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This paper discusses oscillatory and asymptotic behavior of solutions of a class of third-order nonlinear functional differential
equations. By using the generalized Riccati transformation and the integral averaging technique, three new sufficient conditions
which insure that the solution is oscillatory or converges to zero are established. The results obtained essentially generalize and
improve the earlier ones.

1. Introduction

As is well known, the comparison and separation theory
of zeros distribution for second-order homogeneous linear
differential equations established by Ladde et al. lays a foun-
dation of oscillation theory for differential equations. During
one and a half century, oscillation theory of differential
equations has developed quickly and played an important
role in qualitative theory of differential equations and the
theory of boundary value problem. Oscillation theory of
differential equations has beenwidely used in areas of physics,
mechanics, radio technology, control system, sciences of life,
economic relations, and population growth. The oscillations
are physical phenomena which widely exist in physics and
technological sciences, such as the oscillation of building
and machine, electromagnetic vibration in radio technology
and optical science, self-excited vibration in control system,
sound vibration, beam vibration in synchrotron accelerator,
the vibration sparked for burning rocket engine, and the
complicated oscillation in chemical reaction. All different
phenomena can be unified into an oscillation theory through
an oscillation equation.There are many books on the oscilla-
tion theory, about which we can refer to [1].

The oscillation theory of third-order nonlinear functional
differential equations has been widely applied in research of a
lossless high-speed computer network and physical sciences.

In this paper, we are concerned with oscillatory behavior of
a third-order nonlinear functional differential equation as
follows:

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥 (𝑡))]𝛼)



+ 𝑞 (𝑡) 𝑓 (𝑥 [𝑔 (𝑡)]) = 0, 𝑡 ≥ 𝑡
0
,

(1)

where 𝛼 is the ratio of positive odd integers. We have the
following hypotheses:

(A
1
) 𝑟
1
(𝑡), 𝑟
2
(𝑡), 𝑞(𝑡) ∈ 𝐶1([𝑡

0
,∞), (0,∞)) and 𝑟

1
(𝑡), 𝑟
2
(𝑡)

satisfy

∫
∞

𝑡0

1
𝑟
1
(𝑠)d𝑠 = ∞, ∫

∞

𝑡0

( 1
𝑟
2
(𝑠))
1/𝛼

d𝑠 = ∞; (2)

(A
2
) 𝑓(𝑢) ∈ 𝐶(𝑅, 𝑅), such that 𝑓(𝑢)/𝑢𝛼 ≥ 𝐾 > 0, 𝑢 ̸= 0;

(A
3
) 𝑔(𝑡) ∈ 𝐶1([𝑡

0
,∞), 𝑅), 𝑔(𝑡) ≥ 0, and lim

𝑡→∞
𝑔(𝑡) =

∞.

By a solution of (1), we mean a nontrivial function 𝑥(𝑡)
satisfying (1) which has the properties 𝑥(𝑡) ∈ 𝐶1([𝑇

𝑥
,∞), 𝑅)

for 𝑇
𝑥

≥ 𝑡
0
and 𝑟

2
(𝑡)[(𝑟
1
(𝑡)𝑥(𝑡))]𝛼 ∈ 𝐶1([𝑇

𝑥
,∞), 𝑅).

Our attention is paid to those solutions of (1) which satisfy
sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all𝑇 ≥ 𝑇

𝑥
. A solution𝑥 of (1) is said
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to be oscillatory on [𝑇
𝑥
,∞) if it is neither eventually positive

nor eventually negative. Otherwise, it is called nonoscillatory.
The equation itself is called oscillatory if all its solutions are
oscillatory.

In recent years, there have been numerous researches or
many research activities concerning the oscillation and nono-
scillation of solutions of three-order functional differential
equations, which are special cases of (1), and for recent contri-
butions, we refer to [2–8]. Consider

𝑥 (𝑡) + 𝑞 (𝑡) 𝑥 [𝑔 (𝑡)] = 0, 𝑡 ≥ 𝑡
0
; (3)

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥 (𝑡))]𝛼)



+ 𝑞 (𝑡) 𝑥𝛼 (𝑡) = 0, 𝑡 ≥ 𝑡
0
; (4)

(𝑟
2
(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡))) + 𝑞 (𝑡) 𝑓 (𝑥 [𝑔 (𝑡)]) = 0, 𝑡 ≥ 𝑡

0
;
(5)

(𝑟 (𝑡) [𝑥 (𝑡)]𝛼) + 𝑞 (𝑡) 𝑓 (𝑥 [𝑔 (𝑡)]) = 0, 𝑡 ≥ 𝑡
0
. (6)

Parhi and Padhi [2] studied asymptotic behavior of solu-
tions of (3). By using the integral averaging technique, Bacu-
ĺıková et al. [3] obtained sufficient conditions which insured
that the solution of self-liner ordinary differential equation
(4)was oscillatory or converges to zero.Mojsej [4] established
the comparison results which insured that the solution of (5)
was oscillatory or converges to zero. By the integral averaging
technique, Saker [5] gave some oscillatory results of (5) when
the condition 𝑔(𝑡) = 𝑡 − 𝜎 holds. Several authors had proved
some oscillatory results of (6) by method of comparison; see
[6–8]. In this paper we intend to use Riccati transformation
and the integral averaging technique to obtain some sufficient
conditions which guarantee that every solution 𝑥(𝑡) of (1) is
oscillatory or converges to zero. Our results generalize and
improve the corresponding theorems established in [3, 5].

2. Several Lemmas

Lemma 1. Assume that 𝑥(𝑡) is a positive solution of (1). Then,
there exists 𝑇 ∈ [𝑡

0
,∞) such that either

(I) 𝑥(𝑡) > 0, 𝑥(𝑡) > 0, (𝑟
1
(𝑡)𝑥(𝑡)) > 0, 𝑡 ≥ 𝑇,

or

(II) 𝑥(𝑡) > 0, 𝑥(𝑡) < 0, (𝑟
1
(𝑡)𝑥(𝑡)) > 0, 𝑡 ≥ 𝑇.

The proof is similar to that of [3, Lemma 1] or [7, Lemma
1].

Throughout this paper, for sufficiently large 𝑇, we denote

𝑅
1
(𝑡, 𝑇) = ∫

𝑡

𝑇

( 1
𝑟
2
(𝑠))
1/𝛼

d𝑠,

𝑅
2
(𝑡, 𝑇) = ∫

𝑡

𝑇

𝑅
1
(𝑠, 𝑇)

𝑟
1
(𝑠) d𝑠,

𝑄 (𝑡) = (𝐾∫
∞

𝑡

𝑞 (𝑠) d 𝑠)
1/𝛼

.

(7)

In order to make the definition of 𝑄(𝑡) meaningful, we
denote

∫
∞

𝑡

𝑞 (𝑠) d𝑠 < ∞. (8)

Lemma 2. Assume that 𝑥(𝑡) is a positive solution of (1) which
satisfies case (I) in Lemma 1. Then there exists 𝑇 ∈ [𝑡

0
,∞),

such that

𝑥 (𝑡) > 𝑅
1
(𝑡, 𝑇)

𝑟
1
(𝑡) 𝑟1/𝛼
2

(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡)), 𝑡 ≥ 𝑇, (9)

𝑥 (𝑡) > 𝑅
2
(𝑡, 𝑇) 𝑟1/𝛼

2
(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡)), 𝑡 ≥ 𝑇. (10)

Assume that (8) and 𝑔(𝑡) ≥ 𝑡 hold. Then

𝑥 (𝑡) < 1
𝑄 (𝑡) 𝑟

1/𝛼

2
(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡)), 𝑡 ≥ 𝑇. (11)

Proof. Pick 𝑇 ∈ [𝑡
0
,∞) so that 𝑥[𝑔(𝑡)] > 0 for 𝑡 ≥ 𝑇. Using

(1), we obtain

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥 (𝑡))]𝛼)



= −𝑞 (𝑡) 𝑓 (𝑥 [𝑔 (𝑡)])

≤ −𝐾𝑞 (𝑡) 𝑥𝛼 [𝑔 (𝑡)] < 0, 𝑡 ≥ 𝑇.
(12)

Then, 𝑟
2
(𝑡)[(𝑟
1
(𝑡)𝑥(𝑡))]𝛼 is strictly decreasing on [𝑇,∞). We

get

𝑟
1
(𝑡) 𝑥 (𝑡) > 𝑟

1
(𝑡) 𝑥 (𝑡) − 𝑟

1
(𝑇) 𝑥 (𝑇)

= ∫
𝑡

𝑇

(𝑟
2
(𝑠) [(𝑟

1
(𝑠) 𝑥 (𝑠))]𝛼)

1/𝛼

𝑟1/𝛼
2

(𝑠) d𝑠

≥ (𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥 (𝑡))]𝛼)

1/𝛼

∫
𝑡

𝑇

( 1
𝑟
2
(𝑠))
1/𝛼

d𝑠,
(13)

and, hence, we have

𝑥 (𝑡) > 𝑅
1
(𝑡, 𝑇)

𝑟
1
(𝑡) 𝑟1/𝛼
2

(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡)), 𝑡 ≥ 𝑇. (14)

By integrating both sides of the above inequality from 𝑇 to 𝑡,
it yields

𝑥 (𝑡) > 𝑅
2
(𝑡, 𝑇) 𝑟1/𝛼

2
(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡)), 𝑡 ≥ 𝑇. (15)

Furthermore, by integrating both sides of (1) from 𝑡 to∞ and
noting that 𝑥(𝑡) > 0, 𝑔(𝑡) ≥ 0, 𝑔(𝑡) ≥ 𝑡, we obtain

𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥 (𝑡))]𝛼 > ∫

∞

𝑡

𝑞 (𝑠) 𝑓 (𝑥 [𝑔 (𝑠)]) d𝑠

≥ 𝐾∫
∞

𝑡

𝑞 (𝑠) 𝑥𝛼 [𝑔 (𝑠)] d𝑠

≥ 𝐾∫
∞

𝑡

𝑞 (𝑠) 𝑥𝛼 (𝑠) d𝑠

≥ (𝐾∫
∞

𝑡

𝑞 (𝑠) d𝑠) 𝑥𝛼 (𝑡) .

(16)
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Then,

𝑥 (𝑡) < 1
𝑄 (𝑡) 𝑟

1/𝛼

2
(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡)). (17)

This completes the proof.

Lemma 3. Assume that 𝑥(𝑡) is a positive solution of (1) which
satisfies case (II) in Lemma 1. Furthermore,

∫
∞

𝑡0

1
𝑟
1
(𝑡) ∫
∞

𝑡

[ 1
𝑟
2
(𝑠) ∫
∞

𝑠

𝑞 (𝑢) d𝑢]
1/𝛼

d𝑠d𝑡 = ∞. (18)

Then, lim
𝑡→∞

𝑥(𝑡) = 0.
Proof. Assume that 𝑥(𝑡) is a positive solution of (1) which
satisfies case (II) in Lemma 1. Then, 𝑥(𝑡) is decreasing and
lim
𝑡→∞

𝑥(𝑡) = 𝑙 ≥ 0. We assert that 𝑙 = 0. If not, then
𝑥[𝑔(𝑡)] ≥ 𝑙 > 0, 𝑡 ≥ 𝑇. Integrating (1) from 𝑡 to∞, we get

−𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥 (𝑡))]𝛼 ≤ −𝐾∫

∞

𝑡

𝑞 (𝑠) 𝑥𝛼 [𝑔 (𝑠)] d𝑠

≤ −𝐾𝑙𝛼 ∫
∞

𝑡

𝑞 (𝑠) d𝑠, 𝑡 ≥ 𝑇.
(19)

Hence, we have

−(𝑟
1
(𝑡) 𝑥 (𝑡)) ≤ −𝑙[ 1

𝑟
2
(𝑡) ∫
∞

𝑡

𝐾𝑞 (𝑠) d𝑠]
1/𝛼

. (20)

Integrating the above inequality from 𝑡 to∞, we obtain

𝑟
1
(𝑡) 𝑥 (𝑡) ≤ −𝑙𝐾1/𝛼 ∫

∞

𝑡

[ 1
𝑟
2
(𝑠) ∫
∞

𝑠

𝑞 (𝑢) d𝑢]
1/𝛼

d𝑠. (21)

Integrating the last inequality again from 𝑇 to 𝑡, we have
𝑥 (𝑡) − 𝑥 (𝑇)

≤ −𝑙𝐾1/𝛼 ∫
𝑡

𝑇

1
𝑟
1
(𝑠) ∫
∞

𝑠

[ 1
𝑟
2
(𝑢) ∫
∞

𝑢

𝑞 (V) dV]
1/𝛼

d𝑢d𝑠.
(22)

Since condition (18) holds, we obtain lim
𝑡→∞

𝑥(𝑡) = −∞,
which contradicts 𝑥(𝑡) > 0. Hence, 𝑙 = 0. This completes the
proof.

3. Main Results

In this section, we obtain three new oscillatory criteria for (1)
by using the generalized Riccati transformation and integral
averaging technique of Philos-type [9]. Let

𝐷 = {(𝑡, 𝑠) : 𝑡 ≥ 𝑠 ≥ 𝑇} ; 𝐷
0
= {(𝑡, 𝑠) : 𝑡 > 𝑠 ≥ 𝑇} . (23)

A function𝐻(𝑡, 𝑠) ∈ 𝐶(𝐷, 𝑅) is said to have the property
of 𝑃 and denote𝐻 ∈ 𝑃 if it satisfies

(i) 𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑇;𝐻(𝑡, 𝑠) > 0, (𝑡, 𝑠) ∈ 𝐷
0
;

(ii) 𝜕𝐻(𝑡, 𝑠)/𝜕𝑠 ≤ 0 and it is continuous.

The following are the main results of this paper.

Theorem4. Let (8), (18), and 𝑔(𝑡) ≥ 𝑡 hold. Assume that there
exist 𝜌, 𝜑 ∈ 𝐶1([𝑡

0
,∞), (0,∞)), 𝐻(𝑡, 𝑠) ∈ 𝑃, and 𝑚(𝑡, 𝑠) ∈

𝐶(𝐷, 𝑅), such that

−𝜕𝐻 (𝑡, 𝑠)
𝜕𝑠 − 𝑅∗ (𝑠, 𝑇)

𝜌 (𝑠) 𝐻 (𝑡, 𝑠) = 𝑚 (𝑡, 𝑠)
𝜌 (𝑠) √𝐻 (𝑡, 𝑠), (24)

and for arbitrary 𝑇
0
≥ 𝑇, one has

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)

× ∫
𝑡

𝑇0

[𝐻 (𝑡, 𝑠) 𝑄 (𝑠, 𝑇) − 𝑚2
−
(𝑡, 𝑠) 𝑟

1
(𝑠)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇)] d𝑠 = ∞,
(25)

where

𝑅 (𝑡, 𝑇) = {𝑅1 (𝑡, 𝑇)𝑄
1−𝛼 (𝑡) , 0 < 𝛼 ≤ 1;

𝑅
1
(𝑡, 𝑇) 𝑅𝛼−1

2
(𝑡, 𝑇) , 𝛼 ≥ 1,

𝑅∗ (𝑡, 𝑇) = 𝜌 (𝑡) + 2𝛼𝑅 (𝑡, 𝑇)
𝑟
1
(𝑡) 𝑟

2
(𝑡) 𝜑 (𝑡) ,

𝑄 (𝑡, 𝑇)

= 𝜌 (𝑡) [𝐾𝑞 (𝑡) − (𝑟
2
(𝑡) 𝜑 (𝑡)) + 𝛼𝑅 (𝑡, 𝑇)

𝑟
1
(𝑡) (𝑟

2
(𝑡) 𝜑 (𝑡))2] ,

𝑚
−
(𝑡, 𝑠) = max {0, −𝑚 (𝑡, 𝑠)} ,

𝑚
+
(𝑡, 𝑠) = max {0, 𝑚 (𝑡, 𝑠)} .

(26)

Then, every solution 𝑥(𝑡) of (1) is oscillatory or converges to
zero.

Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞). Without loss of generality we may assume that there

exists a sufficiently large 𝑡
1
≥ 𝑡
0
, such that 𝑥(𝑡) > 0, 𝑡 ≥ 𝑡

1
. By

Lemma 1, we see that 𝑥(𝑡) satisfies either case (I) or case (II).
If case (I) holds, then 𝑥(𝑡) > 0, 𝑡 ≥ 𝑇. Define the function

𝑊(𝑡) by

𝑊(𝑡) = 𝜌 (𝑡) 𝑟
2
(𝑡) [

[
((𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) )

𝛼

+ 𝜑 (𝑡)]
]
. (27)

Then,

𝑊 (𝑡) = 𝜌 (𝑡)
𝜌 (𝑡) 𝑊 (𝑡) − 𝜌 (𝑡) 𝑞 (𝑡) 𝑓 (𝑥 [𝑔 (𝑡)])

𝑥𝛼 (𝑡)
+ 𝜌 (𝑡) (𝑟

2
(𝑡) 𝜑 (𝑡))

− 𝛼𝜌 (𝑡) 𝑟
2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

𝑥 (𝑡)
𝑥 (𝑡) .

(28)
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When 0 < 𝛼 ≤ 1 holds, using (9) and (11), we get

𝑥 (𝑡)
𝑥 (𝑡) > 𝑅

1
(𝑡, 𝑇)

𝑟
1
(𝑡) 𝑟
2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

× [
[
𝑟1/𝛼
2

(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡))

𝑥 (𝑡) ]
]

1−𝛼

> 𝑅
1
(𝑡, 𝑇)𝑄1−𝛼 (𝑡)

𝑟
1
(𝑡) 𝑟

2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

.

(29)

In view of (28) and (29), noting that 𝑔(𝑡) ≥ 𝑡, we obtain

𝑊 (𝑡) ≤ −𝐾𝜌 (𝑡) 𝑞 (𝑡) + 𝜌 (𝑡) (𝑟
2
(𝑡) 𝜑 (𝑡)) + 𝜌 (𝑡)

𝜌 (𝑡) 𝑊 (𝑡)

− 𝛼𝜌 (𝑡) 𝑅1 (𝑡, 𝑇)𝑄
1−𝛼 (𝑡)

𝑟
1
(𝑡)

× [
[
𝑟
2
(𝑡)((𝑟

1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) )

𝛼

]
]

2

.
(30)

When 𝛼 ≥ 1 holds, using (9) and (10), we have

𝑥 (𝑡)
𝑥 (𝑡) > 𝑅

1
(𝑡, 𝑇)

𝑟
1
(𝑡) 𝑟
2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

× [ 𝑥 (𝑡)
𝑟1/𝛼
2

(𝑡) (𝑟
1
(𝑡) 𝑥 (𝑡))]

𝛼−1

> 𝑅
1
(𝑡, 𝑇) 𝑅𝛼−1

2
(𝑡, 𝑇)

𝑟
1
(𝑡) 𝑟

2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

.

(31)

In view of (28) and (31), which yields

𝑊 (𝑡) ≤ −𝐾𝜌 (𝑡) 𝑞 (𝑡) + 𝜌 (𝑡) (𝑟
2
(𝑡) 𝜑 (𝑡)) + 𝜌 (𝑡)

𝜌 (𝑡) 𝑊 (𝑡)

− 𝛼𝜌 (𝑡) 𝑅1 (𝑡, 𝑇) 𝑅
𝛼−1

2
(𝑡, 𝑇)

𝑟
1
(𝑡)

× [
[
𝑟
2
(𝑡)((𝑟

1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) )

𝛼

]
]

2

.
(32)

From (30), (32), and the definition of 𝑅(𝑡, 𝑇), we get

𝑊 (𝑡) ≤ −𝐾𝜌 (𝑡) 𝑞 (𝑡) + 𝜌 (𝑡) (𝑟
2
(𝑡) 𝜑 (𝑡)) + 𝜌 (𝑡)

𝜌 (𝑡) 𝑊 (𝑡)

− 𝛼𝜌 (𝑡) 𝑅 (𝑡, 𝑇)
𝑟
1
(𝑡) [

[
𝑟
2
(𝑡)((𝑟

1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) )

𝛼

]
]

2

.
(33)

By the definition of𝑊(𝑡), we have

[
[
𝑟
2
(𝑡)((𝑟

1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) )

𝛼

]
]

2

= (𝑊(𝑡)
𝜌 (𝑡) − 𝑟

2
(𝑡) 𝜑 (𝑡))

2

= 1
𝜌2 (𝑡)𝑊

2 (𝑡) − 2𝑟
2
(𝑡) 𝜑 (𝑡)
𝜌 (𝑡) 𝑊 (𝑡)

+ (𝑟
2
(𝑡) 𝜑 (𝑡))2.

(34)

From (33) and (34), noting the definition of 𝑄(𝑡, 𝑇) and
𝑅∗(𝑡, 𝑇), we obtain

𝑄 (𝑡, 𝑇) ≤ −𝑊 (𝑡) + 𝑅∗ (𝑡, 𝑇)
𝜌 (𝑡) 𝑊 (𝑡) − 𝛼𝑅 (𝑡, 𝑇)

𝜌 (𝑡) 𝑟
1
(𝑡)𝑊
2 (𝑡) .

(35)

Multiplying both sides of (35), with 𝑡 replaced by 𝑠, by𝐻(𝑡, 𝑠),
integrating with respect to 𝑠 from 𝑇

0
to 𝑡 ≥ 𝑇

0
, we get

∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝑄 (𝑠, 𝑇) d𝑠 ≤ −∫
𝑡

𝑇0

𝐻(𝑡, 𝑠)𝑊 (𝑠) d𝑠

+ ∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝑅∗ (𝑠, 𝑇)
𝜌 (𝑠) 𝑊 (𝑠) d𝑠

− ∫
𝑡

𝑇0

𝛼𝐻 (𝑡, 𝑠) 𝑅 (𝑠, 𝑇)
𝜌 (𝑠) 𝑟

1
(𝑠) 𝑊2 (𝑠) d𝑠.

(36)

By integrating parts and using𝐻(𝑡, 𝑠) ∈ 𝑃 and (24), we obtain

∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝑄 (𝑠, 𝑇) d𝑠

≤ 𝐻 (𝑡, 𝑇
0
)𝑊 (𝑇

0
) + ∫
𝑡

𝑇0

𝜕𝐻 (𝑡, 𝑠)
𝜕𝑠 𝑊 (𝑠) d𝑠

+ ∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝑅∗ (𝑠, 𝑇)
𝜌 (𝑠) 𝑊 (𝑠) d𝑠

− ∫
𝑡

𝑇0

𝛼𝐻 (𝑡, 𝑠) 𝑅 (𝑠, 𝑇)
𝜌 (𝑠) 𝑟

1
(𝑠) 𝑊2 (𝑠) d𝑠

= 𝐻 (𝑡, 𝑇
0
)𝑊 (𝑇

0
)

+ ∫
𝑡

𝑇0

[−𝑚 (𝑡, 𝑠) √𝐻 (𝑡, 𝑠)
𝜌 (𝑠) 𝑊 (𝑠)

−𝛼𝐻 (𝑡, 𝑠) 𝑅 (𝑠, 𝑇)
𝜌 (𝑠) 𝑟

1
(𝑠) 𝑊2 (𝑠)] d𝑠
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≤ 𝐻 (𝑡, 𝑇
0
)𝑊 (𝑇

0
)

+ ∫
𝑡

𝑇0

[𝑚− (𝑡, 𝑠) √𝐻 (𝑡, 𝑠)
𝜌 (𝑠) 𝑊 (𝑠)

−𝛼𝐻 (𝑡, 𝑠) 𝑅 (𝑠, 𝑇)
𝜌 (𝑠) 𝑟

1
(𝑠) 𝑊2 (𝑠)] d𝑠.

(37)

Using averaging technique, we have

𝑚
−
(𝑡, 𝑠) √𝐻 (𝑡, 𝑠)

𝜌 (𝑠) 𝑊 (𝑠) − 𝛼𝐻 (𝑡, 𝑠) 𝑅 (𝑠, 𝑇)
𝜌 (𝑠) 𝑟

1
(𝑠) 𝑊2 (𝑠)

≤ 𝑚2
−
(𝑡, 𝑠) 𝑟

1
(𝑠)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇) .
(38)

Combining (37) and (38), we get

1
𝐻 (𝑡, 𝑇

0
) ∫
𝑡

𝑇0

[𝐻 (𝑡, 𝑠) 𝑄 (𝑠, 𝑇)

− 𝑚2
−
(𝑡, 𝑠) 𝑟

1
(𝑠)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇)] d𝑠 ≤ 𝑊 (𝑇
0
) ,

(39)

which contradicts (25).
If case (II) holds, from (18), by Lemma 3, lim

𝑡→∞
𝑥(𝑡) = 0.

This completes the proof.

Theorem 5. Let (8), (18), and 𝑔(𝑡) ≥ 𝑡 hold. Assuming that
there exist 𝜌, 𝜑 ∈ 𝐶1([𝑡

0
,∞), (0,∞)) and, for all sufficiently

large 𝑇, there exists a 𝑇
0
≥ 𝑇, one has

lim sup
𝑡→∞

∫
𝑡

𝑇0

[𝑄 (𝑠, 𝑇) − 𝑟
1
(𝑠) 𝑅∗2 (𝑠, 𝑇)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇)] d𝑠 = ∞, (40)

where 𝑅(𝑡, 𝑇), 𝑄(𝑡, 𝑇), and 𝑅∗(𝑡, 𝑇) are defined in Theorem 4.
Then every solution𝑥(𝑡) of (1) is oscillatory or converges to zero.
Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞). Without loss of generality, we may assume that there

exists a sufficiently large 𝑡
1
≥ 𝑡
0
, such that 𝑥(𝑡) > 0, 𝑡 ≥ 𝑡

1
. By

Lemma 1, we see that 𝑥(𝑡) satisfies either case (I) or case (II).
If case (I) holds, we proceed in the proof ofTheorem4 and

get (34).Then, from the definition of𝑄(𝑡, 𝑇) and 𝑅∗(𝑡, 𝑇), we
obtain

𝑊 (𝑡) < −𝑄 (𝑡, 𝑇) + 𝑅∗ (𝑡, 𝑇)
𝜌 (𝑡) 𝑊 (𝑡) − 𝛼𝑅 (𝑡, 𝑇)

𝜌 (𝑡) 𝑟
1
(𝑡)𝑊
2 (𝑡) .

(41)

By using the averaging technique, we find that

𝑅∗ (𝑡, 𝑇)
𝜌 (𝑡) 𝑊 (𝑡) − 𝛼𝑅 (𝑡, 𝑇)

𝜌 (𝑡) 𝑟
1
(𝑡)𝑊
2 (𝑡) ≤ 𝑟

1
(𝑡) 𝑅∗2 (𝑡, 𝑇)

4𝛼𝜌 (𝑡) 𝑅 (𝑡, 𝑇) . (42)

Hence, we get

𝑊 (𝑡) < − [𝑄 (𝑡, 𝑇) − 𝑟
1
(𝑡) 𝑅∗2 (𝑡, 𝑇)

4𝛼𝜌 (𝑡) 𝑅 (𝑡, 𝑇)] . (43)

Integrating (43) from 𝑇
0
to 𝑡, we have

−𝑊(𝑇
0
) ≤ 𝑊 (𝑡) − 𝑊(𝑇

0
)

≤ −∫
𝑡

𝑇0

[𝑄 (𝑠, 𝑇) − 𝑟
1
(𝑠) 𝑅∗2 (𝑠, 𝑇)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇)] d𝑠.
(44)

It follows that

∫
𝑡

𝑇0

[𝑄 (𝑠, 𝑇) − 𝑟
1
(𝑠) 𝑅∗2 (𝑠, 𝑇)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇)] d𝑠 ≤ 𝑊 (𝑇
0
) , (45)

which contradicts (40).
If case (II) holds, from (18), by Lemma 3, lim

𝑡→∞
𝑥(𝑡) = 0.

This completes the proof.

By applying Theorem 5 with 𝜌(𝑡) = 𝑡, 𝜑(𝑡) = 0, we have
the following result.

Corollary 6. Let (8), (18), and 𝑔(𝑡) ≥ 𝑡 hold, and for all
sufficiently large 𝑇, there exists a 𝑇

0
≥ 𝑇; then, one has

lim sup
𝑡→∞

∫
𝑡

𝑇0

[𝑠𝑞 (𝑠) − 𝑟
1
(𝑠)

4𝛼𝐾𝑠𝑅 (𝑠, 𝑇)] d𝑠 = ∞, (46)

where 𝑅(𝑡, 𝑇) is defined inTheorem 4.Then every solution 𝑥(𝑡)
of (1) is oscillatory or converges to zero.

Theorem7. Let (18) and 𝑔(𝑡) ≥ 𝑡 hold. Assume that there exist
𝜌 ∈ C1([𝑡

0
,∞), (0,∞)),𝐻(𝑡, 𝑠) ∈P, and ℎ(𝑡, 𝑠) ∈ C(𝐷,R), such

that

𝜕𝐻 (𝑡, 𝑠)
𝜕𝑠 + 𝜌 (𝑠)

𝜌 (𝑠) 𝐻 (𝑡, 𝑠) = −ℎ (𝑡, 𝑠)𝜌 (𝑠) 𝐻𝛼/(𝛼+1) (𝑡, 𝑠) , (47)

and all sufficiently large 𝑇
0
≥ 𝑇 such that

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)

× ∫
𝑡

𝑇0

[𝐾𝐻 (𝑡, 𝑠) 𝜌 (𝑠) 𝑞 (𝑠)

− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟𝛼
1
(𝑠)

(𝛼 + 1)𝛼+1[𝜌 (𝑠) 𝑅
1
(𝑠, 𝑇)]𝛼] d𝑠 = ∞.

(48)

Then, every solution 𝑥(𝑡) of (1) is oscillatory or converges to
zero.

Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞).Without loss of generality, wemay assume that 𝑥(𝑡) is

a positive solution of (1). By Lemma 1, we see that𝑥(𝑡) satisfies
either case (I) or case (II).

If case (I) holds, then 𝑥(𝑡) > 0, 𝑡 ≥ 𝑇. Define the function
𝑊(𝑡) by

𝑊(𝑡) = 𝜌 (𝑡) 𝑟
2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

. (49)
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Using (9), we have

𝑊 (𝑡) = −𝜌 (𝑡) 𝑞 (𝑡) 𝑓 (𝑥 [𝑔 (𝑡)])
𝑥𝛼 (𝑡) + 𝜌 (𝑡)

𝜌 (𝑡) 𝑊 (𝑡)

− 𝛼𝜌 (𝑡) 𝑟
2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼

𝑥 (𝑡)
𝑥 (𝑡)

< −𝐾𝜌 (𝑡) 𝑞 (𝑡) + 𝜌 (𝑡)
𝜌 (𝑡) 𝑊 (𝑡)

− 𝛼𝜌 (𝑡) 𝑅
1
(𝑡, 𝑇)

𝑟
1
(𝑡) 𝑟1+1/𝛼

2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥 (𝑡))
𝑥 (𝑡) ]

]

𝛼+1

.
(50)

Hence, by the definition of𝑊(𝑡), we have

𝑊 (𝑡) ≤ −𝐾𝜌 (𝑡) 𝑞 (𝑡) + 𝜌 (𝑡)
𝜌 (𝑡) 𝑊 (𝑡)

− 𝛼𝑅
1
(𝑡, 𝑇)

𝜌1/𝛼 (𝑡) 𝑟
1
(𝑡)𝑊
1+1/𝛼 (𝑡) .

(51)

Multiplying both sides of (51), with 𝑡 replaced by 𝑠, by𝐻(𝑡, 𝑠)
and integrating with respect to 𝑠 from 𝑇

0
≥ 𝑇 to 𝑡 ≥ 𝑇

0
, we

get

∫
𝑡

𝑇0

𝐾𝐻(𝑡, 𝑠) 𝜌 (𝑠) 𝑞 (𝑠) d𝑠

≤ −∫
𝑡

𝑇0

𝐻(𝑡, 𝑠)𝑊 (𝑠) d𝑠

+ ∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝜌
 (𝑠)
𝜌 (𝑠) 𝑊 (𝑠) d𝑠

− ∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝛼𝑅
1
(𝑠, 𝑇)

𝜌1/𝛼 (𝑠) 𝑟
1
(𝑠)𝑊
1+1/𝛼 (𝑠) d𝑠.

(52)

Integrating by parts and using (47), which yields

∫
𝑡

𝑇0

𝐾𝐻(𝑡, 𝑠) 𝜌 (𝑠) 𝑞 (𝑠) d𝑠

≤ 𝐻 (𝑡, 𝑇
0
)𝑊 (𝑇

0
) + ∫
𝑡

𝑇0

𝜕𝐻 (𝑡, 𝑠)
𝜕𝑠 𝑊 (𝑠) d𝑠

+ ∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝜌
 (𝑠)
𝜌 (𝑠) 𝑊 (𝑠) d𝑠

− ∫
𝑡

𝑇0

𝐻(𝑡, 𝑠) 𝛼𝑅
1
(𝑠, 𝑇)

𝜌1/𝛼 (𝑠) 𝑟
1
(𝑠)𝑊
1+1/𝛼 (𝑠) d𝑠

≤ 𝐻 (𝑡, 𝑇
0
)𝑊 (𝑇

0
)

+ ∫
𝑡

𝑇0

[−ℎ (𝑡, 𝑠)𝐻
𝛼/(𝛼+1) (𝑡, 𝑠)
𝜌 (𝑠) 𝑊 (𝑠)

−𝐻 (𝑡, 𝑠) 𝛼𝑅
1
(𝑠, 𝑇)

𝜌1/𝛼 (𝑠) 𝑟
1
(𝑠)𝑊
1+1/𝛼 (𝑠)] d𝑠

≤ 𝐻 (𝑡, 𝑇
0
)𝑊 (𝑇

0
)

+ ∫
𝑡

𝑇0

[ℎ− (𝑡, 𝑠)𝐻
𝛼/(𝛼+1) (𝑡, 𝑠)

𝜌 (𝑠) 𝑊 (𝑠)

−𝐻 (𝑡, 𝑠) 𝛼𝑅
1
(𝑠, 𝑇)

𝜌1/𝛼 (𝑠) 𝑟
1
(𝑠)𝑊
1+1/𝛼 (𝑠)] d𝑠.

(53)
Define 𝐴 and 𝐵 as follows:

𝐴𝜆 = 𝛼𝐻 (𝑡, 𝑠) 𝑅
1
(𝑠, 𝑇)

𝜌1/𝛼 (𝑠) 𝑟
1
(𝑠) 𝑊𝜆 (𝑠) ,

𝐵𝜆−1 = ℎ
−
(𝑡, 𝑠) 𝑟1/𝜆

1
(𝑠)

𝜆[𝛼𝜌 (𝑠) 𝑅
1
(𝑠, 𝑇)]1/𝜆

,
(54)

where 𝜆 = (𝛼 + 1)/𝛼 > 1, 𝐴 ≥ 0, and 𝐵 ≥ 0. Using the
inequality [10, Theorem 41]

𝜆𝐴𝐵𝜆−1 − 𝐴𝜆 ≤ (𝜆 − 1) 𝐵𝜆, (55)
we obtain

ℎ
−
(𝑡, 𝑠)𝐻1/𝜆 (𝑡, 𝑠)

𝜌 (𝑠) 𝑊 (𝑠) − 𝛼𝐻 (𝑡, 𝑠) 𝑅
1
(𝑠, 𝑇)

𝜌𝜆−1 (𝑠) 𝑟
1
(𝑠) 𝑊𝜆 (𝑠)

≤ ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟𝛼
1
(𝑠)

(𝛼 + 1)𝛼+1[𝜌 (𝑠) 𝑅
1
(𝑠, 𝑇)]𝛼 .

(56)

Combining (53) and (56), we get

1
𝐻 (𝑡, 𝑇

0
) ∫
𝑡

𝑇0

[𝐾𝐻 (𝑡, 𝑠) 𝜌 (𝑠) 𝑞 (𝑠)

− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟𝛼
1
(𝑠)

(𝛼 + 1)𝛼+1[𝜌 (𝑠) 𝑅
1
(𝑠, 𝑇)]𝛼] d𝑠 ≤ 𝑊 (𝑇

0
) ,

(57)
which contradicts (48).

If case (II) holds, from (18), by Lemma 3, lim
𝑡→∞

𝑥(𝑡) =
0. This completes the proof.

Remark 8. If we let 𝜌(𝑡) = 1, 𝜑(𝑡) = 0 in Theorem 4 and
the function𝑚(𝑡, 𝑠) is𝑄(𝑡, 𝑠) ofTheorem 3.3 in [5], then con-
dition (25) is (3.12) in [5]. Therefore, the result of 𝛼 = 1 in
[5] is generalized to the case that 𝛼 is the ratio of positive
odd integers. If we let 𝜌(𝑡) = 1 in Theorem 7, the function
ℎ𝛼+1
−

(𝑡, 𝑠) is 𝑄𝛼+1(𝑡, 𝑠)/𝐻𝛼(𝑡, 𝑠) of Theorem 3.4 in [3], which
condition (48) is converted to (3.19) in [3]. Then, the result
of (1.3) in [3] is generalized to the one of (1) in this paper.

Example 9. Consider the three-order differential equation

([(1𝑡 𝑥
 (𝑡))


]
3/5

)


+ 1
𝑡2 𝑥
3/5 (𝑡) = 0, 𝑡 ∈ [1, +∞) , (58)

where

𝑟
1
(𝑡) = 1

𝑡 , 𝑟
2
(𝑡) = 1, 𝑞 (𝑡) = 1

𝑡2 ,

𝑓 (𝑢) = 𝑢3/5, 𝑔 (𝑡) = 𝑡, 𝛼 = 3
5 .

(59)
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Conditions (A
1
), (A
2
), and (A

3
) are clearly satisfied. It is easy

to find that (8) and (18) hold. Let 𝜌(𝑡) = 𝑡, 𝜑(𝑡) = 1/𝑡. Here

𝑅
1
(𝑡, 𝑇) = ∫

𝑡

𝑇

( 1
𝑟
2
(𝑠))
1/𝛼

d𝑠 = ∫
𝑡

𝑇

d𝑠 = 𝑡 − 𝑇,

𝑄 (𝑡) = (𝐾∫
∞

𝑡

𝑞 (𝑠) d𝑠)
1/𝛼

= (∫
∞

𝑡

1
𝑠2 d𝑠)

5/3

= 𝑡−5/3,

𝑅 (𝑡, 𝑇) = 𝑅
1
(𝑡, 𝑇)𝑄1−𝛼 (𝑡) = (𝑡 − 𝑇) 𝑡−2/3,

𝑅∗ (𝑡, 𝑇) = 𝜌 (𝑡) + 2𝛼𝑅 (𝑡, 𝑇)
𝑟
1
(𝑡) 𝑟

2
(𝑡) 𝜑 (𝑡) 𝜌 (𝑡)

= 1 + 6
5 (𝑡 − 𝑇) 𝑡1/3,

𝑄 (𝑡, 𝑇) = 𝜌 (𝑡) [𝐾𝑞 (𝑡) − (𝑟
2
(𝑡) 𝜑 (𝑡))

+𝛼𝑅 (𝑡, 𝑇)
𝑟
1
(𝑡) (𝑟

2
(𝑡) 𝜑 (𝑡))2]

= 2
𝑡 + 3

5 (𝑡 − 𝑇) 𝑡−2/3.

(60)

FromTheorem 5, we have

lim sup
𝑡→∞

∫
𝑡

1

[𝑄 (𝑠, 𝑇) − 𝑟
1
(𝑠) 𝑅∗2 (𝑠, 𝑇)

4𝛼𝜌 (𝑠) 𝑅 (𝑠, 𝑇)] d𝑠

= lim sup
𝑡→∞

∫
𝑡

1

[1𝑠 − 5
12

1
(𝑠 − 𝑇) 𝑠4/3 ] d𝑠 = ∞,

(61)

so (40) is satisfied. Hence, by Theorem 5, every solution 𝑥(𝑡)
of (58) is oscillatory or converges to zero.
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