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This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of
self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme
are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-
mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent
scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class
of extended nonlinear polytopic-type parameterizations of certain dynamic systems.

1. Introduction

The problems of boundedness and convergence of sequences
of iterative schemes are very important in numerical analysis
and the numerical implementation of discrete schemes; see
[1–4] and references therein. In particular, [1] describes in
detail and with rigor the associated problems linked to the
theory of fixed points in various types of spaces like metric
spaces, complete and compact metric spaces, and Banach
spaces, while it also contains, discusses, and compares results
of a number of relevant background references on the subject.
In other papers, related problems of fixed point theory or
stability are focused on approximations including, in some
cases, issues from a computational point of view eventually
involving modified numerical methods like, for instance,
Aitken’s delta-squaredmethods or Steffensen’smethod [4–11].
Also, a counterpart theory has been also formulated in the
framework of common fixed points and coincidence points
for several mappings and in the framework of multivalued

functions. An important background on fixed, best prox-
imity, and proximal points concerned with nonexpansive,
contractive, weakly contractive, and strictly contractive map-
pings has been developed; see, for instance, [1–4, 8–25] and
references therein. In particular, a relevant effort has been
also focused on the formulations of extensions of the above
problems to the study of existence and uniqueness of fixed
and best proximity points in cyclic self-mappings as well
to proximal contractions [12–14, 17–20, 24, 25] and to the
characterization of approximate fixed and coincidence points
[21, 22]. Direct applications of fixed point theory to the study
of the stability of dynamic systems including the property
of ultimate boundedness for the trajectory solutions having
mixed nonexpansive and expansive properties through time
or being subject to impulsive controls have been given in
[21, 24, 25].This paper is focused on the study of boundedness
and convergence of sequences of distances and iterated
points and the characterization of fixed points of a class of
composite self-maps in metric spaces. Such maps are built
with combinations of sets of elementary self-maps which
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can be expansive or nonexpansive and the last ones can be
contractive (including the case of strict contractions). The
composite maps are defined by switching rules which select
some self-map (the “active” self-map) on a certain interval
of definition of the running index of the sequence of iterates
being built. The above-mentioned properties concerning the
sequences of iterates being generated fromgiven initial points
are investigated under particular constraints for the switching
rule. Note, on the other hand, that the properties of control-
lability, observability, and stability of differential or difference
equations as well as the various kinds of dynamic systems are
of a wide interest in theory and applications including the
cases of presence of disturbances and/or unmodeled dynam-
ics [23–45]; see, for instance, related problems associatedwith
continuous-time, discrete-time, digital, and hybrid systems
and those involving delayed dynamics [27, 30, 33, 37–39],
hybrid [34–36, 41], and switched dynamic systems [31, 32, 38–
43] and references therein. The above problems are often
studied in an integrated or combined fashion in the sense
that the presence of uncertainties of any nature (basically
unmeasurable noise or unmodeled dynamics) is incorporated
to the description of differential, difference, or hybrid systems
with eventual external delays or delayed dynamics. The
stability is studied with different tools as Lyapunov theory,
matrix inequalities, or fixed point theory. Fractional calculus
has also been widely used in the investigation of the solutions
of differential, functional-differential, and dynamic systems;
see, for instance, [44, 45] and some references therein.

This paper is firstly devoted to giving a framework for the
contractive properties of two general iterative schemes which
are constructed via combinations of elementary self-maps
in appropriate metric or Banach spaces. The sequences of
self-mappings of the first scheme are constructed by linear
combinations of a set of self-mappings, each of them being
a weighted version of a certain primary self-mapping on the
same space. Such weights are nonnegative real sequences
in general. The single parameterizations of the first iterative
scheme include polytopic-type ones, where a set of real scalar
sequences define both the sequence of self-mappings of inter-
est and the individual parameterizations as a particular case.
The second iterative scheme is a generalization of De Figue-
iredo scheme [8], where the sequences of self-mappings are
integer powers of a scaled version of a primary elementary
self-mapping. Such powers are iteration-dependent, while the
scaling weights can be iteration-dependent. A second objec-
tive is to describe an application of the developed theoretical
framework to study the stability properties of (in general)
nonlinear switched dynamic systems under appropriate sta-
bilizing switching rules. The obtained formal results can also
be useful to investigate the stability of dynamic systems under
combinations of single parameterizations.

1.1. Notation. {𝑇
𝑛
} 󴁂󴀱 𝑇

∗ (i.e., lim sup
𝑛→∞

{‖𝑇
𝑛
𝑥 − 𝑇

∗

𝑥‖ :

𝑥 ∈ Dom𝑇
𝑛
} = 0; ∀𝑥 ∈ Dom𝑇) and {𝑇

𝑛
} → 𝑇

∗ (i.e.,
lim
𝑛→∞

𝑇
𝑛
𝑥 = 𝑇

∗

𝑥; ∀𝑥 ∈ Dom𝑇
𝑛
) for 𝑇∗, 𝑇

𝑛
: 𝑋 → 𝑋,

∀𝑛 ∈ Z
0+
; denote, respectively, uniform and point-wise con-

vergence in𝑋 of 𝑇
𝑛
: 𝑋 → 𝑋 to 𝑇

∗

: 𝑋 → 𝑋 provided that
all of them have the same domain.

Fix(𝑇) denotes the set of fixed points of 𝑇 : 𝑋 → 𝑋 and
𝑘 = {0, 1, . . . , 𝑘}.

2. Iterative Scheme 1

Consider the following iterative scheme under a sequence of
self-mappings 𝑇

𝑛
: 𝑋 → 𝑋, ∀𝑛 ∈ Z

0+
, on a vector space𝑋:

𝑥
𝑛+1

= 𝑇
𝑛
𝑥
𝑛
=

𝑘

∑
𝑖=0

𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛
, ∀𝑛 ∈ Z

0+
, (1)

for any given𝑥
0
∈ 𝑋with𝑇 : 𝑋 → 𝑋 and𝑇

𝑛
: 𝑋 → 𝑋,∀𝑛 ∈

Z
0+
, being defined by 𝑇

𝑛
𝑥 = (∑

𝑘

𝑖=0
𝛼
(𝑛)

𝑖
𝑇
𝑖

)𝑥 for any 𝑥 ∈ 𝑋 and
the nonnegative real parameterization sequences being sub-
ject to ∑

𝑘

𝑖=0
𝛼
(𝑛)

𝑖
> 0, ∀𝑖 ∈ 𝑘 = {0, 1, . . . , 𝑘}, ∀𝑛 ∈ Z

0+
.

Theorem 1. Consider the iterative scheme (1) on a vector space
𝑋, with 0 ∈ 𝑋, under the following assumptions.

(1) Either (𝑋, ‖‖) is a normed space endowed with a norm
‖‖ or, respectively, (𝑋, 𝑑) is ametric space endowedwith
a homogeneous translation-invariant metric 𝑑 : 𝑋 ×

𝑋 → R
0+
.

(2) ∑𝑘
𝑖=0

𝛼
(𝑛)

𝑖
> 0 and 0 ≤ 𝛼

(𝑛+1)

𝑖
= (1 + 𝛼̃

(𝑛)

𝑖
)𝛼
(𝑛)

𝑖
, ∀𝑖 ∈ 𝑘 =

{0, 1, . . . , 𝑘}, ∀𝑛 ∈ Z
0+
, and inf

𝑛∈Z0+max
1≤𝑖≤𝑘

𝛼
(𝑛)

𝑖
> 0,

with the nonnegative real sequences {𝛼
(𝑛)

𝑖
}, ∀𝑖 ∈ 𝑘,

being subject to the constraints |𝛼̃(𝑛)
𝑖

| ≤ 𝛼̃
𝑛
≤ 𝑚
𝑛
(𝑑(𝑥
𝑛
,

𝑥
𝑛+1

)/𝑑(𝑥
𝑛+1

, 0)) and𝑚
𝑛
= 𝑜[𝑑(𝑥

𝑛+1
, 0)], ∀𝑖 ∈ 𝑘, ∀𝑛 ∈

Z
0+
, where the relative one-step increment param-

eterization sequences are 𝛼̃
(𝑛)

𝑖
= (𝛼
(𝑛+1)

𝑖
− 𝛼
(𝑛)

𝑖
)/𝛼
(𝑛)

𝑖
,

∀𝑖 ∈ 𝑘, ∀𝑛 ∈ Z
0+
.

(3) 𝑇 : 𝑋 → 𝑋 possesses the (nonnecessarily contractive)
condition 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝐾𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋, for some
𝐾 ∈ R

+
.

(4) (1 + 𝑚
𝑛
)(∑
𝑘

𝑖=0
𝛼
(𝑛)

𝑖
𝐾
𝑖

) ≤ 𝜌 < 1, ∀𝑛 ∈ Z
0+
.

Then, the following properties hold.

(i) There exists the limit lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0 for any
given initial point 𝑥

0
∈ 𝑋 of the iterative scheme (1)

and the sequence {𝑥
𝑛
} is bounded.

(ii) If, in addition, {𝑇
𝑛
} 󴁂󴀱 𝑇

∗ for some limit 𝑇∗ : 𝑋 → 𝑋

and if either (𝑋, ‖‖) is a Banach space or (𝑋, 𝑑) is com-
plete, then {𝑥

𝑛
} is a Cauchy sequence and thus conver-

gent to some 𝑧 in 𝑋 which is the unique fixed point of
𝑇
∗

: 𝑋 → 𝑋 and thus independent of the initial point
𝑥
0
∈ 𝑋 of the iterative scheme (1). All the self-mappings

of the sequence {𝑇
𝑛
} as well as 𝑇∗ : 𝑋 → 𝑋 are strict

contractions.
(iii) If either (𝑋, ‖‖) is a Banach space or (𝑋, 𝑑) is complete

and {𝛼
(𝑛)

𝑖
} → 𝛼

𝑖
as 𝑛 → ∞, ∀𝑖 ∈ 𝑘, for some self-

mapping 𝑇
∗ on𝑋, then there is a unique 𝑧∗ ∈ Fix(𝑇∗)

in𝑋 such that 𝑧∗ = 𝑧 for any given initial point 𝑥
0
∈ 𝑋

of the iterative scheme (1). Also,𝑇∗ : 𝑋 → 𝑋 is a strict
contraction and thus a strict Picard self-mappingwith a
unique fixed point 𝑧∗(=𝑧) ∈ 𝑋 such that𝑇∗𝑛𝑥

0
→ 𝑧
∗,
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𝑇̂
𝑛
𝑥
0
→ 𝑧
∗ as 𝑛 → ∞ for any given initial point 𝑥

0
∈

𝑋, where 𝑇̂
𝑛
: Z
0+

×𝑋 → 𝑋 is the composite mapping
𝑇̂
𝑛
= 𝑇
𝑛
𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
0
, ∀𝑛 ∈ Z

0+
.

(iv) The “a priori” and “a posteriori” error estimates and the
convergence rate are, respectively, given by the subse-
quent relations:

𝑑 (𝑥
𝑛
, 𝑧) ≤

𝜌
𝑛

1 − 𝜌
𝑑 (𝑥
0
, 𝑥
1
) , (2)

𝑑 (𝑥
𝑛
, 𝑧) ≤

𝜌

1 − 𝜌
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , (3)

𝑑 (𝑥
𝑛
, 𝑧) ≤ 𝜌

𝑛

𝑑 (𝑥
0
, 𝑧) . (4)

Proof. Define the (𝑘 + 1) error sequences {𝛼̃
(𝑛)

𝑖
} by 𝛼̃

(𝑛)

𝑖
=

𝛼
(𝑛+1)

𝑖
− 𝛼
(𝑛)

𝑖
, ∀𝑖 ∈ 𝑘 = {0, 1, . . . , 𝑘}, ∀𝑛 ∈ Z

0+
. If (𝑋, ‖‖) is

a normed space, then there is always a metric-induced norm
𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝑋. On the other hand, if (𝑋, 𝑑)

is a metric space endowed with a homogeneous translation-
invariant metric 𝑑 : 𝑋 × 𝑋 → R

0+
then there is a metric-

induced norm ‖𝑥‖ = 𝑑(𝑥, 0), ∀𝑥, 𝑦 ∈ 𝑋. Both spaces (𝑋, ‖‖)

and (𝑋, 𝑑) are formally identical and they can both deal with a
metric-inducednormbyusing the standardmetric properties
and its homogeneous and translation-invariance properties.
Thus, one gets via recursive calculations that

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+1

) = 𝑑(

𝑘

∑
𝑖=0

(𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛+1

+ 𝛼̃
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛+1

) ,

𝑘

∑
𝑖=0

𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛
)

≤ 𝑑 (𝛼
(𝑛)

0
𝑥
𝑛+1

, 𝛼
(𝑛)

0
𝑥
𝑛
)

+ 𝑑 (𝛼
(𝑛)

1
𝑇𝑥
𝑛+1

, 𝛼
(𝑛)

1
𝑇𝑥
𝑛
)

+ 𝑑(

𝑘

∑
𝑖=2

𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛+1

,

𝑘

∑
𝑖=2

𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛
)

+ 𝑑 (𝛼̃
(𝑛)

0
𝑥
𝑛+1

, 0) + 𝑑 (𝛼̃
(𝑛)

1
𝑇𝑥
𝑛+1

, 0)

+ 𝑑(

𝑘

∑
𝑖=2

𝛼̃
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛+1

, 0)

≤ ⋅ ⋅ ⋅ ≤

𝑘

∑
𝑖=0

𝑑 (𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛+1

, 𝛼
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛
)

+

𝑘

∑
𝑖=0

𝑑 (𝛼̃
(𝑛)

𝑖
𝑇
𝑖

𝑥
𝑛+1

, 0)

≤ (1 + 𝑚
𝑛
)(

𝑘

∑
𝑖=0

𝛼
(𝑛)

𝑖
𝐾
𝑖

)𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ;

∀𝑛 ∈ Z
0+
.

(5)

Thus,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)

≤ (

𝑛−1

∏
𝑗=0

[(1 + 𝑚
𝑗
)(

𝑘

∑
𝑖=0

𝛼
(𝑗)

𝑖
𝐾
𝑖

)])𝑑 (𝑇
0
𝑥
0
, 𝑥
0
)

≤ 𝜌𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) ≤ 𝜌
𝑛

𝑑 (𝑥
1
, 𝑥
0
) ; ∀𝑛 ∈ Z

+
,

(6)

so that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0 for any given 𝑥
0
∈ 𝑋. It fol-

lows from (6) that, for any given initial 𝑥
0
∈ 𝑋,

𝑑 (𝑥
𝑛
, 𝑥
0
) ≤

𝑛−1

∑
𝑗=0

𝑑 (𝑥
𝑗+1

, 𝑥
𝑗
) ≤

1 − 𝜌
𝑛

1 − 𝜌
𝑑 (𝑇
0
𝑥
0
, 𝑥
0
) < +∞,

lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
0
) ≤ 𝑑 (𝑥

1
, 𝑥
0
)(

∞

∑
𝑗=0

𝜌
𝑗

)

≤
𝑑 (𝑇
0
𝑥
0
, 𝑥
0
)

1 − 𝜌
< +∞,

(7)

since 𝜌 < 1 so that {𝑥
𝑛
} is bounded for any given 𝑥

0
∈ 𝑋 and

{𝑑(𝑥
𝑛+1

, 𝑥
𝑛
)} → 0 from (6). All the self-mappings 𝑇

𝑛
: 𝑋 →

𝑋, ∀𝑛 ∈ Z
0+
, are strict contractions by construction from

assumption 4. On the other hand, note that, since {𝑇
𝑛
} 󴁂󴀱 𝑇

∗,
one gets

𝑑 (𝑇
∗

𝑥, 𝑇
∗

𝑦) = lim
𝑛→∞

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦)

= 𝑑 ( lim
𝑛→∞

(𝑇
𝑛
) 𝑥, lim
𝑛→∞

(𝑇
𝑛
) 𝑥)

≤ 𝜌𝑑 (𝑥, 𝑦) ; ∀𝑥, 𝑦 ∈ 𝑋,

(8)

so that 𝑇∗ : 𝑋 → 𝑋 is a strict contraction. Since 𝑇
𝑛
: 𝑋 →

𝑋, ∀𝑛 ∈ Z
0+
, are all strict 𝜌-contractions, {𝑇

𝑛
} 󴁂󴀱 𝑇

∗,
Fix(𝑇∗) = {𝑧}, and Fix(𝑇

𝑛
) = {𝑧

𝑛
}, ∀𝑛 ∈ Z

0+
, so that

𝑑(𝑇
𝑛
𝑥, 𝑇
∗

𝑥) < 𝜀(1 − 𝜌), ∀𝑥 ∈ 𝑋, so that

𝑑 (𝑧
𝑛
, 𝑧) = 𝑑 (𝑇

𝑛
𝑧
𝑛
, 𝑇
∗

𝑧)

≤ 𝑑 (𝑇
𝑛
𝑧
𝑛
, 𝑇
∗

𝑧
𝑛
) + 𝑑 (𝑇

∗

𝑧
𝑛
, 𝑇
∗

𝑧)

< 𝜀 (1 − 𝜌) + 𝜌𝑑 (𝑧
𝑛
, 𝑧) ,

(9)

and then 𝑑(𝑧
𝑛
, 𝑧) < 𝜀, ∀𝑛 ≥ 𝑛

0
, so that {𝑧

𝑛
} → 𝑧. Also,

{𝑑(𝑇
𝑛
𝑥
𝑛
, 𝑥
𝑛
)} → 0 from (6) implies {𝑑(𝑇

𝑛
𝑥
𝑛
, 𝑧
𝑛
)} → 0 and

{𝑇
𝑛
𝑧
𝑛
} → {𝑇

𝑛
𝑧} (since {𝑇

𝑛
𝑥
𝑛
} → 𝑧

𝑛
and {𝑧

𝑛
} → 𝑧 with

Fix(𝑇
𝑛
) = {𝑧

𝑛
}, ∀𝑛 ∈ Z

0+
), {𝑑(𝑇

𝑛
𝑥
𝑛
, 𝑧)} → 0, {𝑇

𝑛
𝑥
𝑛
} → 𝑧

(since {𝑧
𝑛
} → 𝑧), and {𝑇

𝑛
𝑥
𝑛
} → {𝑇

∗

𝑥
𝑛
} (since {𝑇

𝑛
} 󴁂󴀱 𝑇

∗).
Thus, it follows that {𝑇∗𝑥

𝑛
} → 𝑇

∗

𝑧 (=𝑧) which implies that
{𝑥
𝑛
} → 𝑧. Also, {𝑥

𝑛
} is a Cauchy sequence convergent to

𝑧 ∈ 𝑋 if (𝑋, ‖‖) is a Banach space and if (𝑋, 𝑑) is a complete
metric space, respectively.

On the other hand, 𝑥
𝑛+1

= 𝑇
𝑛
𝑥
𝑛
= 𝑇̂
𝑛
𝑥
0

→ 𝑧 (∈𝑋) as
𝑛 → ∞, ∀𝑥

0
∈ 𝑋, where 𝑇̂

𝑛
: Z
0+

× 𝑋 → 𝑋 is the com-
posite mapping 𝑇̂

𝑛
= 𝑇
𝑛
𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
0
, ∀𝑛 ∈ Z

0+
. From (6), the

self-mappings 𝑇
𝑛
: 𝑋 → 𝑋, ∀𝑛 ∈ Z

+
, are all strict contrac-

tions. Now, we prove that the limit point 𝑧 is independent of
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the initial condition 𝑥
0
and thus unique. Assume two distinct

initial values 𝑥
0
, 𝑦
0

∈ 𝑋 such that 𝑇̂
𝑛
𝑥
0

→ 𝑧(=𝑧(𝑥
0
)),

𝑇̂
𝑛
𝑦
0
→ 𝜔(=𝜔(𝑦

0
)) as 𝑛 → ∞ for some 𝑧, 𝜔( ̸=𝑧) ∈ 𝑋. Note

from (6) that, since 𝜌 ∈ (0, 1) is independent of the sequences
{𝑇̂
𝑛
𝑥
0
} and {𝑇̂

𝑛
𝑦
0
}, one gets

𝑑 (𝑇̂
𝑛
𝑥
0
, 𝑇̂
𝑛
𝑦
0
) ≤ 𝜌
𝑛

𝑑 (𝑥
0
, 𝑦
0
) ; ∀𝑛 ∈ Z

+
;

lim
𝑛→∞

𝑑 (𝑇̂
𝑛
𝑥
0
, 𝑇̂
𝑛
𝑦
0
) = 0.

(10)

Since 𝜔 ̸= 𝑧, one has the following from the triangle inequal-
ity:

0 < 𝑑 (𝜔, 𝑧) ≤ 𝑑 (𝑇̂
𝑛
𝑦
0
, 𝑇̂
𝑛
𝑥
0
) ≤ 𝑑 (𝜔, 𝑇̂

𝑛
𝑦
0
)

+ 𝑑 (𝑇̂
𝑛
𝑥
0
, 𝑇̂
𝑛
𝑦
0
) + 𝑑 (𝑇̂

𝑛
𝑥
0
, 𝑧) ; ∀𝑛 ∈ Z

+
,

(11)

and then one gets the contradiction below to the assumption
𝜔 ̸= 𝑧:
0 < lim
𝑛→∞

[𝑑 (𝜔, 𝑇̂
𝑛
𝑦
0
) + 𝑑 (𝑇̂

𝑛
𝑥
0
, 𝑇̂
𝑛
𝑦
0
) + 𝑑 (𝑇̂

𝑛
𝑥
0
, 𝑧)] = 0,

(12)

so that 𝜔 = 𝑧 and 𝑇̂
𝑛
𝑥
0

→ 𝑧 as 𝑛 → ∞ with 𝑧 being inde-
pendent of the initial point 𝑥

0
of the iterative scheme (1).

Hence, properties (i)-(ii) have been proven.
To prove property (iii), note that the assumption of uni-

form convergence {𝑇
𝑛
} 󴁂󴀱 𝑇

∗ in𝑋 is weakened to point-wise
convergence {𝑇

𝑛
} → 𝑇

∗ in 𝑋 since {𝛼
(𝑛)

𝑖
} → 𝛼

𝑖
and then

{𝛼̃
(𝑛)

𝑖
} → 0; ∀𝑖 ∈ 𝑘 and 𝑇

∗

: 𝑋 → 𝑋 is a 𝜌-con-
traction from assumption 4.Thus, {𝑑(𝑥

𝑛+1
, 𝑥
𝑛
)} → 0 implies

{𝑑(𝑇
𝑛
𝑥
𝑛
, 𝑧)} → 0 and {𝑥

𝑛
} → 𝑧 implies {𝑇

𝑛
𝑥
𝑛
} → 𝑇

∗

𝑧(=𝑧).
Since (𝑋, 𝑑) is complete and 𝑇

𝑛
: 𝑋 → 𝑋 is a strict con-

traction then 𝑇
∗ is also a strict contraction and thus a strict

Picard self-mapping on𝑋 and there is a unique 𝑧∗ ∈ Fix(𝑇∗)
in 𝑋. Assume that 𝑇̂

𝑛
𝑥
0
→ 𝑧 as 𝑛 → ∞ for any given 𝑥

0
∈

𝑋 and 𝑧
∗

̸= 𝑧. Take the sequence {𝑇
𝑛
𝑥
𝑛
} ≡ {𝑇̂

𝑛
𝑥
0
}. Define

𝛿𝑇
𝑛
= 𝑇̂
𝑛
− 𝑇
∗𝑛+1 by (𝛿𝑇

𝑛
)𝑥 = (𝑇̂

𝑛
−𝑇
∗𝑛+1

)𝑥 for𝑥 ∈ 𝑋.Then,
note that

𝑑 (𝑇̂
𝑚+𝑛

𝑥
𝑛+1

, 𝑇
∗𝑛+𝑚+1

𝑧
∗

)

= 𝑑 (𝑇̂
𝑚
𝑥
𝑛+1

, 𝑇
∗𝑚+1

𝑧
∗

)

= 𝑑 ([𝑇
∗𝑚+1

+ 𝛿𝑇
𝑚
] 𝑥
𝑛+1

, 𝑇
∗𝑚+1

𝑧
∗

)

≤ 𝑑 (𝑇
∗𝑚+1

𝑥
𝑛+1

, 𝑇
∗𝑚+1

𝑧
∗

) +
󵄩󵄩󵄩󵄩(𝛿𝑇𝑚) 𝑥𝑛+1

󵄩󵄩󵄩󵄩 ,

(13)

and since {𝑥
𝑛
} is bounded, 𝑇∗𝑚𝑧∗ = 𝑧

∗, 𝛿𝑇
𝑚

→ 0 as 𝑚 →

∞, 𝑥
𝑚

→ 𝑧, 𝑇∗𝑚𝑥
𝑛

→ 𝑧
∗, and 𝑇

∗𝑚

𝑧 → 𝑧
∗ as 𝑚 → ∞

then the following contradiction holds if 𝑧∗ ̸= 𝑧:

lim
𝑛,𝑚→∞

𝑑 (𝑇
∗𝑚+1

𝑥
𝑛+1

, 𝑇
∗𝑚+1

𝑧
∗

)

+ lim
𝑛,𝑚→∞

󵄩󵄩󵄩󵄩(𝛿𝑇𝑚) 𝑥𝑛+1
󵄩󵄩󵄩󵄩 = 0

≥ lim
𝑛,𝑚→∞

𝑑 (𝑇̂
𝑚+𝑛

𝑥
𝑛+1

, 𝑇
∗𝑛+𝑚+1

𝑧
∗

)

= 𝑑 ( lim
𝑛,𝑚→∞

𝑇̂
𝑚+𝑛

𝑥
𝑛+1

, 𝑧
∗

) = 𝑑 (𝑧, 𝑧
∗

) > 0,

(14)

and then 𝑧
∗

= 𝑧. As a result, 𝑇∗ : 𝑋 → 𝑋 is a strict con-
traction and thus a strict Picard self-mapping with a unique
fixed point 𝑧∗ ∈ 𝑋 such that𝑇∗𝑛𝑥

0
→ 𝑧
∗ and 𝑇̂

𝑛
𝑥
0
→ 𝑧
∗ as

𝑛 → ∞ for any given initial point 𝑥
0
∈ 𝑋, where 𝑇̂

𝑛
: Z
0+

×

𝑋 → 𝑋 is the composite mapping 𝑇̂
𝑛
= 𝑇
𝑛
𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
0
, ∀𝑛 ∈

Z
0+
.
Property (iv) is well known for Picard iterations.

Remark 2. Note that the parameterization sequences 0 ≤

𝛼
(𝑛)

𝑖
≤ 1, ∀𝑖 ∈ 𝑘 = {0, 1, . . . , 𝑘}, ∀𝑛 ∈ Z

0+
, are not necessarily

constant in Theorem 1 and 𝛼
(𝑛)

1
can be zero for some 𝑛 ∈ Z

0+

and the positive amount∑𝑛
𝑖=0

𝛼
(𝑛)

𝑖
is not necessarily identically

equal to one. Furthermore, the constant𝐾 can be equal to or
greater than unity in assumption 3 of Theorem 1. Thus, the
iterative scheme generalizes that proposed and analyzed by
Cho et al. [1].

Remark 3. Note also that if {𝑇
𝑛
} → 𝑇

∗ (or if the stronger
condition {𝑇

𝑛
} 󴁂󴀱 𝑇

∗ holds) then 𝑇
∗𝑛

𝑥
0

→ 𝑧
∗

(∈Fix(𝑇∗) =

{𝑧
∗

}) and 𝑇̂
𝑛
𝑥
0

→ 𝑧
∗ as 𝑛 → ∞ irrespective of the given

𝑥
0
∈ 𝑋. However, if the property (𝑇

𝑛
− 𝑇
∗

) → 0 as 𝑛 → ∞

does not hold then 𝑇
𝑛

𝑚
𝑥
0

→ 𝑧
𝑚
(∈ Fix(𝑇𝑛

𝑚
) = {𝑧

𝑚
}) as

𝑛 → ∞, ∀𝑚 ∈ Z
0+
, for the given 𝑥

0
∈ 𝑋 since all the

self-mappings 𝑇
𝑚
on 𝑋 are strict contractions but 𝑧

𝑚
can be

distinct of 𝑧∗.

The following result relaxes condition (3) of strict con-
traction mappings in the sequence {𝑇

𝑛
} of Theorem 1 to

weaker condition in terms of those mappings to be contrac-
tive in compact metric spaces.

Theorem 4. Consider the iterative scheme (1) on a compact
metric space (𝑋, 𝑑) endowed with a homogeneous translation-
invariant metric 𝑑:𝑋 × 𝑋 → R

0+
, where 𝑋 is a vector space,

with 0 ∈ 𝑋, under the following assumptions:

(1) ∑𝑘
𝑖=0

𝛼
(𝑛)

𝑖
> 0, 𝛼(𝑛)

𝑖
≥ 0, ∀𝑖 ∈ 𝑘 = {0, 1, . . . , 𝑘}, ∀𝑛 ∈

Z
0+
, and inf

𝑛∈Z0+max
1≤𝑖≤𝑘

𝛼
(𝑛)

𝑖
> 0, with the nonnega-

tive real sequences {𝛼(𝑛)
𝑖

},∀𝑖 ∈ 𝑘, and {𝑚
𝑛
} being subject

to the constraints 𝛼(𝑛+1)
𝑖

= (1 + 𝛼̃
(𝑛)

𝑖
)𝛼
(𝑛)

𝑖
, |𝛼̃(𝑛)
𝑖

| ≤ 𝛼̃
𝑛
≤

𝑚
𝑛
(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)/𝑑(𝑥
𝑛+1

, 0)) and 𝑚
𝑛

= 𝑜[𝑑(𝑥
𝑛+1

, 0)],
∀𝑖 ∈ 𝑘, ∀𝑛 ∈ Z

0+
, where 𝛼̃

(𝑛)

𝑖
= (𝛼
(𝑛+1)

𝑖
− 𝛼
(𝑛)

𝑖
)/𝛼
(𝑛)

𝑖
,

∀𝑖 ∈ 𝑘, ∀𝑛 ∈ Z
0+
.

(2) 𝑇 : 𝑋 → 𝑋 possesses the weak contractive condition
𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦), ∀𝑥, 𝑦( ̸=𝑥) ∈ 𝑋.

(3) (1 + 𝑚
𝑛
)(∑
𝑘

𝑖=0
𝛼
(𝑛)

𝑖
) < 1, ∀𝑛 ∈ Z

0+
.

Then, the following properties hold.

(i) There exists lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0 for any given
initial point 𝑥

0
∈ 𝑋 of the iterative scheme (1).

(ii) If, in addition, {𝑇
𝑛
} 󴁂󴀱 𝑇

∗ for some limit 𝑇∗:𝑋 → 𝑋

and Fix(𝑇
𝑛
) = {𝑧

∗

𝑛
}, ∀𝑛 ∈ Z

0+
, then the iterated

sequence {𝑥
𝑛
} is a Cauchy sequence and thus con-

vergent to some 𝑧 in 𝑋. All the self-mappings of the
sequence {𝑇

𝑛
} as well as 𝑇∗: 𝑋 → 𝑋 are contractive.
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(iii) If {𝑇
𝑛
} → 𝑇

∗ for some point-wise limit self-mapping
𝑇
∗ on𝑋, then there is a unique 𝑧∗ ∈ Fix(𝑇∗) in𝑋 such

that 𝑧∗ = 𝑧 to which any sequence {𝑥
𝑛
} of the iterative

scheme (1) converges for any given initial point 𝑥
0
∈ 𝑋.

Also, 𝑇∗ : 𝑋 → 𝑋 is a contractive and thus a Picard
self-mapping with a unique fixed point 𝑧∗(= 𝑧) ∈ 𝑋

such that 𝑇∗𝑛𝑥
0

→ 𝑧
∗, 𝑇̂
𝑛
𝑥
0

→ 𝑧
∗ as 𝑛 → ∞ for

any given initial point𝑥
0
∈ 𝑋, where 𝑇̂

𝑛
: Z
0+
×𝑋 → 𝑋

is the composite mapping 𝑇̂
𝑛
= 𝑇
𝑛
𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
0
, ∀𝑛 ∈ Z

0+
.

Proof. Note that a metric space is compact if and only if it
is complete and totally bounded. Note also that (𝑋, ‖‖) is a
Banach space formally identical to the compact (and then
complete) metric space (𝑋, 𝑑) when endowed with a homo-
geneous and translation-invariant metric 𝑑 : 𝑋 × 𝑋 → R

0+

if ‖‖ is the norm-induced metric. Thus, one concludes that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) < 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

) < ⋅ ⋅ ⋅ < 𝑑 (𝑥
1
, 𝑥
0
) ; ∀𝑛 ∈ Z

+
,

(15)

which implies that {𝑑(𝑥
𝑛+1

, 𝑥
𝑛
)} is a convergent sequencewith

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0 for any given 𝑥
0
∈ 𝑋. Hence, prop-

erty (i) follows. On the other hand, since the metric space
(𝑋, 𝑑) is a compactmetric space (and thus complete) then the
iterated sequence {𝑥

𝑛
}, with 𝑥

𝑛+1
= 𝑇
𝑛
𝑥
𝑛
and the point-wise

convergence of {𝑇
𝑛
} to 𝑇

∗

: 𝑋 → 𝑋, is a Cauchy sequence
{𝑇
𝑛
} 󴁂󴀱 𝑇

∗ and Fix(𝑇
𝑛
) = {𝑧

∗

𝑛
}, ∀𝑛 ∈ Z

0+
. Assume that

{𝑧
∗

𝑛
} → 𝑧

∗ is untrue. Then,

𝑑 (𝑧
∗

𝑛
, 𝑧) = 𝑑 (𝑇

𝑛
𝑧
∗

𝑛
, 𝑇
∗

𝑧)

≤ 𝑑 (𝑇
𝑛
𝑧
∗

𝑛
, 𝑇
∗

𝑧
∗

𝑛
) + 𝑑 (𝑇

∗

𝑧
∗

𝑛
, 𝑇
∗

𝑧)

= 𝑑 (𝑇
𝑛
𝑧
∗

𝑛
− 𝑇
∗

𝑧
∗

𝑛
, 0) + 𝑑 (𝑇

∗

𝑧
∗

𝑛
, 𝑇
∗

𝑧)

< 𝑑 (𝑇
𝑛
𝑧
∗

𝑛
− 𝑇
∗

𝑧
∗

𝑛
, 0) + 𝑑 (𝑧

∗

𝑛
, 𝑧)

(16)

so that the contradiction 0 = lim inf
𝑛→∞

𝑑(𝑇
𝑛
𝑧
∗

𝑛
−𝑇
∗

𝑧
∗

𝑛
, 0) >

0 since the metric is homogeneous and translation-invariant,
{𝑇
𝑛
} 󴁂󴀱 𝑇

∗, so that 𝑇
𝑛
𝑧
∗

𝑛
→ 𝑇
∗

𝑧
∗

𝑛
as 𝑛 → ∞ since 𝑧∗

𝑛
∈ 𝑋,

and 𝑇
∗

: 𝑋 → 𝑋 is contractive. Hence, {𝑧∗
𝑛
} → 𝑧 for some 𝑧

in 𝑋 and any given 𝑥
0
∈ 𝑋, all the self-mappings 𝑇

𝑛
: 𝑋 →

𝑋; ∀𝑛 ∈ Z
0+

in the sequence {𝑇
𝑛
} are contractive, and then

Picard mappings (since (𝑋, 𝑑) is a compact metric space) so
that the compositemapping 𝑇̂

𝑛
: 𝑋 → 𝑋 is also a Picardmap-

ping. As a result, 𝑇̂
𝑛
𝑥
0
→ 𝑧
∗ as 𝑛 → ∞ for any given initial

point 𝑥
0
∈ 𝑋 and 𝑇

𝑚

𝑛
𝑥
0
→ 𝑧
∗

𝑛
as𝑚 → ∞, ∀𝑛 ∈ Z

0+
, ∀𝑥
0
∈

𝑋with Fix(𝑇
𝑛
) = {𝑧

𝑛
}, ∀𝑛 ∈ Z

0+
, for any𝑇

𝑛
(:𝑋 → 𝑋) ∈ {𝑇

𝑛
}.

If {𝑇
𝑛
} → 𝑇

∗ then 𝑇
∗𝑛

𝑥
0

→ 𝑧
∗, 𝑇̂
𝑛
𝑥
0

→ 𝑧
∗ as 𝑛 → ∞,

and Fix(𝑇∗) = {𝑧
∗

}. Hence, properties (ii)-(iii) have been
proven.

Remark 5. Note that ametric space is compact if and only if it
is complete and totally bounded. Equivalently, a metric space
is compact if and only if every family of closed subsets of 𝑋
with the finite intersection property (i.e., the intersection of
any finite collection of sets in the family is nonempty) has a
nonempty intersection.

An extension ofTheorem 1 follows belowby admitting the
failure of the contractive condition of assumption 4 of

Theorem 1 within connected subsets of finite length of Z
0+

which are adjacent to connected subsets where the contrac-
tive condition holds.

Theorem6. Consider the iterative scheme (1) on a vector space
𝑋 under the assumptions (1)–(3) and (5) of Theorem 1 and,
furthermore,

𝑚𝑗

∏
𝑛=0

[(1 + 𝑚
𝑛
)(

𝑘

∑
𝑖=0

𝛼
(𝑛)

𝑖
𝐾
𝑖

)] ≤ 𝜌 < 1;

∀𝑝
𝑗
∈ 𝑆 ⊆ Z

0+
, ∀𝑗 ∈ Z

0+
,

(17)

where 𝑆 = {𝑝
𝑘
: 𝑘 ∈ Z

0+
} is a strictly increasing sequence of

nonnegative integer numbers subject to 𝑝
0
≤ 𝑝
∗

< +∞ and
𝑝
𝑘+1

− 𝑝
𝑘
≤ 𝑝 < +∞, ∀𝑘 ∈ Z

0+
.

(i) There exists the limit lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0 for any
given initial point 𝑥

0
∈ 𝑋 of the iterative scheme (1)

and the sequence {𝑥
𝑛
} is bounded.

(ii) If, in addition, {𝑇
𝑛
} 󴁂󴀱 𝑇

∗ for some limit self-mapping
𝑇
∗

: 𝑋 → 𝑋 and if either (𝑋, ‖‖) is a Banach space
or (𝑋, 𝑑) is complete, then {𝑥

𝑛
} is a Cauchy sequence

and thus convergent to some 𝑧 in 𝑋 which is unique
and thus independent of the initial point 𝑥

0
∈ 𝑋 of the

iterative scheme (1). Also, all the self-mappings in the
sequence {𝑇

𝑛
} and 𝑇

∗

: 𝑋 → 𝑋 are strict contractions.
(iii) If either (𝑋, ‖‖) is a Banach space or (𝑋, 𝑑) is complete

and {𝑇
𝑛
} → 𝑇

∗ as 𝑛 → ∞ for some self-mapping 𝑇∗
on 𝑋, then there is a unique 𝑧

∗

∈ Fix(𝑇∗) in 𝑋 such
that 𝑧∗ = 𝑧 for any given initial point 𝑥

0
∈ 𝑋 of the

iterative scheme (1). Also, 𝑇∗ : 𝑋 → 𝑋 is a strict con-
traction and thus a strict Picard self-mapping with a
unique fixed point 𝑧∗(=𝑧) ∈ 𝑋 such that𝑇∗𝑛𝑥

0
→ 𝑧
∗,

𝑇̂
𝑛
𝑥
0

→ 𝑧
∗ as 𝑛 → ∞ for any given initial point

𝑥
0
∈ 𝑋, where 𝑇̂

𝑛
: Z
0+
×𝑋 → 𝑋 is the compositemap-

ping 𝑇̂
𝑛
= 𝑇
𝑛
𝑇
𝑛−1

⋅ ⋅ ⋅ 𝑇
0
, ∀𝑛 ∈ Z

0+
.

(iv) The “a priori” and “a posteriori” error estimates and the
convergence rate are, respectively, given by the subse-
quent relations:

𝑑 (𝑥
𝑝𝑛
, 𝑧) ≤

𝜌
𝑛

1 − 𝜌
𝑑 (𝑥
𝑝0
, 𝑥
𝑝1
) ≤

𝑀𝜌
𝑛

1 − 𝜌
𝑑 (𝑥
0
, 𝑥
1
) ;

𝑑 (𝑥
𝑝𝑛+𝑗

, 𝑧) ≤
𝑀
2

𝜌
𝑛

1 − 𝜌
𝑑 (𝑥
0
, 𝑥
1
) ,

𝑑 (𝑥
𝑝𝑛
, 𝑧) ≤

𝜌

1 − 𝜌
𝑑 (𝑥
𝑝𝑛−1

, 𝑥
𝑝𝑛
) ≤

𝑀𝜌

1 − 𝜌
𝑑 (𝑥
0
, 𝑥
1
) ;

𝑑 (𝑥
𝑝𝑛+𝑗

, 𝑧) ≤
𝑀
2

𝜌

1 − 𝜌
𝑑 (𝑥
0
, 𝑥
1
) ,

𝑑 (𝑥
𝑝𝑛
, 𝑧) ≤ 𝜌

𝑛

𝑑 (𝑝
𝑛0
, 𝑧) ≤ 𝑀𝜌

𝑛

𝑑 (𝑝
𝑛0
, 𝑧) ;

𝑑 (𝑥
𝑝𝑛+𝑗

, 𝑧) ≤ 𝑀
2

𝜌
𝑛

𝑑 (𝑥
0
, 𝑥
1
) ,

(18)

for some𝑀 ∈ R
+
and any integer 𝑗 ∈ (1, 𝑝

𝑛+1
−𝑝
𝑛
), ∀𝑛 ∈ Z

0+
.
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Proof. Note from (17) and (6) that since𝑝
𝑘
→ ∞ as 𝑘 → ∞,

one gets

𝑑 (𝑥
𝑝𝑘+1+1

, 𝑥
𝑝𝑘+1

) ≤ 𝜌𝑑 (𝑥
𝑝𝑘+1

, 𝑥
𝑝𝑘
) ; ∀𝑝

𝑘
∈ 𝑆, (19a)

𝑑 (𝑥
𝑝𝑘+2

, 𝑥
𝑝𝑘+1

) ≤ (1 + 𝐿 + ⋅ ⋅ ⋅ + 𝐿
𝑝−1

) 𝜌𝑑 (𝑥
𝑝𝑘+1

, 𝑥
𝑝𝑘
)

≤ 𝜌
𝑘+1

0
𝑑 (𝑥
𝑝0
, 𝑥
𝑝1
) ,

(19b)

and, provided that 𝜌 ∈ (0, 1) is small enough for the given
𝑝 ∈ Z

+
so that 𝜌

0
= 𝜌(1+𝐿+⋅ ⋅ ⋅+𝐿

𝑝−1

) < 1, 𝑑(𝑥
𝑝𝑘+2

, 𝑥
𝑝𝑘+1

) →

0 as 𝑘 → ∞ for any given 𝑥
0

∈ 𝑋. Then, {𝑑(𝑥
𝑝𝑘+1

,

𝑥
𝑝𝑘
)} is a convergent sequence with lim

𝑘→∞
𝑑(𝑥
𝑝𝑘+1

, 𝑥
𝑝𝑘
) =

lim
𝑝𝑘→∞

𝑑(𝑥
𝑝𝑘+1

, 𝑥
𝑝𝑘
) = 0 for any given 𝑥

0
∈ 𝑋. It fol-

lows from (19a), (19b), since 𝑝
1
≤ 𝑝 + 𝑝 < +∞ and 𝑝

𝑘+1
−

𝑝
𝑘
≤ 𝑝 < +∞, that for any given initial 𝑥

0
∈ 𝑋,

𝑑 (𝑥
𝑝𝑘
, 𝑥
𝑝0
) ≤

1 − 𝜌
𝑘

1 − 𝜌
𝑑 (𝑥
𝑝1
, 𝑥
𝑝0
) < +∞; ∀𝑘 ∈ Z

+
, (20)

lim sup
𝑘→∞

𝑑 (𝑥
𝑝𝑘
, 𝑥
𝑝0
) ≤ 𝑑 (𝑥

𝑝1
, 𝑥
𝑝0
)(

∞

∑
𝑗=0

𝜌
𝑗

)

≤
𝑑 (𝑥
𝑝1
, 𝑥
𝑝0
)

1 − 𝜌
< +∞,

(21)

𝑑 (𝑥
𝑝𝑘+𝑗

, 𝑥
𝑝𝑘+𝑗−1

)

≤

𝑗−1

∏
𝑛=0

⌊(1 + 𝑚
𝑝𝑘+𝑛

)(

𝑘

∑
𝑖=0

𝛼
(𝑝𝑘+𝑛)

𝑖
𝐾
𝑖

)⌋𝑑 (𝑥
𝑝𝑘
, 𝑥
𝑝𝑘−1

)

< +∞,

(22)

𝑑 (𝑥
𝑝𝑘+𝑗

, 𝑥
𝑝𝑘
)

≤ 𝜌
𝑘

(

𝑗−1

∑
𝑖=0

𝑖−1

∏
𝑛=0

⌊ (1 + 𝑚
𝑝𝑘+𝑛

)

× (

𝑘

∑
ℓ=0

𝛼
(𝑝𝑘+𝑛)

ℓ
𝐾
ℓ

)⌋)𝑑 (𝑥
𝑝0
, 𝑥
𝑝1
)

< +∞,

(23)

for 𝑗 = 0, 1, . . . , 𝑝
𝑘+1

− 𝑝
𝑘
, ∀𝑘 ∈ Z

+
, and then, since {𝑝

𝑘
} is

strictly increasing with 𝑘, 𝜌 ∈ [0, 1) and 𝑝
1
≤ 𝑝
0
+ 𝑝 ≤ 𝑝 +

𝑝 < +∞, one gets lim
𝑘→∞

𝑑(𝑥
𝑝𝑘+𝑗

, 𝑥
𝑝𝑘
) = 0 for 𝑗 = 0, 1, . . . ,

𝑝
𝑘+1

−𝑝
𝑘
, ∀𝑘 ∈ Z

+
.Then, {𝑑(𝑥

𝑛+1
, 𝑥
𝑛
)} → 0 as 𝑛 → ∞ from

(23) and {𝑥
𝑛
} is bounded for any initial 𝑥

0
∈ 𝑋. However,

{𝑥
𝑛
} is not a Cauchy sequence, in general, since the constraint

𝑑(𝑥
𝑛+2

, 𝑥
𝑛+1

) < 𝑑(𝑥
𝑛+1

, 𝑥
𝑛
) does not necessarily hold for all

𝑛 ∈ Z
0+
.

The variation in the proof development of the concerns
derived from the assumption {𝑇

𝑛
} 󴁂󴀱 𝑇

∗ of Theorem 1 (ii) is
addressed as follows. Since {𝑇

𝑛
} 󴁂󴀱 𝑇

∗ and Fix(𝑇
𝑛
) = {𝑧

∗

𝑛
},

∀𝑛 ∈ Z
0+
, then (17) necessarily leads to 𝑇

∗

: 𝑋 → 𝑋 being

a strict contraction, {𝑧∗
𝑛
} → 𝑧

∗ with 𝑧
∗

∈ Fix(𝑇∗) (={𝑧
∗

}),
and lim

𝑘→∞
(𝑝
𝑘+1

−𝑝
𝑘
) = 1. Therefore, the remaining proofs

of properties (i)–(iii) follow in a very close way as their coun-
terparts of Theorem 1. Also, note that

𝑑 (𝑥
𝑝0
, 𝑥
𝑝0−1

)

≤

𝑝0−1

∑
𝑖=0

𝑑 (𝑥
𝑖+1

, 𝑥
𝑖
)

≤

𝑝0−1

∑
𝑖=0

𝑖−1

∏
𝑛=0

[(1 + 𝑚
𝑛
)(

𝑘

∑
ℓ=0

𝛼
(𝑛)

ℓ
𝐾
ℓ

)]𝑑 (𝑥
0
, 𝑥
1
) ,

(24)

and then define

𝑀 = sup
𝑘∈Z0+

max
𝑝𝑘≤𝑛<𝑝𝑘+1

(

𝑗−1

∑
𝑖=0

𝑖−1

∏
𝑛=0

[ (1 + 𝑚
𝑝𝑘+𝑛

)

× (

𝑘

∑
ℓ=0

𝛼
(𝑝𝑘+𝑛)

ℓ
𝐾
ℓ

)]) ,

(25)

so that property (iv) follows from (23) and Theorem 1 (iv).

Remark 7. Note that assumption 4 of Theorem 1 is relaxed to
the constraint (17) which holds for a set of connected finite
intervals within a strictly increasing sequence of points with
the difference between any two consecutive ones being upper-
bounded by a prescribed bound.

Remark 8. Note thatTheorems 1 (i), 4 (ii), and 6 (iii) hold irre-
spective of the convergence of the sequence of self-mappings
to a limit.

3. Iterative Scheme 2 and
Some Generalizations

Now, consider the iterative scheme

𝑥
𝑛+1

= 𝑇
𝑓𝑛

𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑥 = 𝑔

𝑛
𝑇𝑥; ∀𝑛 ∈ Z

0+
, (26)

for any given 𝑥
0
∈ 𝑋 which is a further generalization of the

De Figueiredo iteration [8]. The following result holds.

Theorem9. Let the iterative scheme (1)with the nonexpansive
self-mapping 𝑇 : 𝑋 → 𝑋 on a vector space 𝑋, with 0 ∈ 𝑋,
under the following additional assumptions.

(1) Either (𝑋, ‖‖) is a Banach space endowed with a norm
‖‖ or, respectively, (𝑋, 𝑑) is a complete metric space en-
dowed with a homogeneous translation-invariant met-
ric 𝑑: 𝑋 × 𝑋 → R

0+
.

(2) {𝑔
𝑛
} ⊂ (0, 1) ∩R

0+
is a real parameterization sequence

with 0 < 𝑔
𝑛
< 1, ∀𝑛 ∈ Z

0+
, and {𝑓

𝑛
} ⊆ Z
0+

is an inte-
ger sequence with 𝑓

𝑛
> 0; ∀𝑛 ∈ Z

+
.

(3) There exist the following limits: lim
𝑛→∞

𝑔
𝑛

= 1,
lim
𝑛→∞

(𝑓
𝑛
/𝑛) = +∞, and either lim

𝑛→∞
(𝑓
𝑛+1

log𝑔
𝑛+1

/𝑓
𝑛
log𝑔
𝑛
) < 1 or |lim

𝑛→∞
𝑛(1 − (𝑓

𝑛+1

log𝑔
𝑛+1

/𝑓
𝑛
log𝑔
𝑛
))| < +∞.
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Then, the subsequent properties hold.

(i) {𝑥
𝑛
} converges to a fixed point of 𝑇: 𝑋 → 𝑋.

(ii) If 𝑇 : 𝑋 → 𝑋 is a strict contraction then {𝑥
𝑛
} con-

verges to the unique fixed point of 𝑇: 𝑋 → 𝑋.

Proof. As in the proof ofTheorem 1, the following considera-
tions are applicable for the proof.

(1) If (𝑋, ‖‖) is a normed space then there is always a
metric-induced norm 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖; ∀𝑥, 𝑦 ∈ 𝑋.

(2) If (𝑋, 𝑑) is a metric space endowed with a homoge-
neous translation-invariant metric 𝑑 : 𝑋 × 𝑋 → R

0+

then there is a norm-induced metric ‖𝑥‖ = 𝑑(𝑥, 0);
∀𝑥, 𝑦 ∈ 𝑋.

Both spaces (𝑋, ‖‖) and (𝑋, 𝑑) are formally identical under
assumption 1 and both possess either a metric-induced norm
by using the standardmetric properties and its homogeneous
and translation-invariance properties or a norm-induced
metric, respectively. Now, note from (26) that

𝑥
𝑛+𝑘

= (

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] 𝑇
∑
𝑘−1

𝑖=0
𝑓𝑛+𝑖𝑥
𝑛
) ,

𝑥
𝑛+𝑘

− 𝑥
𝑛+𝑘−1

= (

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] 𝑇
∑
𝑘−1

𝑖=0
𝑓𝑛+𝑖 −

𝑘−2

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] 𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖)𝑥

𝑛

=

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] (𝑇

∑
𝑘−1

𝑖=0
𝑓𝑛+𝑖 − 𝑇

∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖

+ (1 −
1

[𝑔
𝑓𝑛+𝑘−1

𝑛+𝑘−1
]
)𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖)𝑥

𝑛
;

∀𝑛 ∈ Z
0+
, ∀𝑘 ∈ Z

+
,

󵄩󵄩󵄩󵄩𝑥𝑛+𝑘 − 𝑥
𝑛+𝑘−1

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] (𝐼 − 𝑇

𝑓𝑛+𝑘−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘−1

∏
i=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
](

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
1

(𝑔
𝑓𝑛+𝑘−1

𝑛+𝑘−1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖)𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

;

∀𝑛 ∈ Z
0+
, ∀𝑘 ∈ Z

+
,

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+𝑘 − 𝑥
𝑛+𝑘−1

󵄩󵄩󵄩󵄩

≤ 2(

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
]) lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ (

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
])

× lim sup
𝑛→∞

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
1

(𝑔
𝑓𝑛+𝑘−1

𝑛+𝑘−1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖)𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

= 2(lim sup
𝑛→∞

𝐿
𝑛
(𝑘)) lim sup

𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< +∞;

∀𝑘 ∈ Z
+
,

(27)

since ‖𝐼 − 𝑇
𝑓𝑛+𝑘−1‖ ≤ 2, ∀𝑛 ∈ Z

0+
, ∀𝑘 ∈ Z

+
because 𝑇 :

𝑋 → 𝑋 is nonexpansive, lim
𝑛→∞

𝑔
𝑓𝑛+𝑘−1

𝑛+𝑘−1
= 1; ∀𝑘 ∈ Z

+

and ∏
𝑘−1

𝑖=0
[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] = 𝐿

𝑛
(𝑘) ≤ 𝐿

𝑛
(∞) < +∞; ∀𝑘 ∈ Z

+
,

∀𝑛 ∈ Z
0+

because {𝑔
𝑛
} ⊂ (0, 1) ∩ R

0+
and either

lim
𝑛→∞

(𝑓
𝑛+1

log𝑔
𝑛+1

/𝑓
𝑛
log𝑔
𝑛
) < 1 or |lim

𝑛→∞
𝑛(1 − (𝑓

𝑛+1

log𝑔
𝑛+1

/𝑓
𝑛
log𝑔
𝑛
))| < +∞. Then ∏

∞

𝑖=0
[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] is conver-

gent since the corresponding logarithmic series of positive
numbers converges according to either d’Alembert or Raabe
convergence criteria of series of nonnegative real numbers.
Then, the sequence {𝑥

𝑛+1
− 𝑥
𝑛
} is bounded. In the same way,

we get

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩

≤ 2 (

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑖

𝑖
]) lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∑
𝑘−2

𝑖=0
𝑓𝑖𝑥
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ (

𝑘−1

∏
𝑖=0

[𝑔
𝑓𝑖

𝑖
])

× lim sup
𝑘→∞

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
1

(𝑔
𝑓𝑘−1

𝑘−1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇
∑
𝑘−2

𝑖=0
𝑓𝑖)𝑥
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

= 2(lim sup
𝑘→∞

𝐿
0
(𝑘)) lim sup

𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
∑
𝑘−2

𝑖=0
𝑓𝑖𝑥
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 2(lim sup
𝑘→∞

𝐿
0
(𝑘)) 𝑥

∗

= 0,

(28)

since ∃ lim
𝑘→∞

𝐿
0
(𝑘) = ∏

𝑘−1

𝑖=0
[𝑔
𝑓𝑖

𝑖
] = 0 since 𝑔

𝑛
< 1, ∀𝑛 ∈

Z
0+
, and lim

𝑛→∞
(𝑓
𝑛
/𝑛) = +∞ so that ∃ lim

𝑛→∞
‖𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖

𝑥
𝑛
‖ = 𝑥
∗

(∈Fix(𝑇)). Thus, {𝑑(𝑥
𝑛+1

, 𝑥
𝑛
)} converges to zero for

any given 𝑥
0
∈ 𝑋 and

𝑑 (𝑥
𝑛+1

, 𝑥
∗

) ≤ 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
∗

) (29)

so that, since 𝑑(𝑥
𝑛+1

, 𝑥
𝑛
) → 0 as 𝑛 → ∞, lim

𝑛→∞
(𝑑(𝑥
𝑛+1

,

𝑥
∗

) − 𝑑(𝑥
𝑛
, 𝑥
∗

)) = 0. Then, {𝑑(𝑥
𝑛
, 𝑥
∗

)} converges and {𝑥
𝑛
}

converges as well to some point of𝑋 since (𝑋, 𝑑) is complete
so that 𝑥

𝑛
→ (𝑥

∗

+ 𝑞) as 𝑛 → ∞ for some 𝑞 ∈ 𝑋 and
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since 𝑇 : 𝑋 → 𝑋 is nonexpansive so that it is 𝐾-Lipschitz-
continuous (i.e., continuous with a Lipschitz constant𝐾 ≤ 1),
one gets

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 ( lim

𝑛→∞

𝑥
𝑛+1

, lim
𝑛→∞

𝑥
𝑛
)

= 𝑑 (𝑥
∗

+ 𝑞, 𝑥
∗

+ 𝑞) = 0.
(30)

Since {𝑥
𝑛
} converges and (𝑋, 𝑑) is a metric space then {𝑥

𝑛
}

is a Cauchy sequence (and a bounded sequence) and there is
𝑎 ∈ R

0+
such that

𝑎 = lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
∗

) = 𝑑 (𝑥
∗

+ 𝑞, 𝑥
∗

)

= lim
𝑛→∞

𝑑 ((𝑔
𝑛
𝑇)
𝑓𝑛𝑥
𝑛
, 𝑥
∗

)

= 𝑑 ( lim
𝑛→∞

𝑇
𝑓𝑛 (𝑥
∗

+ 𝑞) , 𝑥
∗

) = 𝑑 (𝑦
∗

, 𝑥
∗

) ,

(31)

since the metric is translation-invariant, 𝑔
𝑛
→ 1 as 𝑛 → ∞,

and since𝑇: 𝑋 → 𝑋 is nonexpansive, it is𝐾(≤ 1)-Lipschitz-
continuous and 𝑇

𝑓𝑛(𝑥
∗

+ 𝑞) → 𝑦
∗ with 𝑦

∗

, 𝑥
∗

∈ Fix(𝑇). If
𝑎 = 0 then 𝑦

∗

= 𝑥
∗

(∈Fix(𝑇)) and we have proven that {𝑥
𝑛
}

converges to the fixed point 𝑥∗ of 𝑇 : 𝑋 → 𝑋. Now, assume
that 𝑦∗( ̸=𝑥

∗

) ∈ Fix(𝑇). The result is again proven since {𝑥
𝑛
}

converges to a fixed point of 𝑇 : 𝑋 → 𝑋 which is distinct
of 𝑥∗. Finally, assume that 𝑦∗ ∉ Fix(𝑇) and proceed by con-
tradiction to prove that this assertion is false. Since 𝑇 : 𝑋 →

𝑋 is nonexpansive, one gets 𝑑(𝑇
𝑛

𝑦
∗

, 𝑇
𝑛

𝑥
∗

) ≤ ⋅ ⋅ ⋅ ≤ 𝑑(𝑦
∗

,

𝑥
∗

) = 𝑎 so that 𝑑(𝑇𝑛𝑦∗, 𝑥∗) → 𝑎
1
(≤𝑎) as 𝑛 → ∞; then

by everywhere Lipschitz continuity of the nonexpansive self-
mapping 𝑇: 𝑋 → 𝑋,

𝑑 ( lim
𝑛→∞

𝑇
𝑛

(𝑇𝑦
∗

) , 𝑥
∗

) = 𝑑 (𝑇 ( lim
𝑛→∞

𝑇
𝑛

𝑦
∗

) , 𝑥
∗

)

= 𝑑 ( lim
𝑛→∞

𝑇
𝑛

𝑦
∗

, 𝑥
∗

) = 𝑑 (𝑦
∗

1
, 𝑥
∗

)

= 𝑎
1
≤ 𝑎,

(32)

and 𝑇
𝑛

𝑦
∗

→ 𝑦
∗

1
(∈Fix(𝑇)) and 𝑇

𝑓𝑛𝑦
∗

→ 𝑦
∗

1
. Since 𝑦

∗ is a
limit point of 𝑇𝑓𝑛𝑥

𝑛
, 𝑎
1
= 𝑎 and then 𝑦

∗

(=𝑦
∗

1
) ∈ Fix(𝑇), a

contradiction to 𝑦
∗

∉ Fix(𝑇). Thus, {𝑇𝑓𝑛𝑥
𝑛
} converges to a

fixed point of 𝑇 : 𝑋 → 𝑋. Property (i) has been proven.
Also,

𝑑 (𝑇
𝑓𝑛

𝑛
𝑥
𝑛
, 𝑇
𝑓𝑛𝑥
𝑛
) = 𝑑 (𝑇

𝑓𝑛

𝑛
𝑥
𝑛
− 𝑇
𝑓𝑛𝑥
𝑛
, 0)

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑓𝑛

𝑛
− 𝑇
𝑓𝑛
󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 ; ∀𝑛 ∈ Z
0+
.

(33)

Since ‖𝑇𝑓𝑛
𝑛

−𝑇
𝑓𝑛‖ ≤ (1−𝑔

𝑓𝑛

𝑛
)‖𝑇
𝑓𝑛‖, ∀𝑛 ∈ Z

0+
with (1−𝑔

𝑓𝑛

𝑛
) →

0 as 𝑛 → ∞, it follows that ‖𝑇𝑓𝑛
𝑛

−𝑇
𝑓𝑛‖ → 0 as 𝑛 → ∞ and

since {𝑇𝑓𝑛𝑥
𝑛
} converges to a fixed point of 𝑇 : 𝑋 → 𝑋 then

{𝑇
𝑓𝑛

𝑛
𝑥
𝑛
} also converges to the same fixed point of 𝑇: 𝑋 → 𝑋.

Hence, property (i) follows.
On the other hand, if 𝑇 : 𝑋 → 𝑋 is a strict contraction

then Fix(𝑇) = {𝑥
∗

}, since (𝑋, d) is complete so that 𝑎 = 0 and
𝑦
∗

= 𝑥
∗ in (31) and, hence, property (ii) follows as well.

Theorem 9 has the following derived result.

Corollary 10. Let the iterative scheme (1) be under the non-
expansive self-mapping 𝑇 : 𝐶 → 𝐶, where 𝐶 is a nonempty
closed and convex subset of a Hilbert space (𝑋, ‖‖), with 0 ∈

𝐶, subject to all the assumptions of Theorem 9. Then, the sub-
sequent properties hold.

(i) {𝑥
𝑛
} converges strongly to a fixed point of 𝑇 : 𝐶 → 𝐶.

(ii) If 𝑇 : 𝐶 → 𝐶 is a strict contraction then {𝑥
𝑛
} con-

verges to the unique fixed point of 𝑇 : 𝐶 → 𝐶.

Proof. Property (i) follows from Theorem 1 since (𝑋, ‖‖) is
uniformly convex since it is a Hilbert space; 𝑇 : 𝐶 → 𝐶 is
nonexpansive and contains a bounded sequence (since 𝐶 is
nonempty, closed, and convex) and then it has at least a fixed
point. Property (ii) follows since such a fixed point is unique
if 𝑇: 𝐶 → 𝐶 is a strict contraction.

The iterative scheme (26) is now generalized by using
some ideas of Section 2 as follows:

𝑥
𝑛+1

= 𝑇
𝑓𝑛

𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑥 = 𝑔

𝑛
(

𝑘

∑
𝑖=0

𝛼
𝑖
𝑇
𝑖

)𝑥
𝑛
; ∀𝑛 ∈ Z

0+
, (34)

for any given 𝑥
0
∈ 𝑋.

Theorem11. Let the iterative scheme (34) generated by the self-
mapping 𝑇 : 𝑋 → 𝑋 on a vector space 𝑋, with 0 ∈ 𝑋, and
assumptions 1–3 of Theorem 9 hold as well as the following ad-
ditional assumptions:

(1) ∑𝑘
𝑖=0

𝛼
𝑖
> 0 for nonnegative real scalars 𝛼

𝑖
, ∀𝑖 ∈ 𝑘, and

max
1≤i≤𝑘𝛼𝑖 > 0;

(2) 𝑇 : 𝑋 → 𝑋 satisfies the condition 𝑑(𝑇𝑥, 𝑇𝑦) ≤

𝐾𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋, for some 𝐾 ∈ R
+
;

(3) ∑𝑘
𝑖=0

𝛼
𝑖
𝐾
𝑖

≤ 1; ∀𝑛 ∈ Z
0+
.

Then, the subsequent properties hold.

(i) {𝑥
𝑛
} converges to a fixed point of the nonexpansive self-

mapping 𝑇 : 𝑋 → 𝑋 defined by 𝑇𝑥 = (∑
𝑘

𝑖=0
𝛼
𝑖
𝑇
𝑖

)𝑥,
∀𝑥 ∈ 𝑋.

(ii) If 𝑇: 𝑋 → 𝑋 is a strict contraction fulfilling ∑
𝑘

𝑖=0
𝛼
𝑖

𝐾
𝑖

≤ 𝜌 < 1 then {𝑥
𝑛
} converges to the unique fixed

point of 𝑇 : 𝑋 → 𝑋.

Proof. As in Theorem 1 and Theorem 9, both spaces (𝑋, ‖‖)

and (𝑋, 𝑑) are formally identical under assumption 1 of
Theorem 9 and both possess either ametric-induced normby
using the standard metric properties and its homogeneous
and translation-invariance properties or a norm-induced
metric, respectively. Now, define the mapping 𝑇 : 𝑋 → 𝑋

by 𝑇𝑥 = (∑
𝑘

𝑖=0
𝛼
𝑖
𝑇
𝑖

)𝑥, ∀𝑥 ∈ 𝑋. Thus, (27) in the proof of
Theorem 9 still holds with the replacement𝑇 → 𝑇. Note that
‖𝐼−𝑇

𝑓𝑛+𝑘−1

‖ ≤ 2, ∀𝑛 ∈ Z
0+
, ∀𝑘 ∈ Z

+
, since𝑇: 𝑋 → 𝑋 is non-

expansive (even if 𝑇 : 𝑋 → 𝑋 is expansive with 𝐾 > 1 in
the assumption 2), from assumptions 2-3, and 𝐾-Lipschitz-
continuous from the assumption 3 with 𝐾 = ∑

𝑘

𝑖=0
𝛼
𝑖
𝐾
𝑖

≤ 1.



Abstract and Applied Analysis 9

Note also that lim
𝑛→∞

𝑔
𝑓𝑛+𝑘−1

𝑛+𝑘−1
= 1,∀𝑘 ∈ Z

+
, and∏

𝑘−1

𝑖=0
[𝑔
𝑓𝑛+𝑖

𝑛+𝑖
] ≤

𝐿
𝑛
(𝑘) ≤ 𝐿

𝑛
(∞) < +∞, ∀𝑘 ∈ Z

+
, ∀𝑛 ∈ Z

0+
, and then the

sequence {𝑥
𝑛+1

− 𝑥
𝑛
} obtained from the iterative scheme (34)

is bounded for any 𝑥
0
∈ 𝑋. In the same way, (28) holds from

assumptions 2-3 of Theorem 9, since 𝑔
𝑛
< 1, ∀𝑛 ∈ Z

0+
, and

lim
𝑛→∞

(𝑓
𝑛
/𝑛) = +∞ so that ∃ lim

𝑛→∞
‖𝑇
∑
𝑘−2

𝑖=0
𝑓𝑛+𝑖

𝑥
𝑛
‖ = 𝑥

∗

(∈Fix(𝑇)). Thus, {𝑑(𝑥
𝑛+1

, 𝑥
𝑛
)} converges to zero for any given

𝑥
0

∈ 𝑋 since (𝑋, 𝑑) is complete. Then, it follows (as it
is deduced from (30) in the proof of Theorem 9) that {𝑥

𝑛
}

converges so that it is a Cauchy and bounded sequence. Final-
ly, it can be proven in a similar way as in Theorem 9 that
{𝑇
𝑓𝑛

𝑥
𝑛
} converges to some fixed point 𝑥∗ of the nonexpansive

self-mapping 𝑇 : 𝑋 → 𝑋 for each given initial point 𝑥
0
∈ 𝑋

of the iteration (34). Such a fixedpoint is unique if𝑇: 𝑋 → 𝑋

is a strict contraction.

In a similar way as Corollary 10 is got from Theorem 9,
one gets the following.

Corollary 12. Consider the iterative scheme (34) under the
nonexpansive self-mapping 𝑇 : 𝐶 → 𝐶, where 𝐶 is a non-
empty closed and convex subset of a Hilbert space (𝑋, ‖‖), with
0 ∈ 𝐶, subject to all the assumptions of Theorem 9. Then, the
subsequent properties hold.

(i) {𝑥
𝑛
} converges strongly to a fixed point of 𝑇: 𝐶 → 𝐶.

(ii) If 𝑇: 𝐶 → 𝐶 is a strict contraction fulfilling ∑
𝑘

𝑖=0
𝛼
𝑖

𝐾
𝑖

≤ 𝜌 < 1 then {𝑥
𝑛
} converges to the unique fixed

point of 𝑇: 𝐶 → 𝐶.

Note that in Theorem 9 (i) and Corollary 10 (i), 𝑇: 𝑋 →

𝑋 and 𝑇
𝑓𝑛

𝑛
: 𝑋 → 𝑋 for 𝑛 ∈ Z

+
are not necessarily

Picard mappings since the limiting points can be dependent
on the initial condition of the iterative schemes. The same
conclusion arises for 𝑇 : 𝑋 → 𝑋 and 𝑇

𝑓𝑛

𝑛
: 𝑋 → 𝑋

for 𝑛 ∈ Z
0+

in Theorem 11 (i) and Corollary 12 (i). How-
ever, the above self-mappings are Picard iterations in the cor-
responding parts (ii) of such results since the relevant map-
pings are strict contractions.

Note also that Theorem 11 and Corollary 12 still hold by
replacing 𝛼

𝑖
→ 𝛼
(𝑛)

𝑖
for 𝑖 ∈ 𝑘 and the replacement of the

constraint max
1≤𝑖≤𝑘

𝛼
𝑖
> 0 with inf

𝑛∈Z0+max
1≤𝑖≤𝑘

𝛼
(𝑛)

𝑖
> 0.

4. Simulation Examples towards an
Application Perspective on Discrete
Nonlinear Dynamic Systems

This section contains two numerical examples.The first one is
related to the Iterative Scheme 1 introduced in Section 2while
the second one concerns the Iterative Scheme 2 discussed in
Section 3.

4.1. Iterative Scheme 1. Consider the iterative scheme defined
by (1) with 𝑇(𝑥) = 𝑥/2(1 + 𝑥) on [0, +∞) and

𝑥
𝑛+1

= (𝛼
(𝑛)

3
𝑇
3

+ 𝛼
(𝑛)

2
𝑇
2

+ 𝛼
(𝑛)

1
𝑇
1

+ 𝛼
(𝑛)

0
𝐼) 𝑥
𝑛
. (35)

0 5 10 15 20
0

2

5

8

Time (samples)

x
n

Figure 1: Evolution of the iterates for different initial conditions.

𝑇 is a strict contraction satisfying the condition 𝑑(𝑇(𝑥),

𝑇(𝑦)) ≤ 𝐾𝑑(𝑥, 𝑦) with 𝐾 = 1/2 (for the Euclidean distance)
and, hence, it possesses a unique fixed point at 𝑥 = 0. Note
that the above description can also be considered as that of a
nonlinear discrete time-varying dynamic system where the
state evolves from initial conditions according to the se-
quence {𝑥

𝑛
} with initial condition 𝑥

0
while the output is de-

fined by the realmap𝑥 → 𝑇𝑥. Note that the fixed point𝑥 = 0

is also an equilibrium point of the dynamic system which is
suited to be globally asymptotically stable. Consider, firstly,
the sequence of constant weights 𝛼

(𝑛)

= [0.2 0.3 0.8 0.9]

for all 𝑛 ≥ 0. We are now in conditions of applyingTheorem 1
since ∑

3

𝑖=0
𝛼
(𝑛)

𝑖
= 2.2 > 0, 𝛼̃(𝑛)

𝑖
= 𝑚
𝑛
= 0, and ∑

3

𝑖=0
𝛼
(𝑛)

𝑖
𝐾
𝑖

=

0.6625 < 1 for all integers 𝑛 ≥ 0. In this case, the sys-
tem parameterization is close to, but more general than, a
polytopic-type time-invariant one but, in particular, the usual
constraint ∑3

𝑖=0
𝛼
(𝑛)

𝑖
= 1 is not needed. Accordingly, the se-

quence of iterates {𝑥
𝑛
} is bounded for all 𝑛 ≥ 0 and converges

to the unique fixed point of 𝑇, 𝑥 = 0. Moreover, the iterates
converge to the unique fixed point regardless of the initial
value 𝑥

0
. These claims are verified through a numerical sim-

ulation in Figure 1.
Furthermore, Theorem 1 (iv) also provides an upper-

bound for the rate of convergence of the sequence of iterates
to the fixed point. Therefore, one gets from (4) 𝑑(𝑥

𝑛
, 0) ≤

𝜌
𝑛

𝑑(𝑥
0
, 0) = 0.6625

𝑛

𝑑(𝑥
0
, 0). Figure 2 displays the evolution

of iterates along with the calculated upper-bound for the case
𝑥
0
= 8.
Consider the time-varying parameterization under the

time-varying weights given by

𝛼
(𝑛+1)

𝑖
= {

𝜆
𝑖
𝛼
(𝑛)

𝑖
, 𝛼
(𝑛+1)

𝑖
≥ 0.1,

0.1, otherwise,
(36)

for all 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 3 with 𝛼
(0)

= [0.2 0.3 0.8 0.9],
𝜆
0
= 0.95, 𝜆

1
= 0.9, 𝜆

2
= 0.85, and 𝜆

3
= 0.8. The 0.1 lower

bound has been included in (36) so as to satisfy the condition
inf
𝑛∈Z0+max

1≤𝑖≤𝑘
𝛼
(𝑛)

𝑖
> 0.
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Figure 2: Upper-bounding of the convergence rate of iteration.
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𝛼
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𝛼
(n)
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Figure 3: Evolution of the time-varying weights 𝛼(𝑛)
0
, 𝛼(𝑛)
1
, 𝛼(𝑛)
2
, and

𝛼
(𝑛)

3
through (36).

As it can be appreciated in Figure 3, the weights are
decreasing with time until they reach the constant lower
bound of 0.1 where they stop decreasing and become time-
invariant. In fact, Figure 3 shows that this happens for 𝑛 ≥

14. Thus, we are in conditions of applying the results stated
in Theorem 6 for the case when the stability condition only
holds on a subset of the nonnegative integer numbers. In this
way, we have 𝛼̃

(𝑛)

𝑖
= 𝑚
𝑛

= 0 for all 𝑛 ≥ 14 and (17) of
Theorem 6 is satisfied since

3

∑
𝑖=0

𝛼
(𝑛)

𝑖
𝐾
𝑖

=

3

∑
𝑖=0

0.1𝐾
𝑖

= 0.1875 < 1, (37)

for all 𝑛 ≥ 14. Thus, Theorem 6 guarantees the convergence
of iterates to the unique fixed point irrespectively of the initial
condition. This fact is shown in Figure 4.

One advantage of the results in Theorem 6 for the sake
of generality is that an arbitrary variation in the weights is
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n

Figure 4: Iterates for different initial conditions andweights defined
by (36).

admitted on certain subsets of the natural numbers.Thus, the
family of admissible time variations for which the stability
of the iteration scheme is guaranteed enlarges with respect
to other approaches. Consider a time-varying set of weights
defined with𝑚

𝑛
= 𝑑(𝑥

𝑛+1
, 0) in condition (2) ofTheorem 1 so

that 𝛼̃
𝑛
≤ 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

) ≤ 𝐾𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) = 1/2𝑑(𝑥

𝑛−1
, 𝑥
𝑛
) while

condition (4) becomes

(1 + 𝑚
𝑛
)

3

∑
𝑖=0

𝛼
(𝑛)

𝑖
𝐾
𝑖

= (1 + 𝑚
𝑛
) (𝛼
(𝑛)

0
+

1

2
𝛼
(𝑛)

1
+

1

22
𝛼
(𝑛)

2
+

1

23
𝛼
(𝑛)

3
) < 1.

(38)

Such constraints are satisfied, for instance, if we take 𝛼
(0)

=

[0.05 0.1 0.15 0.2] and

𝛼̃
𝑛
= 0.05 sin (2𝜋0.05𝑛) 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) . (39)

The weights evolution is displayed in Figure 5. Note that the
weight variation defined by (39) satisfies the condition 𝛼̃

𝑛
≤

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 1/2𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) since 0.05 sin(2𝜋0.05𝑛) ≤ 0.05,

∀𝑛 ∈ Z
0+
.

Figure 6 displays the sample-by-sample stability condi-
tion evaluation, in terms of the left-hand side of (38), showing
that it remains smaller than unity. Therefore, according to
Theorem 1, the iterates converge to zero as Figure 7 depicts.

Also, 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) → 0 while the weights converge to a

real constant according to (39). Thus, the given theoretical
results are useful to conclude the convergence of iteration
schemes of the form (1).

4.2. Iterative Scheme 2. This second example is concerned
with the iterative scheme defined by (26). Note that the first
equation can describe, in particular, the state and output of
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Figure 5: Evolution of the weights under (39).
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Figure 6: Numerical verification of the stability condition (38).
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Figure 7: Convergence of the iterates to zero for time-varying
weights given by (39).
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Figure 8: Evolution of 𝜎
𝑛
with time.
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Figure 9: Evolution of the iterates through time.

a certain nonlinear discrete dynamic system. Thus, consider
the linear discrete-time system given by

𝑇𝑥 = 𝐴𝑥 = (

0.955 0.01 0.005

0.005 0.96 0.005

−0.005 0.01 0.965

)𝑥, (40)

with sequences 𝑔
𝑛
= 1−0.1

𝑛+1 and𝑓
𝑛
= 𝑛
2 for all 𝑛 ≥ 0.𝑇 is a

strict contraction with eigenvalues {0.95, 0.96, 0.97}, ‖𝐴‖
∞

=

0.98, and ‖𝐴‖
2
= 0.9717. Thus, it has a unique fixed point at

𝑥 = 0. These sequences satisfy conditions (2) and (3) stated
in Theorem 9 since lim

𝑛→∞
𝑔
𝑛
= 1, 0 < 𝑔

𝑛
< 1 for all 𝑛 ≥ 0,

lim
𝑛→∞

(𝑓
𝑛
/𝑛) = lim

𝑛→∞
𝑛 = +∞, and lim

𝑛→∞
𝜎
𝑛
< +∞

with 𝜎
𝑛

= |𝑛(1 − (𝑓
𝑛+1

log𝑔
𝑛+1

/𝑓
𝑛
log𝑔
𝑛
))| and {𝜎

𝑛
} → 2

(see Figure 8).
From Theorem 9, the sequence of iterates converges to

the unique fixed point of 𝑇, 𝑥 = 0, as it is confirmed in the
numerical simulation displayed in Figure 9.
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5. Conclusion

This paper has investigated the boundedness and conver-
gence properties of two general iterative processes built with
sequences of self-mappings in either complete metric or Ba-
nach spaces. The self-mappings of the first iterative scheme
are built with linear combinations of a set of self-mappings
each of them being a weighted version of a self-mapping on
the same space. Those of the second scheme are powers of an
iteration-dependent scaled version of the primary self-map-
ping. Some applications are given for global stability of a class
of nonlinear polytopic-type parameterizations of dynamic
systems.
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