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The well-known Blasius flow is governed by a third-order nonlinear ordinary differential equation with two-point boundary
value. Specially, one of the boundary conditions is asymptotically assigned on the first derivative at infinity, which is the main
challenge on handling this problem. Through introducing two transformations not only for independent variable bur also for
function, the difficulty originated from the semi-infinite interval and asymptotic boundary condition is overcome. The deduced
nonlinear differential equation is subsequently investigated with the fixed point method, so the original complex nonlinear equation
is replaced by a series of integrable linear equations. Meanwhile, in order to improve the convergence and stability of iteration
procedure, a sequence of relaxation factors is introduced in the framework of fixed point method and determined by the steepest

descent seeking algorithm in a convenient manner.

1. Introduction

The Navier-Stokes equations are the fundamental governing
equations of fluid flow. Usually, this set of nonlinear partial
differential equations has no general solution, and analytical
solutions are very rare only for some simple fluid flows.
However, in some certain flows, the Navier-Stokes equations
may be reduced to a set of nonlinear ordinary differential
equations under a similarity transform [1, 2]. These similarity
solutions could not only provide some physical significance to
the complex Navier-Stokes equations but also act as a bench-
marking for numerical method. The well-known Blasius flow
[3-5] is possibly the simplest example among these similarity
solutions. It describes the idealized incompressible laminar
flow past an semi-infinite flat plate at high Reynolds numbers,
which is mathematically a third-order nonlinear two-point
boundary value problem:

Ay [fl=2f"+ff" =0, ®
subject to the boundary conditions:
fO =0 f(0)=0, Jim, =1 (

where the prime denotes differentiation to the variable # and
f(n) is the nondimensional stream function related to the
stream function y(x, y) as follows:

v (x6y) = f (1) \»*Us. (3)

n = y\Ug/(vx) is the similarity variable, where U is the
free stream velocity, v is the kinematic viscosity coefficient,
and x and y are the two independent coordinates. The two
velocity components are then determined:

_ %y _ '
u= ay _Uoof (’7)’

(4)
=Y s ] 2

According to (1) and (2) the solution is defined on a semi-
infinite interval # > 0, and one of the boundary conditions
is asymptotically assigned on the first derivative of function
at infinity, which are the main challenges on solving the
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Blasius flow. The solution to this problem has the following
asymptotic property [6, 7]:

IIO 2
f,\,f(%) as}/]—>0, (5)
f~n+B, asny— 00,

where B is a constant and the benchmarking value provided
by Boyd [6, 7] is B = —1.720787657520503.

As known, no simple closed-form solution to the Blasius
problem is available, despite the simple form and such a
long history of it since 1908 [3]. Much attention has been
paid to this problem. Blasius [3] himself firstly investigated
this problem by the perturbation method and obtained an
approximate solution by matching a power series solution for
small # to an asymptotic expansion for large #. However, this
procedure may be improper because of somewhat restricted
radius of convergence in the first power series [8]. Later, this
problem was handled by Bender et al. [9] with §-expansion
in a smart manner. The approximate solutions were obtained
by He [10], Liao [11, 12], and Turkyilmazoglu [13-16] with the
variational iteration method, homotopy analysis method, and
homotopy perturbation method, respectively. Wang [17] also
investigated this problem by the Adomian decomposition
method. Meantime, there are a lot of numerical methods
emerging to handle the Blasius problem including, but not
limited to, shooting method, finite differences method, and
spectral method [18-31]. A vast bibliography of numerical
methods has developed for this problem, so a full account
of them is out of the scope of this paper, and readers are
suggested to refer to the review articles [6, 7]. It is noted
that the existing numerical methods usually integrate this
problem over a finite interval # € [0,7,,], although the
Blasius problem is originally defined on the semi-infinite
interval # € [0, +00). Thus the value of 7, should be chosen
sufficiently large to assure the accuracy of the asymptotical
boundary condition at infinity. However, the appropriate
value 7, could not be determined beforehand, so usually
the trial-and-error approach is involved, and some different
values should be tried to find the appropriate #, to satisfy the
demanded accuracy.

In order to exactly assure the boundary conditions (2)
and obtain a uniformly valid solution on the semi-infinite
interval # € [0,+00), two transformations not only for
the independent variable # but also for function f(#) are
introduced in this paper. The transformed nonlinear differ-
ential equation is subsequently investigated with the fixed
point method (FPM) [33], which transforms the nonlinear
differential equation into a series of integrable linear dif-
ferential equations. Hence, an approximate semianalytical
solution to the Blasius problem is finally obtained, which is
valid on the whole domain and can satisfy the asymptotic
property automatically. Meantime, in order to improve the
convergence and stability of iteration procedure, a sequence
of relaxation factors is introduced in the framework of
FPM, which are determined by the steepest descent seeking
algorithm. Thus, the accuracy of this approximate solution
could be improved step by step in a convenient manner.
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FIGURE I: The convergence history of Res, (A = 1/5).
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FIGURE 2: The convergence history of f,'(0) (A = 1/5).

2. Revisiting the Blasius Equation by
Fixed Point Method

2.1. Transformations. As mentioned in Section 1, the main
challenge on handling the Blasius problem originates from
the semi-infinite interval # € [0,+00) and the asymptotic
boundary condition limn_> oS '(7) = 1. In order to overcome
these difficulties, two transformations are introduced for
independent variable # and function f(#), respectively,

_(-1)

(A +1)’

_A(f-n)
(1+Ay)’

(6)
g(2)
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FIGURE 3: Comparison of FPM result (A = 1/5, n = 100) with
Howarth’s numerical result.
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FIGURE 4: The residual error function o/ ([f,] = 2f"+ £ f (A=
1/5).

where A (>0) is a free parameter. 1/A stands for the length
dimension and its physical meaning is related to the scale of
boundary layer thickness. The influence of A on the solution
will be discussed in detail in Section 3.2.

Hence, the original Blasius equation becomes

d,(9] = V(1-z2)Pg" + [1 “3M(1 -2 +z+ Zg] g' =0,
(7)

with the following boundary conditions:

1
g-n=0  g(D=-2  gmH=0
where the prime denotes differentiation to the new variable
z. It is clear that the semi-infinite interval # € [0, +00) is
mapped to the bounded interval —1 < z < 1, and the original

asymptotic boundary condition lim, _, o, f '(n) = 1 becomes

A A1
g =i Sy im0 ©

which is beneficial to the acquirement of the valid solution in
the whole domain.

2.2. The Idea of Fixed Point Method (FPM). The fixed point,
a fundamental concept in functional analysis [34], has been
widely adopted in studying the existence and uniqueness of
solutions by pure mathematicians. Recently, the fixed point
concept has been used to handle nonlinear differential equa-
tions, and the fixed point method (FPM) has been proposed
to obtain the explicit approximate analytical solution to the
nonlinear differential equation [33].

To outline the idea of FPM, let us consider the following
nonlinear differential equation:

(10)
'%jJr [u] =0,

where /[] is a nonlinear operator and u is an unknown
function. Here, %_ [u] = 0 is the boundary condition and/or
initial condition for u.

I [] is a contractive map:

Tu=u-a Z[dul], (11)

where &[] is a linear continuous bijective operator, named
as the linear characteristic operator of the nonlinear operator
[] and fZél [-] is the inverse operator of Z[-]. @ is a real
nonzero free parameter, named as the relaxation factor, which
could improve the convergence and stability of iteration
procedure. The optimal value @ is usually dependent on the
problem to be solved [33]. Then, a solution sequence {u,|n =
0,1,2,3,...} can be obtained from the following iteration
procedure:

Upp1 = '7 [un] =u, - (Dn+1 ' gcl ['Q{ [un]] >

‘%j+[un+l]:0 n=0,12,...
(12)
Lol = Lo lvy] = @pir - L [u,],
- B, [ty ] =0 n=0,1,2,....
(13)

If the convergence of the solution sequence {u,|n =
0,1,2,3,...} is ensured, it is clear that the limit value u™ is
exactly the zero point of the original nonlinear operator /[-]:

A u] =0,
(14)
%, [u'] =0,

and u” is also named as a fixed point of the contractive map
T ul.

In [33], only one relaxation factor @ is introduced and
determined by the so-called @-curves in a heuristic manner.
Here, a sequence of relaxation factors {®,ln = 1,2,3,...}
is introduced in (12), which will be decided according to
the steepest descent seeking algorithm in the following
Section 2.3.
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F1GURE 5: The influence of A value on the square residual error Res,,.
TaBLE 1: Comparison of ' (0) between FPM (A = 1/5) and others.
Present (FPN?”(O) Fazio [31] Zhang and Chen [32] Boyd [6, 7] (Benchmark)
n n
1 0.3399132521631
25 0.3314634706964
50 0.3322299008614
100 0.3320852976636
150 0.3320560696476
200 0.3320572413724 0.3320575595 0.33205733621 0.33205733621519630
250 0.3320573781489
300 0.3320573415043
400 0.3320573362780
600 0.3320573362198
800 0.3320573362153

2.3. The Steepest Descent Seeking Algorithm (SDS). As men-
tioned in Section 2.2, the relaxation factor {®,|n = 1,2,3,.. .}
could improve the convergence and stability of iteration
procedure, and usually the optimal value of relaxation factor
is dependent on the problem to be solved. Here, an algorithm,
named as the steepest descent seeking algorithm (SDS), is
adopted to determine the optimal value of the relaxation
factor.

Let Res, denote the square residual error of the aforemen-
tioned iteration procedure in (13):

Res, = Res, (@;,®,,...d,)

(15)
:j (o [u,])’dQ, n=1,23,...,
Q

where Q) is the definition domain of the variable and Res,, is
a kind of global residual error and can evaluate the accuracy
of the approximation u,,. Then it is suggested that the optimal
value of relaxation factor @, corresponds to the value @,

such that Res,, obtains the minimum value min(Res,,). For
example, when n = 1, the square residual error Res, (@) is
a function of @, only and thus the optimal value @, ,,; can be
obtained by solving the nonlinear algebraic equation:

dRes,
— =0.
da, (16)

When n = 2, the square residual error Res,(@,,®,) is
dependent on @, and @,. Because the optimal value @, .
is known from the previous step, the optimal value @, ,, is
governed by the following nonlinear algebraic equation:

dRes,

=0.
do, (17)

Similarly, for the nth-higher order, the square residual
error Res, actually contains an unknown relaxation factor
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TaBLE 2: Comparison of f between FPM (A = 1/5) and Howarth.

g FPM Howarth [21]
n=>50 n =200 n =800
0 0. 0. 0. 0
0.2 0.006644529362447 0.006640995986591 0.006640999714597 0.00664
0.4 0.02657431250127 0.02655986911996 0.02655988401799 0.02656
0.6 0.05976777037563 0.05973460409079 0.05973463749804 0.05974
0.8 0.1061682229933 0.1061081617252 0.1061082208390 0.10611
1.0 0.1656669946990 0.1655716339700 0.1655717257893 0.16557
1.2 0.2380877115384 0.2379485860317 0.2379487172889 0.23795
1.4 0.3231726092163 0.3229813967422 0.3229815738295 0.32298
1.6 0.4205717973682 0.4203205366053 0.4203207655016 0.42032
1.8 0.5298364510983 0.5295177515398 0.5295180377438 0.52952
2 0.6504167979655 0.6500240214585 0.6500243699353 0.65003
3 1.397637112752 1.396807516637 1.396808230870 1.39682
4 2.307039632340 2.305745294404 2.305746418462 2.30576
5 3.284986166454 3.283272129531 3.283273665156 3.28329
6 4.281691879364 4.279618989982 4.279620922514 4.27964
7 5.281627551984 5.279236492841 5.279238811029 5.27926
8 6.281851614090 6.279210729689 6.279213431346 6.27923
10 8.282182252512 8.279208870686 8.279212342934 /
15 13.284515240195 13.27920694573 13.279212342479 /
20 18.283646215099 18.27920502276 18.279212342479 /
TaBLE 3: Comparison of f " between FPM (A = 1/5) and Howarth.
n FPM Howarth [21]
n=>50 n =200 n = 800
0 0. 0. 0. 0
0.2 0.06644347995228 0.06640775477474 0.06640779209625 0.06641
0.4 0.1328378289536 0.1327640864649 0.1327641607610 0.13277
0.6 0.1990509318305 0.1989371417431 0.1989372524222 0.19894
0.8 0.2648643497350 0.2647089925007 0.2647091387231 0.26471
1.0 0.3299775414929 0.3297798506391 0.3297800312497 0.32979
1.2 0.3940157297864 0.3937758909492 0.3937761044339 0.39378
1.4 0.4565422496657 0.4562615202332 0.4562617647051 0.45627
1.6 0.5170757864638 0.5167565112060 0.5167567844226 0.51676
1.8 0.5751123265865 0.5747578444754 0.5747581438894 0.57477
2 0.6301509546266 0.6297654136655 0.6297657365024 0.62977
3 0.8465117311855 0.8460440464746 0.8460444436580 0.84605
4 0.9559675373580 0.9555178143322 0.9555182298107 0.95552
5 0.9919283302451 0.9915414951870 0.9915419001644 0.99155
6 0.9993091537696 0.9989724827440 0.9989728724358 0.99898
7 1.000215077512 0.9999212208137 0.9999216041479 0.99992
8 1.000195058002 0.9999958903313 0.9999962745353 1.00000
10 1.000231913519 0.9999996129000 0.9999999980154 /
15 1.000224523350 0.9999996133026 1.000000000000 /
20 0.9997789079310 0.9999996166005 1.000000000000 /
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TaBLE 4: Comparison of " between FPM (A = 1/5) and Howarth.
f”

! n=50 anpzbf)o n =800 Howarth [21]
0 0.3322299008614 0.3320572413724 0.33205733621526 0.33206
0.2 0.3321681255428 0.3319836510534 0.33198383711462 0.33199
0.4 0.3316651431123 0.3314696606323 0.33146984420144 0.33147
0.6 0.3302835149673 0.3300789475208 0.33007912757428 0.33008
0.8 0.3275995678839 0.3273890950354 0.32738927014924 0.32739
1.0 0.3232190113859 0.3230069482211 0.32300711668693 0.32301
1.2 0.3167975457228 0.3165890310990 0.31658919106110 0.31659
14 0.3080647180157 0.3078652421801 0.30786539179016 0.30787
1.6 0.2968484699253 0.2966633238744 0.29666346145571 0.29667
1.8 0.2830971363448 0.2829308930580 0.28293101725975 0.28293
2 0.2668953087923 0.2667514357803 0.26675154569727 0.26675
3 0.1613836232798 0.1613602778747 0.16136031954088 0.16136
4 0.06418469140538 0.06423412147661 0.064234121091696 0.06424
5 0.01584093436570 0.01590681516643 0.015906798685320 0.01591
6 2.367987742194e — 3 2.402051505611e — 3 2.4020398437568e — 3 0.00240
7 1.526040209602¢ — 4 2.201705391867¢ — 4 2.201689552708e — 4 0.00022
8 -9.161215077567¢ — 4 1.223887615942¢ — 5 1.224092624324e — 5 0.00001
10 1.667970449293¢ — 4 9.650715210973e — 9 8.442915877193e — 9 /

15 2.499528919705e — 4 —1.207941083287¢e — 10 1.426848065722¢ — 17 /

20 1.244076430614e — 4 1.815564827202e — 9 4.736242910970e — 18 /

0.32'ii...|....|....|....|....

0 10 20 30 40 50
n

--- Benchmark (Boyd's)
--A=1/3

—- A=1/4
— A=1/5

(a) Comparison among A =1/3, A = 1/4,and A = 1/5

0.36

0.34

"(0)

f

0.32

/
03 vz v b v b b b

0 10 20 30 40 50
n

--- Benchmark (Boyd's) - - A=1/7

— A=1/5 -—-A=1/8

- A=1/6

(b) Comparison among A =1/5, A =1/6, A =1/7,and A =1/8

F1GURE 6: The influence of A value on the convergence of ' (0).

@, only, so the optimal value @, is determined by the
following nonlinear algebraic equation:

dRes,,

o =0 (18)

n

The name of the steepest descent seeking algorithm
just comes from the aforementioned approach; that is,
every optimal value @, is sought to minimize the cor-
responding square residual error Res,. According to this

approach, only one nonlinear algebraic equation should
be solved in every iteration step, and the elements of the
sequence {®,|n = 1,2,3,...} are obtained sequentially and
separately.

2.4. Iteration Procedure. Now, for (7), let us choose the linear

characteristic operator:

d3
Zclgl = d—j =g", (19)

and construct an iteration procedure as follows:
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gC [gn+1] = gC [gn] TS 'Qig [gn] >

Gna1 (-1) =0,

n "

Ini1 = In — Opyy {Az(l -z)'g

—
Gna1 (-1) =0,

The initial guess g, is conveniently chosen as

(-1

=~ 7 (22)
9o 1
which satisfies the following equation:
Zc[g0] =0,
) 1 (23)
go (1) =0, 9o (—1):—5, 9o (1) =0.

3. Result and Discussion

3.1 Results as A=1/5. Before the acquirement of approximate
solution according to the iteration procedure (21), the free
parameter A should be determined. It is found that the
iteration procedure converges rapidly when the value of 1/A
takes the scale of boundary layer thickness. Here, the value of
A is firstly set to A = 1/5 and the influence of A value on the
solution will be studied in Section 3.2.

In order to demonstrate FPM, the procedure to obtain the
first-order approximation g, (z) is given here in detail. Firstly,
the governing equation for g, (z) is deduced according to (21):

D)
g = _WIO (19 + 622 +192°),
X (24)
g, (-1) =0, g;(—1)=—5, g, (1) =0.

Then the first order approximation g, (z) takes the follow-
ing form:
730, 1
6000 4

209@, ( 1
+—z+

4@, ) >
- z
6000

9:(2) = 4" 3000

(25)

19@
_ e, 5 31a, 4 190, 5
600 1200 6000

It is clear that the first-order approximation g, (z) in (25)
is dependent on the relaxation factor @,, whose optimal
value could be determined by the steepest descent seeking
algorithm (SDS) as mentioned in Section 2.3. Here, the
square residual error Res, of the original equation (1) is
introduced:

Res, = | (st L1 ))an = [ =2 (, 1)) dz

(26)

1
g:,+1 -1) = _5’

3_m
n

1
g:,+1 -1 = _5

7
(20)
G (1)=0, n=0,1,2...
+ [1 - 3/\2(1 - 2)2 tz+ zgn] g:,,} >
(21)

y G (1)=0, n=0,1,2....

Then, the square residual error of f, () is as follows:
Res, (@,) = 0.06590476 — 0.02813884, + 0.0045308360°
43 6 4

+2.330415 x 10*®@; +5.251947 x 10~°a},
(27)

and the optimal value @, ,, and the minimum of Res, are

@ opt = 2.560515, min (Res; ) = 0.02769798.  (28)
Hence, the first-order approximation g,(z) is finally

determined:

g; (z) = —0.2188471 + 0.08919127z + 0.28499372

—0.08108297z° — 0.06614663z* — 0.008108297z".
(29)

For the higher-order approximation g,(z), the procedure
is similar, and an explicit semianalytical solution could be
deduced by the symbolic computation software, such as
MAXIMA, MAPLE and MATHEMATICA.

In consideration of the transformation (6), the corre-
sponding approximate solution f,(#) to the original Blasius
equations (1) and (2) is

1 (An-1)
fn(n)=gn(z)-(fv+ X>+’7’ 2= )

(30)

The convergence history of the square residual error Res,,
is illustrated in Figure 1, which clearly shows that Res,, is
gradually reduced during the iteration procedure, so the
accuracy of the approximate solution could be improved step
by step to any possibility.

The second derivative f "(0) is a measure of the shear
stress on the plate and plays a critical role in the Blasius
problem [4, 5]. The relationship between fn"(O) and g:l'(—l)
can be deduced as follows:

£, (0) = 4Ag, (-1). (3
The convergence history of f.'(0) is displayed in Figure 2,
which shows that the difference between the approximation
f:(O) and Boyd’s [6, 7] benchmarking result f ") =
0.33205733621519630 decreases during the iteration proce-
dure. Meanwhile, the comparison between the present result



TaBLE 5: The asymptotic property of f for large positive 77 (A = 1/5,
n = 800).

n f-n B= ﬂango(f - 1) (Benchmark) [6, 7]
5 —-1.716726334844

6 —-1.720379077486

7 -1.720761188971

8 —-1.720786568654

9 —1.720787629355

10 —-1.720787657066

1 —1.720787657516 —-1.720787657520503
12 —-1.720787657520

13 —1.720787657521

14 —-1.720787657521

15 —-1.720787657521

20 —-1.720787657521

25 —-1.720787657521

30 —-1.720787657521

and others given in [6, 7, 31, 32] is tabulated in Table 1, which
shows that f!'(0) is the same as Boyd’s benchmarking result
within 7 significant digits when n > 300 and within 12
significant digits when »n > 800.

The approximate semianalytical solutions and the well-
known Howarth’s [32] accurate numerical result of f(),
f'(n), and f"(y) are compared in Figure 3 and simultane-
ously tabulated in Tables 2-4, which shows that the present
result obtained by FPM is of high accuracy.

The residual error function o/ ([f,] = 2 "+ fuf)
is plotted in Figure 4, which also reveals that the error of
approximate solutions gradually decreases during the itera-
tion procedure. Moreover, the present approximate solutions
are uniformly valid in the whole region.

Based on the asymptotic property of f(#) given in (5), we
obtain

B= lim (f-n). (32)
The approximate value of B could be obtained as follows:

B= f,(n)-n

The comparison between the approximate value of B obtained
by FPM (n = 800, A = 1/5) and the benchmarking result
B = —1.720787657520503 provided by Boyd [6, 7] is given
in Table 5, which shows that the present result is the same as
Boyd’s benchmarking result within 7 significant digits when
n = 9 and within 13 significant digits when # > 13.

for large #. (33)

3.2. The Influence of A Value on the Solution. It is clear that
1/A takes the length dimension in consideration of transfor-
mation (6). In order to investigate the influence of A value
on the solution, some different A values are considered in
the following calculations, and the comparison of Res, at
different A values is displayed in Figures 5(a) and 5(b). It is
found that all Res,, corresponding to different A values are
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gradually reduced during the iteration procedure, and Res,,
based on A = 1/5 converges more rapidly than others. What
is the physical meaning of A? Let us try to find the answer
from the Prandtl’s boundary layer theory [5].

According to Prandtl’s boundary layer theory, the effect
of viscosity is mainly confined to the boundary layer such
that # < 6, and the outer flow ( > &) could be considered
as inviscid flow. From Table 3, the thickness of the boundary
layer is just about 8 =~ 5, where u/U,, = f = 0.99.
Now, the physical meaning of A becomes clear. 1/A has the
same scale of boundary layer thickness J. In consideration of
transformation (6), the region —1 < z < 1 is divided into two
equal parts, and the viscous flow ( < 6 = 5) and inviscid
flow (7 > 6 = 5) correspond to -1 <z < 0and 0 < z < 1,
respectively. Although this determination of A is in a heuristic
manner, it is fortunate that the solution is quite insensitive to
A so long as 1/A is of the same order-of-magnitude as § = 5.
The influence of A on the convergence of £, (0) is given in
Figures 6(a) and 6(b), which also reveals that the limit values
of f,’l/(O) with different A values agree well with each other.
Hence, the selection of A is nonessential to the final solution.

4. Conclusion

In this paper, the well-known Blasius flow is revisited
by the fixed point method (FPM). In order to overcome
the difficulties originated from the semi-infinite interval
and asymptotic boundary condition, two transformations
are introduced for not only the independent variable but
also the dependent variable. Under these transformations,
all the boundary conditions are exactly assured for every
order approximate solution. In the meanwhile, a free scale
parameter A is introduced in the transformation, and its
physical meaning is related to the thickness of the boundary
layer. Moreover, a sequence of relaxation factors {@,|n =
1,2,3,...} is introduced to improve the convergence and
stability during iteration procedure, and its elements are
obtained in a convenient manner by the steepest descent
seeking algorithm. Finally, the comparison of the present
results with other scholars’ numerical results, especially with
the benchmarking results provided by Boyd, shows that
FPM is an effective and accurate approach to obtain the
semianalytical solution to nonlinear problems.

Nomenclature
Uy: Free stream velocity, m/s
u: x-components of the velocity, m/s

v y-components of the velocity, m/s
y(x, y): Stream function, m*/s

f(n): Nondimensional stream function

v: Kinematic viscosity coefficient, m*/s.
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