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The heterogeneous autoregressive (HAR) models of high-frequency realized volatility are inspired by the Heterogeneous Market
Hypothesis and incorporate daily, weekly and monthly realized volatilities in the volatility dynamics with a (1,5,22) time horizon
structure. We build on the HAR models and propose a new framework, adaptive heterogeneous autoregressive (AHAR) models,
whose time horizon structures are optimized by a genetic algorithm. Our models can be applied to markets with different
heterogeneous structures, and their time horizon structures can be adjusted adaptively as the market's heterogeneous structure
varies. Moving window tests with five-minute returns of the CSI 300 index indicate that the (1,5,22) structure originally proposed
for American stock markets is not the best choice for Chinese stock markets, and Chinese stock markets’ heterogeneous structure
does vary over time. Using four common loss functions, we find that the AHARmodels outperform the correspondingHARmodels
in most of the forecast windows and thus are reasonable choices for volatility forecasting practices.

1. Introduction

Improving the forecast accuracy of asset return volatility is a
key goal for researchers and practitioners, owing to volatility’s
critical role in asset pricing, portfolio construction, risk
management, and trading strategy design. Early researches
using data of daily and lower frequencies treat volatility as
unobservable and indirectly describe its dynamics by model-
ing the conditional variance of asset returns. Representative
examples include the ARCHmodel of Engle [1], the GARCH
model of Bollerslev [2], and the stochastic volatility model
of Taylor [3], which have been largely extended and formed
into the (G)ARCH-family models and the SV-family models.
However, most of the latent volatility models have been
unable to capture simultaneously several important empirical
features of financial volatility, as discussed by Carnero et al.
[4].

In recent years, the increased availability of high-frequen-
cy intraday data has spurred the new “realized volatility”
modeling literature. Andersen andBollerslev [5], Andersen et
al. [6, 7], and Barndorff-Nielsen and Shephard [8] proposed

to use the realized volatility (RV) constructed by aggregating
squared intraday returns as the measurement of ex-post daily
volatility, which for the first time makes volatility “observ-
able.” To separate the continuous sample path variation from
the jumps is also possible with high-frequency intraday data.
The realized bipower variation [9] constructed from the
summation of appropriately scaled cross products of adjacent
high-frequency absolute returns is commonly adopted as
the measurement of the continuous sample path variation.
Tests for statistically significant jumps can be constructed
through the statistics proposed by Huang and Tauchen [10].
Inspired by the Heterogeneous Market Hypothesis and the
HARCHmodel ofMüller et al. [11, 12], Corsi [13, 14] proposed
the heterogeneous autoregressive model of realized volatility
(HAR-RV), which incorporates daily, weekly, and monthly
realized volatilities in the volatility dynamics and achieves
superior forecast performance compared with the volatility
models using low-frequency data. Andersen et al. [15] further
proposed the HAR-RV-J model and the HAR-RV-CJ model,
which separate the contributions to volatility forecasting of
the jumps and the continuous sample path variation. The

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 943041, 8 pages
http://dx.doi.org/10.1155/2014/943041

http://dx.doi.org/10.1155/2014/943041


2 Abstract and Applied Analysis

above HARmodels are all easily estimated using OLS besides
their competitive forecast performance and thus have been
largely extended by researchers and adopted in practice.

Besides the above-mentioned traditional time series
models, the recent advances in artificial intelligence have pro-
vided additional tools for researchers’ volatility forecasting
practices. Dunis and Huang [16] empirically showed that the
recurrent neural network (RNN) models apparently outper-
form the GARCH(1,1) model in forecasting the GBP/USD
and USD/JPY exchange rate volatilities in terms of both
forecast accuracy and trading efficiency.Neely andWeller [17]
empirically illustrated that the genetic programming (GP)
outperforms the GARCH(1,1) model while forecasting the
DEM/USD and JPY/USD exchange rate volatilities at longer
horizons especially under the MAE loss function. Ma et
al. [18] proposed to generate volatility forecasting rules by
wavelet transform and genetic algorithm (GA) and achieved
forecast accuracy superior to that of the GARCH(1,1) model
for S&P 100 index volatility. Chen et al. [19] applied sup-
port vector machine (SVM) in volatility forecasting under
the GARCH framework and empirically revealed that the
SVM-GARCH models’ performance in forecasting the one-
period-ahead volatilities of the GBP/USD exchange rate and
the NYSE composite index is superior to that of simple
moving average, standard GARCH, nonlinear EGARCH,
and traditional ANN-GARCH models. Hung [20] proposed
the fuzzy GARCH model with a genetic algorithm estima-
tion method and improved the GARCH model’s forecast
performance. Tarsauliya et al. [21] proposed evolutionary
hybrid artificial neural network models EANN-GARCH,
EANN-GJR, and EANN-EGARCH which all achieve better
forecast performance in terms of the RMSE compared with
conventional ANNs and statistical methods. Hajizadeh et
al. [22] proposed hybrid models based on EGARCH and
artificial neural networkswhich provide better S&P 500 index
volatility forecasts than the EGARCHmodel. Sermpinis et al.
[23] proposed the higher order neural networks (HONNs) for
forecasting FTSE 100 futures’ 21-day-ahead realized volatility
and demonstrated better performance in terms of both
statistical accuracy and trading efficiency when compared
with the multilayer perceptron (MLP), the RNN, the GJR
(GARCH-family), and the RiskMetrics. However, the rules
mined from artificial intelligence tools usually lack clear
economic interpretation and are not easily understandable.
Accordingly, the current volatility modeling researches uti-
lizing artificial intelligence tools are not well accepted or
adopted in practice.

Thus, in this paper, we take a new approach by using a
genetic algorithm to optimize the HARmodels’ time horizon
structures. The genetic algorithm optimized time horizon
structures reflect the markets’ heterogeneous structures and
thus have clear economic interpretations. Specifically, the
current applications of the HARmodels all follow the (1,5,22)
time horizon structure originally proposed for developed
markets, using daily (1 day), weekly (5 days), andmonthly (22
days) to represent the short-term, medium-term, and long-
term investors’ trading frequencies, respectively. However,
investors’ cultural backgrounds and investment habits, as well
as the alternative investment choices, differ largely across

markets, which will probably result in different heteroge-
neous structures across markets. Furthermore, investors’
trading frequencies may be affected by financial and eco-
nomic policies as well as market conditions, which will
probably lead to a market’s heterogeneous structure varying
over time. Taking the above into consideration, we propose
adaptive heterogeneous autoregressive (AHAR) models in
this paper, whose time horizon structures are optimized by
a genetic algorithm. Thus, the AHAR models can have dif-
ferent time horizon structures when applied to markets with
different heterogeneous structures, and their time horizon
structures can be adjusted adaptively as the market’s het-
erogeneous structure varies. The out-of-sample forecast per-
formance of the AHAR-RV model, the AHAR-RV-J model,
and the AHAR-RV-CJ model is compared with that of the
corresponding HARmodels through moving windows using
five-minute returns of the CSI 300 index as empirical data,
based on which we evaluate the necessity and effectiveness of
such an adaptive modeling approach.

The remainder of this paper is organized as follows. In
Section 2, we describe the HAR models, modify them to
AHARmodels, and introduce our design of the genetic algo-
rithm. In Section 3, the comparative analysis of the AHAR
models’ out-of-sample forecast performance inChinese stock
markets is presented. We conclude this paper in Section 4.

2. Models and Methods

2.1. Realized Volatility and Its Decomposition. Let Δ and 𝑀
represent the sampling interval length and the corresponding
number of intraday intervals (𝑀 = 1/Δ), respectively. Then,
the logarithmic return of the 𝑗th Δ-length sampling interval
during day 𝑡 is 𝑟

𝑡,𝑗
= 𝑦
𝑡,𝑗
− 𝑦
𝑡,𝑗−1

, 𝑗 = 1, 2, . . . ,𝑀, where
𝑦
𝑡,𝑗

is the logarithmic price at the end of the 𝑗th Δ-length
sampling interval. The daily realized volatility is defined by
the summation of the squared intraday returns as RV

𝑡
≡

∑
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𝑗=1
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2
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[5–8], which converges uniformly in probability to

the quadratic variation as Δ → 0.
The ratio-statistic of Huang and Tauchen [10] is used in

this paper to identify significant daily jumps
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where BPV
𝑡
and QPV
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are the realized bipower variation

and the realized tripower quarticity [9], respectively, adopting
the staggered sampling technique of Andersen et al. [15] to
eliminate the impact of market microstructure noise
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where Γ() is the Gamma function.



Abstract and Applied Analysis 3

In the absence of jumps in the price path during day 𝑡,
the ratio-statistic 𝑍

𝑡
is standard normal for Δ → 0. Hence,

we can identify the significant jumps by the ratio-statistics in
excess of the standard normal critical value Φ

𝛼
(e.g., Φ

0.95
,

Φ
0.99

, Φ
0.999

) [15]

JV
𝑡
= 𝐼 (𝑍

𝑡
> Φ
𝛼
) (RV
𝑡
− BPV

𝑡
) , (3)

where 𝐼() is the indicator function. Accordingly, the continu-
ous sample path variation of day 𝑡 is estimated as

CV
𝑡
= 𝐼 (𝑍

𝑡
≤ Φ
𝛼
)RV
𝑡
+ 𝐼 (𝑍

𝑡
> Φ
𝛼
)BPV

𝑡
. (4)

2.2.TheHARModels. Inspired by the HeterogeneousMarket
Hypothesis and the HARCH model of Müller et al. [11, 12],
Corsi [13, 14] proposed the HAR-RV model, in which the
realized volatility is parameterized as a linear function of
the lagged realized volatilities over different horizons. It is
defined as

RV
𝑡
= 𝛼
0
+ 𝛼
𝑑
RV
𝑡−1
+ 𝛼
𝑤
RV
𝑡−5:𝑡−1

+ 𝛼
𝑚
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𝑡−22:𝑡−1

+ 𝜀
1,𝑡
,

(5)

where RV
𝑡−5:𝑡−1

= (1/5)∑
5

𝑗=1
RV
𝑡−𝑗

and RV
𝑡−22:𝑡−1

= (1/

22)∑
22

𝑗=1
RV
𝑡−𝑗

are the past weekly and monthly realized
volatilities.The parameters 𝛼

𝑑
, 𝛼
𝑤
, and 𝛼

𝑚
evaluate the short-

term, medium-term, and long-term investors’ contributions
to the overall market volatility, respectively.

Since the descriptive statistics (Table 2) show that the
logarithmic realized volatility is much closer to being nor-
mally distributed than is the raw realized volatility, thus more
amenable to the use of standard time series procedures, the
HAR-RV model cast in logarithmic form is used in this
research:
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(6)

where (lnRV)
𝑡−𝑘:𝑡−1

= (1/𝑘)∑
𝑘

𝑗=1
lnRV
𝑡−𝑗

is the normalized
multiperiod logarithmic realized volatility.

Andersen et al. [15] further proposed the HAR-RV-
J model and the HAR-RV-CJ model which separate the
contributions to volatility forecasting of the jumps and the
continuous sample path variation.TheHAR-RV-J model cast
in logarithmic form is
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(7)

The HAR-RV-CJ model cast in logarithmic form is
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where (lnCV)
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The parameters of (6), (7), and (8) can all be easily
estimated by applying the standard OLS regressions.

Table 1: The GA’s solution space and encoding.

Horizon Lower bound Upper bound Number of bits
1st 1 4 2
2nd 1 16 4
3rd 1 128 7

2.3. The AHAR Models. We build on the HAR models
and propose the AHAR models by using genetic algorithm
optimized time horizon structures instead of the (1,5,22)
structure used in the HAR models. The AHAR-RV model,
the AHAR-RV-J model, and the AHAR-RV-CJ model cast in
logarithmic form are as follows:
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(9)

where (𝐷
1
, 𝐷
2
, 𝐷
3
) is the adaptive time horizon structure

optimized by a genetic algorithm.

2.4. The Genetic Algorithm Design. A genetic algorithm is a
stochastic optimization algorithm originally inspired by the
process of natural evolution. It is comprised of three major
operations: reproduction, crossover, and mutation, which
are designed to ensure that the “fittest” members of the
population survive and that their information is preserved
and combined to generate possibly better offspring.

This paper uses the genetic algorithm to optimize the
AHAR models’ time horizon structures; thus, we design the
following solution space and encoding as shown in Table 1.

Therefore, altogether 13 binary bits are used to represent
each candidate (𝐷

1
,𝐷
2
,𝐷
3
) structure. Besides, it is clear that

the HARmodels’ (1,5,22) structure is also in the GA’s solution
space, whose encoding is (00,0100,0010101).

The fitness function 𝑓() of our GA is defined as the
adjusted 𝑅2 which evaluates the model’s in-sample fit. Other
parameters of the GA are set as follows: the population size
𝐾 = 40, the crossover rate 𝑝

𝑐
= 0.8, the mutation rate 𝑝

𝑚
=

0.05, and the maximum number of generations𝑁 = 300.
As illustrated by the GA’s flow chart in Figure 1, after

generating the initial population, each generation of popula-
tion evolves through reproduction, crossover, and mutation
operations sequentially to generate the offspring generation.
Each (𝐷

1
,𝐷
2
,𝐷
3
) structure of the initial population is created

by randomly selecting𝐷
𝑖
between its lower bound and upper

bound and it is ensured that 𝐷
1
< 𝐷
2
< 𝐷
3
; for example, if
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Figure 1: The GA’s flow chart.

the random selection results in𝐷
1
= 2,𝐷

2
= 16, and𝐷

3
= 5,

then we denote the candidate solution as (2,5,16).
The roulette-wheel selection is adopted in the repro-

duction operation; that is, the 𝑖th candidate solution
(𝐷
(𝑖)

1
, 𝐷
(𝑖)

2
, 𝐷
(𝑖)

3
)’s probability of being selected for reproduc-

tion is 𝑓(𝑖)/∑𝐾
𝑗=1

𝑓(𝑗) = 𝑎𝑅
2
(𝑖)/∑

40

𝑗=1
𝑎𝑅
2
(𝑗), where 𝑎𝑅2(𝑖) is

the adjusted𝑅2 of the correspondingAHAR regressionmodel
with time horizon structure (𝐷(𝑖)

1
, 𝐷
(𝑖)

2
, 𝐷
(𝑖)

3
) on the sample

data.
As for the crossover operation, each time two candidate

solutions of current population are randomly selected and,
with probability 𝑝

𝑐
= 0.8, they will operate one-point

crossover. Specifically, the 2nd binary bit and the 6th binary
bit of the 13-bit-length binary string are randomly specified as
the single crossover point with equal probability, and all data
beyond that point in the two solutions’ strings are swapped to
generate two new 13-bit-length strings replacing the parents;
for example, (𝑂, 𝑃, 𝑄) and (𝑋, 𝑌, 𝑍) are selected for crossover
and the crossover point is the 6th binary bit; then, they will
be replaced with (𝑂, 𝑃, 𝑍) and (𝑋, 𝑌, 𝑄) in the population.

As for the mutation operation, each candidate solution
of current population has probability 𝑝

𝑚
= 0.05 to mutate,

inverting a randomly selected bit of its binary string. The
elitist rule replaces the worst solution of current population
with the best solution of last generation and thus ensures that
the “fittest” member always survives.

We design two termination conditions: (i) the best
solution keeps the same for at least 10 generations and (ii)
the evolution reaches the maximum number of generations.
Evolution terminates as far as one of the conditions is
satisfied, and the (𝐷

1
, 𝐷
2
, 𝐷
3
) structure with the highest

fitness value in current generation is the optimal time horizon
structure discovered by the GA.

3. Empirical Evidence

3.1. Data and Summary Statistics. Five-minute returns of the
CSI 300 index are used as empirical data and the data source
is the Tinysoft financial data base. The CSI 300 index is
a capitalization-weighted stock market index, designed to
replicate the performance of 300 stocks well chosen from
the Shanghai and Shenzhen stock exchanges, and thus well
represents the operation state of the whole Chinese stock
markets.The period of study extends from April 11, 2005 (the
first Monday after the release of the CSI 300 index), to April
15, 2010 (the last day before the launch of the CSI 300 index
futures), covering 1221 business days altogether.The sampling
interval length is set to five minutes, as a trade-off between
accuracy and market microstructure noise, similar to most
previous studies.

Figure 2 displays the time series plots of the CSI 300
index’s realized volatility RV

𝑡
and logarithmic realized volatil-

ity lnRV
𝑡
. Table 2 reports their descriptive statistics as well

as the descriptive statistics of the continuous sample path
variation CV

𝑡
and the jumps JV

𝑡
. The Ljung-Box Q-statistics

indicate that the realized volatility and the logarithmic real-
ized volatility both display significant long memory depen-
dence (or long-range persistence). The continuous sample
path variation has similar statistics to those of the realized
volatility, which are apparently different from those of the
jumps. The ADF unit root tests indicate that the above series
are all stationary; thus, the HAR and the AHAR modeling
analysis can be further conducted. It is also worth noticing
that the logarithmic realized volatility is much closer to
being normally distributed compared with the raw realized
volatility, which justifies considering theHARmodels and the
AHAR models in logarithmic form.

3.2. Out-of-Sample Forecast Performance Comparison. We
adopt the moving window tests to compare the out-of-
sample forecast performance of the AHAR models with that
of the corresponding HAR models. Specifically, we set the
estimation window size to 700 business days, the forecast
window size to 100 business days, and the step size to
100 business days, thus dividing the empirical data into
five overlapping pairs of estimation windows and forecast
windows.

For each pair of estimation window and forecast win-
dow, we first run the GA in the estimation window to
find the optimal time horizon structures for the AHAR-RV
model, the AHAR-RV-Jmodel, and the AHAR-RV-CJmodel,
respectively. The out-of-sample forecast performance of the
resulting optimal AHAR models is then compared with that
of the corresponding HAR models in the forecast window.
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Table 2: Descriptive statistics.

Mean Standard deviation Skew Kurt Max Min LB(20) JB ADF
RV
𝑡

3.0393𝐸 − 04 3.5043𝐸 − 04 3.5834 25.8002 4.1991𝐸 − 03 1.4350𝐸 − 05 2857.0∗∗∗ 29060.4∗∗∗ −10.2∗∗∗

ln RV
𝑡

−8.5918 1.0156 −0.0283 2.4967 −5.4729 −11.1518 9669.7∗∗∗ 13.0∗∗∗ −5.2∗∗∗

CV
𝑡

2.9185𝐸 − 04 3.3945𝐸 − 04 3.4319 24.4801 4.1991𝐸 − 03 1.1141𝐸 − 05 3021.2∗∗∗ 25870.2∗∗∗ −9.0∗∗∗

JV
𝑡

1.2079𝐸 − 05 5.3441𝐸 − 05 13.0101 255.0796 1.2466𝐸 − 03 0 31.7∗∗ 3267252.0∗∗∗ −34.6∗∗∗

Note: LB represents the Ljung-Box 𝑄-statistics, JB represents the Jarque-Bera normality test statistics, ∗∗∗represents the significance level of 1%, and
∗∗represents the significance level of 5%.
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(b) Logarithmic realized volatility lnRV
𝑡

Figure 2: Time series plots of the CSI 300 index’s realized volatility and logarithmic realized volatility.

The following four common loss functions are employed for
the forecast performance evaluation:
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where RV
𝑡
represents the true volatility, 𝜎2

𝑡
represents the

forecasted volatility, and 𝑛
1
and 𝑛
2
are the starting and ending

of the forecast window, respectively.
Figure 3 plots the out-of-sample forecasts of the three

HAR models and the three AHAR models in five successive
forecast windows together with the true logarithmic realized
volatility sequence. Table 3 compares these models’ forecast
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Figure 3: Out-of-sample forecasts for the CSI 300 index’s volatility
in five successive forecast windows. lnRV

𝑡
represents the true

logarithmic realized volatility. AHAR-RV, HAR-RV, AHAR-RV-J,
HAR-RV-J, AHAR-RV-CJ, and HAR-RV-CJ represent the forecasts
of the corresponding models, respectively.

performance in each forecast window, indicating the time
horizon structures used. We can see from Table 3 that for
each pair of estimation window and forecast window, when
applying the GA to optimize the time horizon structures
for the AHAR-RV model and the AHAR-RV-J model, we
get exactly the same results, which are also pretty close to
the time horizon structure optimized for the AHAR-RV-CJ
model. This is understandable, since the GA’s optimization
result reflects the actual trading frequencies of Chinese stock



6 Abstract and Applied Analysis

Table 3: Moving window out-of-sample forecast performance comparison results.

Windows AHAR-RV HAR-RV AHAR-RV-J HAR-RV-J AHAR-RV-CJ HAR-RV-CJ

1–700
701–800

(1,4,109) (1,5,22) (1,4,109) (1,5,22) (1,4,106) (1,5,22)
MAE 0.37826 0.37225 0.37826 0.37225 0.38011 0.37374
MAPE 0.05156 0.05076 0.05156 0.05076 0.05185 0.05105
RMSE 0.46385 0.46438 0.46386 0.46442 0.46653 0.46875
Theil 0.03058 0.03063 0.03058 0.03064 0.03074 0.03090

101–800
801–900

(1,3,16) (1,5,22) (1,3,16) (1,5,22) (1,3,18) (1,5,22)
MAE 0.41608 0.41853 0.41540 0.41782 0.44916 0.45973
MAPE 0.05511 0.05541 0.05501 0.05531 0.05938 0.06083
RMSE 0.62675 0.62882 0.62596 0.62823 0.66261 0.66838
Theil 0.04049 0.04063 0.04044 0.04059 0.04295 0.04331

201–900
901–1000

(1,3,18) (1,5,22) (1,3,18) (1,5,22) (1,4,18) (1,5,22)
MAE 0.31402 0.31845 0.31421 0.31874 0.32064 0.32252
MAPE 0.03936 0.03985 0.03937 0.03987 0.04011 0.04031
RMSE 0.40048 0.39764 0.40052 0.39761 0.40216 0.40251
Theil 0.02464 0.02446 0.02464 0.02447 0.02475 0.02477

301–1000
1001–1100

(1,3,18) (1,5,22) (1,3,18) (1,5,22) (1,4,18) (1,5,22)
MAE 0.41896 0.41987 0.41931 0.42000 0.42379 0.42471
MAPE 0.05152 0.05161 0.05154 0.05160 0.05195 0.05209
RMSE 0.52583 0.52826 0.52590 0.52831 0.52727 0.52907
Theil 0.03145 0.03159 0.03146 0.03160 0.03157 0.03167

401–1100
1101–1200

(1,3,16) (1,5,22) (1,3,16) (1,5,22) (1,3,16) (1,5,22)
MAE 0.44809 0.45146 0.44837 0.45172 0.45576 0.45750
MAPE 0.05052 0.05087 0.05055 0.05090 0.05131 0.05147
RMSE 0.55241 0.55648 0.55276 0.55678 0.55940 0.56262
Theil 0.03145 0.03170 0.03147 0.03172 0.03189 0.03209

Note: bold number indicates that the AHARmodel’s forecast performance is worse than that of the corresponding HARmodel in terms of the loss function in
its row.

markets’ representative short-term, medium-term, and long-
term investors; it should not alter significantly across the
AHARmodels.There exist slight differences between the time
horizon structures optimized for different AHAR models,
since these models have different explanatory variables and
different information integration capabilities.

While running the GA in the first estimation window, the
output optimal choice of the 3rd horizon is between 106 and
109. It implies that, during this period of time, representative
long-term investors hold securities for up to 5 months in
Chinese stock markets. The reason is that the first estimation
window covers the period from April 11, 2005, to February
28, 2008, containing the bull market period of Chinese stock
markets which is from June 7, 2005, to October 16, 2007 [24].
Accordingly, running the GA in the first estimation window
mainly captures heterogeneous investors’ trading behaviors
during the bull market period, when long-term investors are
more willing to extend the holding period of the securities
to further share the benefits. On the other hand, the first
forecast window covers the period from February 29, 2008,
to July 23, 2008, while the period between October 17, 2007,
and October 28, 2008, is regarded as the bear market period
of Chinese stock markets [24]. Thus, the first estimation
window and forecast window are under totally different

market conditions, which reduces the applicability of the GA
optimized time horizon structures. As a result, the AHAR
models outperform the corresponding HAR models in the
first forecast window only in terms of the RMSE and theTheil
coefficient.

As for the following four estimation windows, since they
all cover enough lengths of both the bull market data and
the bear market data, the optimization results of the GA
are less affected by specific market conditions. Analyzing
the GA optimized time horizon structures discloses that,
during these periods of time, the representative long-term
investors’ average holding period varies between 16 and 18
business days, the representative medium-term investors’
average holding period varies between 3 and 4 business days,
and the representative short-term investors’ average holding
period is not longer than 1 business day. It implies that the
investors in Chinese stockmarkets have higher turnover rates
than those in developed markets, which makes the (1,5,22)
structure an inferior choice. However, theGA optimized time
horizon structures are all close to the (1,5,22) structure, which
explains why the empirical researches applying the HAR
models with the (1,5,22) structure in Chinese stock markets
can still generate satisfying fit and forecast performance.
Besides, since the optimal (𝐷

1
,𝐷
2
,𝐷
3
) structures of different
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estimation windows differ slightly instead of being the same,
regardless of the AHAR model specified, it reveals that
Chinese stock markets’ heterogeneous structure does vary
over time and thus confirms the necessity of our adaptive
modeling approach. Furthermore, the AHAR-RV-CJ model
outperforms the HAR-RV-CJ model in all the four forecast
windows regardless of the loss function; theAHAR-RVmodel
and the AHAR-RV-J model outperform the corresponding
HAR models in three forecast windows regardless of the loss
function and outperform the corresponding HAR models
in the third forecast window in terms of the MAE and
the MAPE. It reveals that the adaptive modeling approach
effectively improves the HAR models’ out-of-sample forecast
performance and thus provides better volatilitymodeling and
forecasting tools for investors interested in Chinese stock
markets.

4. Conclusions

Building on the heterogeneous autoregressive models inspir-
ed by the Heterogeneous Market Hypothesis, we propose
adaptive heterogeneous autoregressive models by using
genetic algorithm optimized time horizon structures instead
of the (1,5,22) structure used in the HAR models. Thus,
the AHAR models can be applied to markets with different
heterogeneous structures, and their time horizon structures
can be adjusted adaptively as the market’s heterogeneous
structure varies.

Moving window tests with five-minute returns of the
CSI 300 index reveal that the AHAR models’ optimal time
horizon structures differ from the (1,5,22) structure and
vary over time when applied to Chinese stock markets.
Specifically, Chinese stock markets’ representative long-term
investors’ average holding period varies between 16 and 18
business days, representativemedium-term investors’ average
holding period varies between 3 and 4 business days under
general market conditions, while the representative long-
term investors hold securities for up to 5 months during
the bull market period. Furthermore, the AHAR models
generally have better out-of-sample forecast performance
than that of the corresponding HAR models using four
common loss functions.

Since our approach of combining the HAR models with
the genetic algorithm produces volatility forecasting models
with better forecast performance and is easily implementable,
it has broad appeal for practitioners. Such an adaptive
modeling approach can be applied to extensions of the HAR-
RVmodel, theHAR-RV-Jmodel, and theHAR-RV-CJmodel,
for example, by the inclusion of overnight returns and lagged
negative returns as explanatory variables, which may allow
the pursuit of further forecast accuracy improvements. This
topic is left for future research.
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