks = 0,1, =1, =1, =0,
m; =m, =my =0,and n;, = n, = ny = 1, and if the con-
trollers are chosen as follows:
Pr = —th — oy — (ps = aqpy + Papisis)
Py =ty + gty + Bups — (s — upy + Pattatts)
@3 = s — Batty — Yapha — (Vaths = thphs + 5) » (26)
Py =~ + Vahs + Ouphs — (Valhy — thotis)
¢ = —phs — Oty — [0y (thitts + topy) — Ouis ],

then system (9) is stabilized to the equilibrium O(0, 0,0, 0, 0).

Remark 7. The above corollaries can be easily obtained from
Theorem 3, and their proofs are similar to that of Theorem 3,
so we omit the proofs here.

4. Numerical Simulations

In this section, three numerical examples are presented to
illustrate the theoretical analysis. In the following numer-
ical simulations, the fourth-order Runge-kutta method is
employed with time step size 0.001. The system parameters
are selected as & = 30,9, =90, 3, = 11,4, = 9.5,a, = 19,
4y = -3,b, = —1,b, = 1,b, = 1, a = 50.0625, B; = 0.75,05 =
5,08, =0.25, a4 = 3.5, 3, = 0.599,y, = 3,0, =2,and 0, = 9,
so that the four nonlinear complex chaotic systems exhibit
chaotic behaviors, respectively.
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FIGURE 7: Time evolution of the states of system (8).

Firstly, consider the combination-combination synchro-
nization of the two drive systems (6) and (7) and the response
systems (8) and (9) with the controllers (14). We assume
ky=k,=k;=11 =1L =1L =1,m =m, =m; = 1,and
n, = n, = ny = 1, and the initial states for the drive systems
and response systems are arbitrarily given by (x;,(0), x1,(0),
x13(0)) = (2 + 44, 1 + 34, 2), (x5,(0), x5,(0), x,3(0)) = (-2 -,
5-3i,4), (¥1:(0), 1,(0), ¥15(0)) = (241, 5+3i,4), and (y,,(0),
¥2,(0), ,5(0)) = (5+2i, —1+i, —4); that s, (1, (0), u,(0), 15(0),
14,(0), 45(0)) = (2,4, 1,3,2), (1,(0), 7,(0), v3(0), v4(0), ¥5(0)) =
(-2,-1,5,-3,4), (w,(0), w,(0), w5(0), wy(0), ws(0)) = (2,1,
5,3,4), and (4,(0), 1 (0), 15 (0), sy (0), 15 (0) = (5,2,-1,1,
—4), respectively. The corresponding numerical results are
shown in Figure 5. Figure 5 displays time response of the
combination-combination synchronization errors e, e,, e,
ey, and e;, wheree; = u;+v,—w;—y; (i = 1,2, 3,4,5). The errors

converge to zero which implies that the drive systems (6) and
(7) and the response systems (8) and (9) have achieved com-
bination-combination synchronization.

Secondly, consider the combination synchronization of
the two drive systems (6) and (7) and the response system (8)
with the controllers (19). We assume k; = k, = k; = 1,1, =
LL=1;=1,m =my =m; =1,andn, =n, = ny = 0. The
corresponding numerical results are shown in Figure 6.
Figure 6 displays time response of the combination synchro-
nization errors ey, e,, €3, 4, and es, where e; = u; + v; — wj;
(i = 1,2,3,4,5). The errors converge to zero which implies
that the drive systems (6) and (7) and the response system (8)
have achieved combination synchronization.

Finally, consider another special case, that is, when k; =
ky=0,1, =1, =1;=0,m =m, =my =1,and n,
ny = 0, system (8) will be stabilized to its equilibrium

k,
&)
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0(0,0,0,0,0). Figure 7 shows the time evolution of the states
wy, Wy, W;, Wy, and ws of system (8) with controller (25),
which illustrates that system (8) is stabilized to the equilib-
rium O(0, 0, 0,0, 0).

5. Conclusions

In this paper, we investigate the combination-combination
synchronization of four nonlinear complex chaotic systems.
Based on the Lyapunov stability theory, corresponding con-
trollers to achieve combination-combination synchroniza-
tion among four different nonlinear complex chaotic systems
are derived. The special cases, such as combination synchro-
nization and projective synchronization, are studied as well.
This synchronization scheme has advantages over the usual
drive-response synchronization, such as being able to pro-
vide greater security in secure communication. In [24], the
authors applied combination synchronization in secure com-
munication; the signal was divided into two parts, and each
part was transmitted by a different chaotic system (the drive
system), which implied that the signal transmitted by this
model may have stronger antiattack ability and antitranslated
capability than that transmitted by the usual transmission
model. When applying the nonlinear complex systems in
communications, the complex variables will double the num-
ber of variables and can increase the content and security of
the transmitted information. Thus combination-combination
synchronization of complex nonlinear systems can find better
applications in security communication, such as wireless
communication [25].
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