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We use bifurcation method of dynamical systems to study exact traveling wave solutions of a nonlinear evolution equation. We
obtain exact explicit expressions of bell-shaped solitary wave solutions involving more free parameters, and some existing results
are corrected and improved. Also, we get some new exact periodic wave solutions in parameter forms of the Jacobian elliptic
function. Further, we find that the bell-shaped waves are limits of the periodic waves in some sense. The results imply that we can
deduce bell-shaped waves from periodic waves for some nonlinear evolution equations.

1. Introduction

The Benjamin-Bona-Mahony (BBM) equation [1]

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥𝑡

= 0 (1)

was proposed as the model for propagation of long waves
where nonlinear dispersion is incorporated.The Kadomtsev-
Petviashvili (KP) equation [2]

(𝑢
𝑡
+ 𝑎𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

)
𝑥
+ 𝑢
𝑦𝑦
= 0 (2)

was given as the generalization of the KdV equation. In
addition, both BBM and KdV equations can be used to
describe long wavelength in liquids, fluids, and so forth.
Combining the two equations, the Kadomtsev-Petviashvili-
Benjamin-Bona-Mahony (KP-BBM) equation

(𝑢
𝑡
+ 𝑢
𝑥
− 𝑎(𝑢

2
)
𝑥
− 𝑏𝑢
𝑥𝑥𝑡
)
𝑥
+ 𝑘𝑢
𝑦𝑦
= 0 (3)

was presented in [3] for further study. Some methods are
developed and applied to find exact solutions of nonlinear
evolution equations because exact solutions play an impor-
tant role in the comprehension of nonlinear phenomena.
For instance, extended tanh method, extended mapping
methodwith symbol computation, and bifurcationmethod of

dynamical systems are employed to study (3) [4–6], and some
solitary wave solutions and triangle periodic wave solutions
were obtained.

However, there is no method which can be applied to all
nonlinear evolution equations. The research on the solutions
of the KP-BBM equation now appears insufficient. Further
studies are necessary for the traveling wave solutions of the
KP-BBM equation. The purpose of this paper is to apply the
bifurcation method [7–10] of dynamical systems to continue
to seek traveling waves of (3). Firstly, we obtain bell-shaped
solitary wave solutions involving more free parameters, and
some results in [6] are corrected and improved. Then, we
get some new periodic wave solutions in parameter forms of
Jacobian elliptic function, and numerical simulation verifies
the validity of these periodic solutions. The periodic wave
solutions obtained in this paper are different from those in
[5]. Furthermore, we find an interesting relationship between
the bell-shaped waves and periodic waves; that is, the bell-
shaped waves are limits of the periodic waves in forms of
Jacobian elliptic function as modulus approaches 1.

This paper is organized as follows. First, we draw the
bifurcation phase portraits of planar system according to
the KP-BBM equation in Section 2. Second, bell-shaped
solitary wave solutions to the equation under consideration
are presented in Section 3. Third, periodic solitary waves are
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given in the forms of Jacobian elliptic function and numerical
simulation is done. Finally, the relationship between the
bell-shaped solitary waves and periodic waves is proved in
Section 4.

2. Bifurcation Phase Portraits of System (6)
Suppose (3) possesses traveling wave solutions in the form
𝑢(𝑥, 𝑡) = 𝜑(𝜉), 𝜉 = 𝑥 + 𝑟𝑦 − 𝑐𝑡, where 𝑐 is the wave speed and
𝑟 is a real constant. Substituting 𝑢(𝑥, 𝑡) = 𝜑(𝜉), 𝜉 = 𝑥+ 𝑟𝑦− 𝑐𝑡

into (3) admits to the following ODE:

(1 + 𝑘𝑟
2
− 𝑐) 𝜑

󸀠󸀠
− 𝑎(𝜑

2
)

󸀠󸀠

+ 𝑏𝑐𝜑
(4)

= 0, (4)

where the derivative is for variable 𝜉. Integrating (4) twice
with respect to 𝜉 and letting the first integral constant take
value zero, it follows that

(1 + 𝑘𝑟
2
− 𝑐) 𝜑 − 𝑎𝜑

2
+ 𝑏𝑐𝜑

󸀠󸀠
= 𝑔, (5)

where 𝑔 is the second integral constant.
Equation (5) is equivalent to the following two-dimen-

sional system:

d𝜑
d𝜉

= 𝑦,

d𝑦
d𝜉

=

𝑎𝜑
2
− (1 + 𝑘𝑟

2
− 𝑐) 𝜑 + 𝑔

𝑏𝑐

. (6)

It is obvious that system (6) has the first integral

𝐻(𝜑, 𝑦) =

1

2

𝑦
2
−

𝑎

3𝑏𝑐

𝜑
3
+

1 + 𝑘𝑟
2
− 𝑐

2𝑏𝑐

𝜑
2
−

𝑔

𝑏𝑐

𝜑 = ℎ, (7)

where ℎ is the constant of integration.
DefineΔ = (1+𝑘𝑟

2
−𝑐)
2
−4𝑎𝑔. WhenΔ > 0, there are two

equilibrium points (𝜑
1
, 0) and (𝜑

2
, 0) of (6) on 𝜑-axis, where

𝜑
1
= ((1 + 𝑘𝑟

2
− 𝑐) − √Δ)/2𝑎, 𝜑

2
= ((1 + 𝑘𝑟

2
− 𝑐) + √Δ)/2𝑎.

The Hamiltonian 𝐻 of (𝜑
1
, 0) and (𝜑

2
, 0) is denoted by ℎ

1
=

𝐻(𝜑
1
, 0) and ℎ

2
= 𝐻(𝜑

2
, 0).

In the case of 1 + 𝑘𝑟
2
− 𝑐 < 0 and 1 + 𝑘𝑟

2
− 𝑐 > 0, the

bifurcation phase portraits of system (6) see Figures 1 and 2
in [6], respectively, in which there are some homoclinic and
periodic orbits of system (6). For our purpose, we redraw the
homolinic and periodic orbits in this paper(see Figures 1–3).

3. Exact Explicit Expressions of
Solitary Wave Solutions

In this section, we discuss bell-shaped wave solutions under
𝑔 = 0 and 𝑔 ̸= 0, respectively.

3.1. The Case 𝑔= 0. System (6) can be rewritten as

d𝜑
d𝜉

= 𝑦,

d𝑦
d𝜉

=

𝑎𝜑
2
− (1 + 𝑘𝑟

2
− 𝑐) 𝜑

𝑏𝑐

. (8)

The first integral of (8) is

𝐻(𝜑, 𝑦) =

1

2

𝑦
2
−

𝑎

3𝑏𝑐

𝜑
3
+

1 + 𝑘𝑟
2
− 𝑐

2𝑏𝑐

𝜑
2
= ℎ. (9)

When (1+𝑘𝑟2−𝑐)/𝑏𝑐 < 0, there are two homoclinic orbits
Γ
1
and Γ
2
(see Figures 1(a) and 1(b)). In 𝜑-𝑦 plane, Γ

1
and Γ
2

can be described by

𝑦
2
=

2𝑎

3𝑏𝑐

𝜑
3
−

1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

𝜑
2
,

𝜑 ∈ (0, 𝜑
∗
) or 𝜑 ∈ (𝜑

∗
, 0) ,

(10)

where 𝜑∗ = 3(1 + 𝑘𝑟
2
− 𝑐)/2𝑎. That is,

𝑦 = ±
√
2𝑎

3𝑏𝑐

𝜑
3
−

1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

𝜑
2
.

(11)

Substituting (11) into d𝜑/d𝜉 = 𝑦 and integrating along
homoclinc orbits Γ

1
and Γ
2
, respectively, we get

∫

𝜑
∗

𝜑

d𝑠

√(2𝑎/3𝑏𝑐) 𝑠
3
− ((1 + 𝑘𝑟

2
− 𝑐) /𝑏𝑐) 𝑠

2

= ±
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
. (12)

Completing the above integration, it follows that

𝑢
1
(𝑥, 𝑦, 𝑡)

=

3 (1 + 𝑘𝑟
2
− 𝑐)

𝑎 [1 + cosh (√− ((1 + 𝑘𝑟2 − 𝑐) /𝑏𝑐) (𝑥 + 𝑟𝑦 − 𝑐𝑡))]
.

(13)

Remark 1. 𝑢
1
(𝑥, 𝑦, 𝑡) is a bright soliton solution when 𝑏𝑐/𝑎 <

0 and a dark soliton solution when 𝑏𝑐/𝑎 > 0. If the real
number 𝑟 in (13) takes value 1, then solution (13) is the same to
solution (1.2) in [6]. Solution (1.1) in [6] is not a real solution
of the KP-BBM equation; it is obvious that solution (1.1) tends
to infinite as 𝜉 → 0, and it does not satisfy the KP-BBM
equation (3).

When (1+𝑘𝑟2+𝑐)/𝑏𝑐 > 0, there are two homoclinic orbits
Γ
3
and Γ
4
(see Figures 2(a) and 2(b)). Similarly solitary wave

solutions according to Γ
3
and Γ
4
are obtained as follows:

𝑢
2
(𝑥, 𝑦, 𝑡)

= ((1 + 𝑘𝑟
2
− 𝑐)

×
[

[

−2 + cosh(√1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡))
]

]

)

×(𝑎
[

[

1 + cosh(√1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡))
]

]

)

−1

.

(14)

Remark 2. If the real number 𝑟 in (14) takes value 1, then
solution (14) is the same to solution (1.4) in [6]. Solution (1.5)
in [6] is not a real solution of the KP-BBM equation; it is easy
to verify that it does not satisfy the KP-BBM equation (3).
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Figure 1: The bifurcation phase portraits of system (6) with 𝑔 = 0 and (1 + 𝑘𝑟2 + 𝑐)/𝑏𝑐 < 0.

3.2. The Case 𝑔 ̸= 0. There are two homoclinic orbits Γ
5
and

Γ
6
when 𝑔 ̸= 0 (see Figures 3(a) and 3(b)). Γ

5
and Γ

6
can be

described by

𝑦
2
=

2𝑎

3𝑏𝑐

𝜑
3
−

1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

𝜑
2
+

2𝑔

𝑏𝑐

𝜑 + 2ℎ. (15)

When 𝑏𝑐/𝑎 < 0, the corresponding homoclinic orbit Γ
5

has a double zero point 𝜑
1
and a zero point 𝜑

3
on 𝜑-axis (see

Figure 3(a)), so (15) can be rewritten as

𝑦
2
=

2𝑎

3𝑏𝑐

(𝜑 − 𝜑
1
)
2

(𝜑 − 𝜑
3
) ; (16)

that is,

𝑦 = ±√
2𝑎

3𝑏𝑐

(𝜑 − 𝜑
1
)
2

(𝜑 − 𝜑
3
). (17)

Substituting (17) into d𝜑/d𝜉 = 𝑦 and integrating along hom-
oclinic orbits Γ

5
, we get

∫

𝜑
3

𝜑

d𝑠

√(2𝑎/3𝑏𝑐) (𝑠 − 𝜑
1
)
2

(𝑠 − 𝜑
3
)

=
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
, (18)

where𝜑
1
= (1+𝑘𝑟

2
−𝑐−√Δ)/2𝑎 and𝜑

3
= (1+𝑘𝑟

2
−𝑐+2√Δ)/2𝑎

if 𝑎 > 0 and 𝑏𝑐 < 0; then, completing (18) we get the following
solution:

𝑢
3
(𝑥, 𝑦, 𝑡)

= ( (1 + 𝑘𝑟
2
− 𝑐 − √Δ)

× cosh√−
√Δ

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1
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Figure 2: The bifurcation phase portraits of system (6) with 𝑔 = 0 and (1 + 𝑘𝑟2 + 𝑐)/𝑏𝑐 > 0.

+𝑘𝑟
2
− 𝑐 + 5√Δ)

×(2𝑎(cosh√−
√Δ

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1))

−1

.

(19)

In (18), 𝜑
1
= (1 + 𝑘𝑟

2
− 𝑐 + √Δ)/2𝑎 and 𝜑

3
= (1 + 𝑘𝑟

2
− 𝑐 −

2√Δ)/2𝑎 if 𝑎 < 0 and 𝑏𝑐 > 0; then, completing (18) we get the
following solution:

𝑢
4
(𝑥, 𝑦, 𝑡)

= ( (1 + 𝑘𝑟
2
− 𝑐 + √Δ)

× cosh√
√Δ

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1 + 𝑘𝑟
2
− 𝑐 − 5√Δ)

×(2𝑎(cosh√
√Δ

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1))

−1

.

(20)

Remark 3. If the real number 𝑟 in (19) and (20) takes value
1, then solutions (19) and (20) are the same to solutions (1.6)
and (1.8) in [6]. Solutions (1.7) and (1.9) in [6] are not real
solutions of the KP-BBM equation, and it is easy to verify that
they do not satisfy the KP-BBM equation (3).
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Figure 3: The bifurcation phase portraits of system (6) with 𝑔 ̸= 0.

When 𝑏𝑐/𝑎 > 0, the corresponding homoclinic orbit Γ
6

has a double zero point 𝜑
2
and a zero point 𝜑

4
on 𝜑-axis (see

Figure 3(b)), so (15) can be rewritten as

𝑦
2
=

2𝑎

3𝑏𝑐

(𝜑 − 𝜑
2
)
2

(𝜑 − 𝜑
4
) ; (21)

that is,

𝑦 = ±√
2𝑎

3𝑏𝑐

(𝜑 − 𝜑
2
)
2

(𝜑 − 𝜑
4
). (22)

Substituting (22) into d𝜑/d𝜉 = 𝑦 and integrating along
homoclinic orbits Γ

6
, we get

∫

𝜑

𝜑
4

d𝑠

√(2𝑎/3𝑏𝑐) (𝑠 − 𝜑
2
)
2

(𝑠 − 𝜑
4
)

=
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
, (23)

where𝜑
2
= (1+𝑘𝑟

2
−𝑐−√Δ)/2𝑎 and𝜑

4
= (1+𝑘𝑟

2
−𝑐+2√Δ)/2𝑎

if 𝑎 < 0 and 𝑏𝑐 < 0; then, completing (23) we get the solution
𝑢
3
(𝑥, 𝑦, 𝑡). In (23), 𝜑

2
= (1 + 𝑘𝑟

2
− 𝑐 + √Δ)/2𝑎 and 𝜑

4
=

(1 + 𝑘𝑟
2
− 𝑐 − 2√Δ)/2𝑎 if 𝑎 > 0 and 𝑏𝑐 > 0; then, completing

(23) we get the solution 𝑢
4
(𝑥, 𝑦, 𝑡).

4. Periodic Wave Solutions

So as to explain our work conveniently, in this section the
Jacobian elliptic function sn(𝑙, 𝑚) with modulus 𝑚 will be
expressed by sn𝑙. We discuss the periodic wave solutions
under conditions 𝑔 = 0 and 𝑔 ̸= 0, respectively.

4.1. The Case 𝑔= 0. When (1 + 𝑘𝑟
2
+ 𝑐)/𝑏𝑐 < 0, system (6)

has periodic orbits Γ
7
and Γ
8
(see Figures 1(a) and 1(b)). Their
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expressions are (9) on 𝜑-𝑦 plane, where ℎ
1
< ℎ < ℎ

2
(or ℎ
2
<

ℎ < ℎ
1
). Let

𝑓
1
(𝜑) =

2𝑎

3𝑏𝑐

𝜑
3
−

1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

𝜑
2
+ 2ℎ; (24)

then, we have the following results.

Claim 1. In the case of 𝑔 = 0, (1 + 𝑘𝑟2 + 𝑐)/𝑏𝑐 < 0 and ℎ
1
<

ℎ < ℎ
2
(or ℎ
2
< ℎ < ℎ

1
); then, the function 𝑓

1
(𝜑) must have

three different real zero points.

Proof. Since 𝑓
1
(𝜑) is a cubic polynomial about 𝜑, we can use

the Shengjin Theorem [11] to distinguish its solutions. We
only discuss the case 𝑏𝑐/𝑎 < 0, and the case 𝑏𝑐/𝑎 > 0 is the
same. Under the above conditions,

ℎ
1
= 𝐻 (𝜑

1
, 0) = 𝐻 (0, 0) = 0,

ℎ
2
= 𝐻 (𝜑

2
, 0) = 𝐻(

1 + 𝑘𝑟
2
− 𝑐

𝑎

, 0) =

(1 + 𝑘𝑟
2
− 𝑐)

3

6𝑎
2
𝑏𝑐

< 0.

(25)

So (1 + 𝑘𝑟
2
− 𝑐)/(6𝑎

2
𝑏𝑐) < ℎ < 0. In 𝑓

1
(𝜑) the coefficients

2𝑎/3𝑏𝑐 < 0, (1 + 𝑘𝑟2 − 𝑐)/𝑏𝑐 < 0, By ShengjingTheorem [11],
it follows that the function 𝑓

1
(𝜑) has three different real zero

points. Let 𝐴 = ((1 + 𝑘𝑟
2
− 𝑐)/𝑏𝑐)

2, 𝐵 = −9(2𝑎/3𝑏𝑐) ⋅ 2ℎ, and
𝐶 = 3((1+𝑘𝑟

2
−𝑐)/𝑏𝑐) ⋅2ℎ; then, 𝐵2−4𝐴𝐶 = 144(𝑎/𝑏𝑐)

2
ℎ[ℎ−

((1 + 𝑘𝑟
2
− 𝑐)
3
/6𝑎
2
𝑏𝑐)] < 0.

Let 𝑟
1
< 𝑟
2
< 𝑟
3
be three different real zero points of

𝑓
1
(𝜑). Then Claim 1 means that (9) has three intersection

points (𝑟
1
, 0), (𝑟

2
, 0), and (𝑟

3
, 0) on 𝜑-axis. Therefore, (9) can

be rewritten as

𝑦
2
=

2𝑎

3𝑏𝑐

(𝜑 − 𝑟
1
) (𝜑 − 𝑟

2
) (𝜑 − 𝑟

3
) , (26)

where 𝑟
1
< 0 < 𝑟

2
< 𝜑 < 𝑟

3
when 𝑏𝑐/𝑎 < 0 and 𝑟

1
< 𝜑 < 𝑟

2
<

0 < 𝑟
3
when 𝑏𝑐/𝑎 > 0.

When 𝑏𝑐/𝑎 < 0, the orbit Γ
7
is according to a periodic

solution of (6) and its expression is given by

𝑦 = ±√
2𝑎

3𝑏𝑐

(𝜑 − 𝑟
1
) (𝜑 − 𝑟

2
) (𝜑 − 𝑟

3
), (𝑟

1
< 𝑟
2
≤ 𝜑 ≤ 𝑟

3
) .

(27)

Substituting (27) into d𝜑/d𝜉 = 𝑦 and integrating along orbit
Γ
7
, we get

∫

𝑟
3

𝜑

d𝑠

√(𝑟
3
− 𝑠) (𝑠 − 𝑟

1
) (𝑠 − 𝑟

2
)

= √−

2𝑎

3𝑏𝑐

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
, (𝑟
1
< 𝑟
2
≤ 𝜑 < 𝑟

3
) .

(28)

By formula (236) in [12], we have

𝑔
1
sn−1 (sin𝜓

1
, 𝑚
5
) = √−

2𝑎

3𝑏𝑐

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
, (29)

where 𝑔
1
= 2/√𝑟3

− 𝑟
1
, sin𝜓

1
= √(𝑟

3
− 𝜑)/(𝑟

3
− 𝑟
2
), and

𝑚
5
= √(𝑟

3
− 𝑟
2
)/(𝑟
3
− 𝑟
1
). Solving (29), we get

𝜑 = 𝑟
3
− (𝑟
3
− 𝑟
2
) sn2√−

𝑎 (𝑟
3
− 𝑟
1
)

6𝑏𝑐

𝜉.
(30)

That is,

𝑢
5
(𝑥, 𝑦, 𝑡) = 𝑟

3
− (𝑟
3
− 𝑟
2
) sn2√−

𝑎 (𝑟
3
− 𝑟
1
)

6𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) ,

(31)

where the modulus of sn is𝑚
5
= √(𝑟

3
− 𝑟
2
)/(𝑟
3
− 𝑟
1
).

Similarly, when 𝑏𝑐/𝑎 > 0, the expression Γ
8
is

𝑦 = ±√
2𝑎

3𝑏𝑐

(𝜑 − 𝑟
1
) (𝜑 − 𝑟

2
) (𝜑 − 𝑟

3
), (𝑟

1
≤ 𝜑 ≤ 𝑟

2
< 𝑟
3
) .

(32)

Substituting (32) into d𝜑/d𝜉 = 𝑦 and integrating along orbit
Γ
8
, we have

∫

𝜑

𝑟
1

d𝑠

√(𝑟
3
− 𝑠) (𝑟

2
− 𝑠) (𝑠 − 𝑟

1
)

= √
2𝑎

3𝑏𝑐

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
, (𝑟
1
< 𝜑 ≤ 𝑟

2
< 𝑟
3
) .

(33)

The according periodic solution of Γ
8
can be obtained as

𝑢
6
(𝑥, 𝑦, 𝑡) = 𝑟

1
+ (𝑟
2
− 𝑟
1
) sn2√

𝑎 (𝑟
3
− 𝑟
1
)

6𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) ,

(34)

where the modulus of sn is𝑚
6
= √(𝑟

2
− 𝑟
1
)/(𝑟
3
− 𝑟
1
).

When (1 + 𝑘𝑟2 + 𝑐)/𝑏𝑐 > 0, system (6) has periodic orbits
Γ
9
and Γ
10
(see Figure 2).Their expressions are (9), where ℎ

1
<

ℎ < ℎ
2
(or ℎ
2
< ℎ < ℎ

1
). Similarly, we can get the according

periodic solutions of Γ
9
and Γ
10
as 𝑢
5
and 𝑢

6
.

To verify validity of the periodic wave solutions, we take
𝑎 = 𝑏 = 𝑘 = 𝑟 = 1, 𝑐 = −1, and ℎ = −9/4 to make the
conditions in Claim 1 satisfied. By simple calculation, we get
that 𝑟
1
= −1.09808, 𝑟

2
= 1.5, and 𝑟

3
= 4.09808. The specific

periodic wave solution is

𝑢 (𝑥, 𝑦, 𝑡) = 4.090808 − 2.590808sn2√5.19616

6

(𝑥 + 𝑦 + 𝑡) ,

(35)

where the modulus of sn is√2/2.

4.2. The Case 𝑔 ̸= 0. System (6) has periodic orbits Γ
11

and
Γ
12
(see Figure 3). Their expressions are (7) on the 𝜑-𝑦 plane,

where ℎ
1
< ℎ < ℎ

2
(or ℎ
1
< ℎ < ℎ

2
). Let

𝑓
2
(𝜑) =

2𝑎

3𝑏𝑐

𝜑
3
−

1 + 𝑘𝑟
2
− 𝑐

𝑏𝑐

𝜑
2
+

2𝑔

𝑏𝑐

𝜑 + 2ℎ; (36)

then, we have the following results about 𝑓
2
(𝜑).
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Claim 2. If 𝑔 ̸= 0 and ℎ
1
< ℎ < ℎ

2
(or ℎ
2
< ℎ < ℎ

1
), then the

function 𝑓
2
(𝜑)must have three different real zero points.

Proof. We only prove the case 𝑏𝑐/𝑎 < 0, and the case 𝑏𝑐/𝑎 > 0

is the same. Under the above conditions,

ℎ
1
= 𝐻 (𝜑

1
, 0) = −

𝑎

3𝑏𝑐

𝜑
3

1
+

1 + 𝑘𝑟
2
− 𝑐

2𝑏𝑐

𝜑
2

1
−

𝑔

𝑏𝑐

𝜑
1

= −

1

2

𝑓
2
(𝜑
1
) + ℎ,

ℎ
2
= 𝐻 (𝜑

2
, 0) = −

𝑎

3𝑏𝑐

𝜑
3

2
+

1 + 𝑘𝑟
2
− 𝑐

2𝑏𝑐

𝜑
2

2
−

𝑔

𝑏𝑐

𝜑
2

= −

1

2

𝑓
2
(𝜑
2
) + ℎ.

(37)

So 𝑓
2
(𝜑
1
) ⋅ 𝑓
2
(𝜑
2
) = 4(ℎ − ℎ

1
)(ℎ − ℎ

2
) < 0. For 𝑓

2
(𝜑), we have

𝑓
2
(−∞) > 0, 𝑓

2
(𝜑
1
) < 0, 𝑓

2
(𝜑
2
) > 0, and 𝑓

2
(+∞) < 0. Again,

𝑓
󸀠

2
(𝜑) = (2𝑎/𝑏𝑐)(𝜑 − 𝜑

1
)(𝜑 − 𝜑

2
), which is monotonous in

the intervals (−∞, 𝜑
1
), (𝜑
1
, 𝜑
2
), and (𝜑

2
, +∞). By zero point

theorem of continuous function, there must be one real zero
point of 𝑓

2
(𝜑) that lies in each of the three intervals, proving

the claim.

Let 𝑐
1
< 𝑐
2
< 𝑐
3
be three different real zero points of𝑓

2
(𝜑).

Then Claim 2 means that (7) has three intersection points on
𝜑-axis denoted by (𝑐

1
, 0), (𝑐

2
, 0), and (𝑐

3
, 0). Then (7) can be

rewritten as

𝑦
2
=

2𝑎

3𝑏𝑐

(𝜑 − 𝑐
1
) (𝜑 − 𝑐

2
) (𝜑 − 𝑐

3
) , (38)

where 𝑐
1
< 𝜑
1
< 𝑐
2
< 𝜑
2
< 𝑐
3
.

When 𝑏𝑐/𝑎 < 0, the expression of periodic orbit Γ
11
is

𝑦 = ±√
2𝑎

3𝑏𝑐

(𝜑 − 𝑐
1
) (𝜑 − 𝑐

2
) (𝜑 − 𝑐

3
), (𝑐

1
< 𝑐
2
≤ 𝜑 ≤ 𝑐

3
) .

(39)

When 𝑏𝑐/𝑎 > 0, the expression of periodic orbit Γ
12
is

𝑦 = ±√
2𝑎

3𝑏𝑐

(𝜑 − 𝑐
1
) (𝜑 − 𝑐

2
) (𝜑 − 𝑐

3
), (𝑐

1
≤ 𝜑 ≤ 𝑐

2
< 𝑐
3
) .

(40)

Substituting (39) and (40) into d𝜑/d𝜉 = 𝑦 and integrating
along orbits Γ

11
and Γ

12
, respectively, it is the same to the

proceeding for solving 𝑢
5
and 𝑢
6
andwe can get the according

periodic solutions of Γ
11
and Γ
12
as follows:

𝑢
7
(𝑥, 𝑦, 𝑡) = 𝑐

3
− (𝑐
3
− 𝑐
2
) sn2√−

𝑎 (𝑐
3
− 𝑐
1
)

6𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) ,

𝑢
8
(𝑥, 𝑦, 𝑡) = 𝑐

1
+ (𝑐
2
− 𝑐
1
) sn2√

𝑎 (𝑐
3
− 𝑐
1
)

6𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) ,

(41)

where the moduli for sn are 𝑚
7
= √(𝑐

3
− 𝑐
2
)/(𝑐
3
− 𝑐
1
) and

𝑚
8
= √(𝑐

2
− 𝑐
1
)/(𝑐
3
− 𝑐
1
) in (41).

For example, we take 𝑎 = 𝑏 = 𝑘 = 𝑟 = 1, 𝑐 = −1, 𝑔 = 2,
and ℎ = 3/2 such that the conditions in Claim 2 are satisfied.
By simple calculation, we get that 𝑐

1
= 0.663975, 𝑐

2
= 1.5, and

𝑐
3
= 2.36603. The according periodic wave solution is

𝑢 (𝑥, 𝑦, 𝑡) = 2.36603 − 0.86603sn2√1.702055

6

(𝑥 + 𝑦 + 𝑡) ,

(42)

where the modulus of sn is√0.86603/1.702055.

5. Relationship between Bell-Shaped Waves
and Periodic Waves

In Sections 3 and 4, the bell-shaped solitarywave andperiodic
wave solutions are obtained. Via further study, we find that
there exists an interesting relationship between these two
kinds of solutions; that is, the bell-shaped solutions are limits
of the periodic waves in some sense. The results are detailed
as follows.

Proposition 4. Let 𝑢
𝑖
(𝑖 = 1, 2, . . . , 8) be solutions of (3),

let 𝑘, 𝑟, 𝑎, 𝑏, 𝑐, and 𝑔 be parameters in (5), and let 𝑚
𝑖
(𝑖 =

5, 6, 7, 8) be modulus of the Jacobian elliptic function sn; then,
one has the following.

Case 1. When 𝑔 = 0 and (1 + 𝑘𝑟
2
− 𝑐)/𝑏𝑐 < 0, for modulus

𝑚
𝑖
→ 1 (𝑖 = 5, 6), the periodic waves 𝑢

5
and 𝑢

6
degenerate

bell-shaped wave 𝑢
1
.

Case 2. When 𝑔 = 0 and (1 + 𝑘𝑟
2
− 𝑐)/𝑏𝑐 > 0, for modulus

𝑚
𝑖
→ 1 (𝑖 = 5, 6), the periodic waves 𝑢

5
and 𝑢

6
degenerate

bell-shaped wave 𝑢
2
.

Case 3. When 𝑔 ̸= 0 and 𝑏𝑐/𝑎 < 0, for modulus𝑚
7
→ 1, the

periodic wave 𝑢
7
degenerates bell-shaped wave 𝑢

3
.

Case 4. When 𝑔 ̸= 0 and 𝑏𝑐/𝑎 > 0, for modulus𝑚
8
→ 1, the

periodic wave 𝑢
8
degenerates bell-shaped wave 𝑢

4
.

Here, we only prove Cases 1 and 3 for simplicity. The
remaining cases are the same. In the following proofs, we use
the property of elliptic function that sn → tanh when the
modulus𝑚 → 1 [5, 13].

Proof of Case 1. When 𝑚
5
= √(𝑟

3
− 𝑟
2
)/(𝑟
3
− 𝑟
1
) → 1, it

means 𝑟
1
= 𝑟
2
and sn = tanh; then, we calculate

𝑟
1
= 𝑟
2
= 0, 𝑟

3
=

3 (1 + 𝑘𝑟
2
− 𝑐)

2𝑎

.
(43)

Substituting 𝑟
𝑖
(𝑖 = 1, 2, 3) into 𝑢

5
admits to 𝑢

1
as follows:

𝑢
5
(𝑥, 𝑦, 𝑡)

= 𝑟
3
− (𝑟
3
− 𝑟
2
) sn2√−

𝑎 (𝑟
3
− 𝑟
1
)

6𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡)

=

3 (1 + 𝑘𝑟
2
− 𝑐)

2𝑎

−

3 (1 + 𝑘𝑟
2
− 𝑐)

2𝑎
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× tanh2√−
(1 + 𝑘𝑟

2
− 𝑐)

4𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡)

=

3 (1 + 𝑘𝑟
2
− 𝑐)

2𝑎

×
[

[

1 − tanh2√−
(1 + 𝑘𝑟

2
− 𝑐)

4𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡)
]

]

=

3 (1 + 𝑘𝑟
2
− 𝑐)

2𝑎

×

1

cosh2√− ((1 + 𝑘𝑟2 − 𝑐) /4𝑏𝑐) (𝑥 + 𝑟𝑦 − 𝑐𝑡)

=

3 (1 + 𝑘𝑟
2
− 𝑐)

2𝑎

×

1

(1/2) [cosh√− ((1 + 𝑘𝑟2 − 𝑐) /𝑏𝑐) (𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1]

=

3 (1 + 𝑘𝑟
2
− 𝑐)

𝑎 [1 + cosh√− ((1 + 𝑘𝑟2 − 𝑐) /𝑏𝑐) (𝑥 + 𝑟𝑦 − 𝑐𝑡)]

= 𝑢
1
(𝑥, 𝑦, 𝑡) .

(44)

When 𝑚
6
= √(𝑟

2
− 𝑟
1
)/(𝑟
3
− 𝑟
1
) → 1, it means 𝑟

2
= 𝑟
3
;

then, we calculate 𝑟
2
= 𝑟
3
= 0 and 𝑟

1
= 3(1 + 𝑘𝑟

2
− 𝑐)/2𝑎, and

substituting 𝑟
𝑖
(𝑖 = 1, 2, 3) into 𝑢

6
we get 𝑢

6
= 𝑢
1
.

Proof of Case 3. When 𝑚
7
= √(𝑐

3
− 𝑐
2
)/(𝑐
3
− 𝑐
1
) → 1, it

means 𝑐
1
= 𝑐
2
and sn = tanh; then, we calculate 𝑐

1
= 𝑐
2
=

(1 + 𝑘𝑟
2
− 𝑐 − √Δ)/2𝑎 and 𝑐

3
= (1 + 𝑘𝑟

2
− 𝑐 + 2√Δ)/2𝑎, and

substituting 𝑐
𝑖
(𝑖 = 1, 2, 3) into 𝑢

7
admits to 𝑢

3
as follows:

𝑢
7
(𝑥, 𝑦, 𝑡)

= 𝑐
3
− (𝑐
3
− 𝑐
2
) sn2√−

𝑎 (𝑐
3
− 𝑐
1
)

6𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡)

=

1 + 𝑘𝑟
2
− 𝑐 + 2√Δ

2𝑎

−

3√Δ

2𝑎

tanh2√−√Δ

4𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡)

= (1 + 𝑘𝑟
2
− 𝑐 − √Δ

+3√Δ(1 − tanh2√−√Δ

4𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡)))

× (2𝑎)
−1

=

1 + 𝑘𝑟
2
− 𝑐 − √Δ

2𝑎

+

3√Δ

𝑎 [1 + cosh√−√Δ/𝑏𝑐 (𝑥 + 𝑟𝑦 − 𝑐𝑡)]

= ((1 + 𝑘𝑟
2
− 𝑐 − √Δ)

× cosh√−
√Δ

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1

+ 𝑘𝑟
2
− 𝑐 + 5√Δ)

×(2𝑎
[

[

cosh√−
√Δ

𝑏𝑐

(𝑥 + 𝑟𝑦 − 𝑐𝑡) + 1
]

]

)

−1

= 𝑢
3
(𝑥, 𝑦, 𝑡) .

(45)

The results provide a manner that we can get bell-shaped
waves from periodic waves for some nonlinear development
equations.
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