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Using the suitable Trudinger-Moser inequality and the Mountain Pass Theorem, we prove the existence of multiple solutions for
a class of 𝑁-Laplacian equations with critical growth and indefinite weight −div(|∇𝑢|𝑁−2

∇𝑢) + 𝑉(𝑥)|𝑢|
𝑁−2

𝑢 = 𝜆(|𝑢|
𝑁−2

𝑢/|𝑥|
𝛽
) +

(𝑓(𝑥, 𝑢)/|𝑥|
𝛽
) + 𝜀ℎ(𝑥), 𝑥 ∈ R𝑁, 𝑢 ̸= 0, 𝑥 ∈ R𝑁, where 0 < 𝛽 < 𝑁, 𝑉(𝑥) is an indefinite weight, 𝑓 : R𝑁

× R → R behaves like
exp(𝛼|𝑢|𝑁/(𝑁−1)

) and does not satisfy the Ambrosetti-Rabinowitz condition, and ℎ ∈ (𝑊1,𝑁
(R𝑁

))
∗.

1. Introduction

In this paper, we consider the existence of multiple solutions
for the 𝑁-Laplacian elliptic equations with critical growth
and singular potentials

− div (|∇𝑢|𝑁−2
∇𝑢) + 𝑉 (𝑥) |𝑢|

𝑁−2
𝑢

= 𝜆
|𝑢|

𝑁−2
𝑢

|𝑥|
𝛽

+
𝑓 (𝑥, 𝑢)

|𝑥|
𝛽

+ 𝜀ℎ (𝑥) , 𝑥 ∈ R
𝑁
,

𝑢 ̸= 0, 𝑥 ∈ R
𝑁
,

(1)

where 𝑁 ≥ 2, 0 < 𝜆 < 𝜆
1
, 𝜆

1
= inf{∫

R𝑁
(|∇𝑢|

𝑁
+

𝑉(𝑥)|𝑢|
𝑁
)𝑑𝑥 : 𝑢 ∈ 𝑊

1,𝑁
(R𝑁

), ∫
R𝑁
(|𝑢|

𝑁
/|𝑥|

𝛽
)𝑑𝑥 = 1},

0 < 𝛽 < 𝑁, ℎ ∈ (𝑊1,𝑁
(R𝑁

))
∗, Δ

𝑁
𝑢 = div(|∇𝑢|𝑁−2

∇𝑢) is the
𝑁-Laplacian, the indefinite weight 𝑉(𝑥) ∈ 𝑅(𝑉

0
), and 𝑅(𝑉

0
)

is the classes of rearrangement of𝑉
0
;𝑉

0
satisfies the following

conditions:

(H1) 𝑉
0
∈ 𝐿

𝑞
(R𝑁

), ∀𝑞 ≥ 1,

(H2) ‖𝑉−

0
‖
𝐿
𝑞
(R𝑁)

< 𝑆
𝑁𝑞
 , or 𝑉

0
≥ −𝑆

𝑁
+ 𝛿, for some 𝛿 > 0,

(H3) (1/𝑉
0
) ∈ 𝐿

1
(R𝑁

),

where 1/𝑞 + 1/𝑞
= 1, 𝑆

𝑟
(𝑟 = 𝑁,𝑁𝑞


) is the best

constant

𝑆
𝑟‖𝑢‖

𝑁

𝐿
𝑟
(R𝑁) ≤ ∫

R𝑁
|∇𝑢|

𝑁
𝑑𝑥, ∀𝑢 ∈ 𝑊

1,𝑁
(R

𝑁
) ; (2)

that is,

𝑆
𝑟
= inf {∫

R𝑁
|∇𝑢|

𝑁
𝑑𝑥 : 𝑢 ∈ 𝑊

1,𝑁
(R

𝑁
) , ‖𝑢‖𝐿𝑟(R𝑁) = 1} .

(3)

Note that if 𝑉 is a measurable function which satisfies
(H2), there exists 𝛿

0
> 0 such that ‖𝑉−

0
‖
𝐿
𝑞
(R𝑁)

≤ (1 − 𝛿
0
)𝑆

𝑁𝑞
 .

Recently, 𝑁-Laplacian equations had been studied by
many authors. Marcos do Ó [1] studied the existence of
nontrivial solutions for the following𝑁-Laplacian equations
with critical growth:

𝑢 ∈ 𝑊
1,𝑁

0
(Ω) , 𝑢 ≥ 0, −Δ

𝑁
𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω,

(4)

where Ω is bounded smooth domain in R𝑁
(𝑁 ≥ 2).

Adimurthi and Sandeep [2] proved that the singular
Trudinger-Moser inequality

sup
𝑢∈𝑊
1,𝑁

0
(Ω)

∫
Ω

exp (𝛼|𝑢|𝑁/(𝑁−1)
)

|𝑥|
𝛽

𝑑𝑥 < +∞ (5)
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holds if and only if 𝛼/𝛼
𝑁
+ 𝛽/𝑁 ≤ 1, where 𝛼

𝑁
=

𝑁𝑤
1/(𝑁−1)

𝑁−1
, 𝛼 > 0, 0 ≤ 𝛽 < 𝑁, and ‖∇𝑢‖

𝐿
𝑁
(Ω)

≤ 1, and
studied the corresponding critical exponent problem. For the
unbounded domain, Li and Ruf [3] proved that, if we replace
the 𝐿𝑁-norm of∇𝑢 in the supermumby the standard Sobolev
norm, the supermum can still be finite. Adimurthi and Yang
[4] obtained the following Trudinger-Moser inequality

∫
R𝑁

exp (𝛼|𝑢|𝑁/(𝑁−1)
− 𝑆

𝑁−2 (𝛼, 𝑢))

|𝑥|
𝛽

𝑑𝑥 < +∞, (6)

where 𝛼 > 0, 0 ≤ 𝛽 < 𝑁, 𝑢 ∈ 𝑊
1,𝑁
(R𝑁

),
and 𝑆

𝑁−2
(𝛼, 𝑢) = ∑

𝑁−2

𝑘=0
(𝛼

𝑘
/𝑘!)|𝑢|

𝑁𝑘/(𝑁−1), and studied the
existence of nontrivial solution for the corresponding 𝑁-
Laplacian equations with critical growth. In particular, using
inequality (6) and the Mountain Pass Theorem, Lam and Lu
[5] studied the following nonuniformly elliptic equations of
𝑁-Laplacian type of the form

− div (𝑎 (𝑥, ∇𝑢)) + 𝑉 (𝑥) |𝑢|𝑁−2
𝑢 =

𝑓 (𝑥, 𝑢)

|𝑥|
𝛽

+ 𝜀ℎ (𝑥) ,

𝑥 ∈ R
𝑁
,

(7)

where 𝑉(𝑥) > 𝑉
0
> 0, and obtained the existence and

multiplicity results of problem (7).
On the other hand, some authors have studied the

case for the nonlinear term which does not satisfy the
Ambrosetti-Rabinowitz condition. Lam and Lu [6, 7] studied
the existence of nontrivial solutions for the 𝑁-Laplacian
equations and systems and polyharmonic equations without
Ambrosetti-Rabinowitz conditions, respectively. Miyagaki
and Souto [8] discussed a class of superlinear problems for the
polynomial case without Ambrosetti-Rabinowitz conditions.
Motivated by a suitable Trudinger-Moser inequality, we
assume the following growth conditions on the nonlinearity
𝑓(𝑥, 𝑢):

(f1) the function𝑓 : R𝑁
×R → R is continuous, for some

constants 𝛼
0
, 𝑏

1
, 𝑏

2
> 0 and for all (𝑥, 𝑠) ∈ R𝑁

×R,

𝑓 (𝑥, 𝑠)
 ≤ 𝑏1|𝑠|

𝑁−1

+ 𝑏
2
[exp (𝛼

0|𝑠|
𝑁/(𝑁−1)

) − 𝑆
𝑁−2

(𝛼
0
, 𝑠)] ;

(8)

(f2) 𝐻(𝑥, 𝑡) ≤ 𝐻(𝑥, 𝑠), for all 0 < 𝑡 < 𝑠, ∀𝑥 ∈ R𝑁, where

𝐻(𝑥, 𝑠) = 𝑠𝑓 (𝑥, 𝑠) − 𝑁𝐹 (𝑥, 𝑠) ,

𝐹 (𝑥, 𝑠) = ∫

𝑠

0

𝑓 (𝑥, 𝜏) 𝑑𝜏;

(9)

(f3) there exists 𝑐 > 0 such that for all (𝑥, 𝑠) ∈ R𝑁
× R+,

0 < 𝐹(𝑥, 𝑠) ≤ 𝑐|𝑠|
𝑁
+ 𝑐𝑓(𝑥, 𝑠);

(f4) lim
𝑠→∞

(𝐹(𝑥, 𝑠)/|𝑠|
𝑁
) = ∞, uniformly on 𝑥 ∈ R𝑁.

We state our main result in this paper.

Theorem 1. Suppose that (H1)–(H3) and (f1)–(f4) are satisfied
and 0 < 𝜆 < 𝜆

1
. Furthermore, assume that

(f5) lim sup
𝑠→0
+(𝑁𝐹(𝑥, 𝑠)/|𝑠|

𝑁
) = 0, uniformly on 𝑥 ∈

R𝑁,
and there exists 𝑟 > 0 such that

(f6)

lim
𝑠→0

𝑠𝑓 (𝑥, 𝑠) exp (−𝛼0|𝑠|
𝑁/(𝑁−1)

)

>
2

𝑒(𝛼𝑁𝑑(𝑁−𝛽)/𝑁)+𝐶𝑟𝑁−𝛽−(𝑟𝑁−𝛽/ (𝑁 − 𝛽))

× (
𝑁 − 𝛽

𝛼
0

)

𝑁−1

,

(10)

uniformly on compact subsets ofR𝑁, where𝑑 and𝐶 are defined
in Section 3.Then there exists 𝜀

1
> 0 such that, for each 0 < 𝜀 <

𝜀
1
, problem (1) has at least two nontrivial weak solutions.

In this paper, as the function 𝑉(𝑥) is an indefinite
weight, we establish a singular Trudinger-Moser inequality
(see Lemma 8) and investigate the eigenvalue problem cor-
responding to problem (1). Using the singular Trudinger-
Moser inequality, the eigenvalue problem and the Mountain
Pass Theorem, we prove the multiplicity result for problem
(1). Furthermore, condition (f2) is used by Lam and Lu [5],
and it implies that the function 𝑓(𝑥, 𝑢) does not satisfy the
Ambrosetti-Rabinowitz condition.

The paper is organized as follows. In Section 2, we
recall some important lemmas and consider the eigenvalue
problem corresponding to problem (1). Section 3 is devote to
proveTheorem 1.

2. Preliminary Results

2.1. Key Lemmas. Now,we define the following Sobolev space

𝐸 = {𝑢 ∈ 𝑊
1,𝑁
(R

𝑁
) : ∫

R𝑁
|∇𝑢|

𝑁
𝑑𝑥

+∫
R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥 < +∞} ,

(11)

and the corresponding norm,

‖𝑢‖𝐸 = (∫
R𝑁
(|∇𝑢|

𝑁
+ 𝑉 (𝑥) |𝑢|

𝑁
) 𝑑𝑥)

1/𝑁

. (12)

From the Radial Lemma [9, 10], we have

|𝑢 (𝑥)| ≤ |𝑥|
−1
(

𝑁

𝑤
𝑁−1

)

1/𝑁

‖𝑢‖𝐿𝑁(R𝑁), ∀𝑥 ̸= 0, (13)

for all 𝑢 ∈ 𝑊
1,𝑁
(R𝑁

) being radially symmetric, where
𝑤

𝑁−1
is the surface area of the unit sphere in R𝑁. 𝑉(𝑥) is a

rearrangement of 𝑉
0
if


{𝑥 ∈ R

𝑁
: 𝑉 (𝑥) ≥ 𝛼}



=

{𝑥 ∈ R

𝑁
: 𝑉

0 (𝑥) ≥ 𝛼}

, ∀𝛼 ∈ R

𝑁
,

(14)

where | ⋅ | denotes the Lebesgue measure.
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Lemma 2 (see [11]). Let 𝑉
0
satisfy (𝐻1) and (𝐻2). Then there

exists 𝛿
0
> 0 such that

𝛿
0
∫
R𝑁
|∇𝑢|

𝑁
𝑑𝑥 ≤ ‖𝑢‖

𝑁

𝐸
, ∀𝑉 ∈ 𝑅 (𝑉

0
) . (15)

Proof. Assume that ‖𝑉−

0
‖
𝐿
𝑁
(R𝑁)

< 𝑆
𝑁𝑞
 . Since

‖𝑢‖
𝑁

𝐸
≥ ∫

R𝑁
(|∇𝑢|

𝑁
+ 𝑉

−
(𝑥) |𝑢|

𝑁
) 𝑑𝑥,

∫
R𝑁
𝑉

−
(𝑥) |𝑢|

𝑁
𝑑𝑥 ≤

𝑉
−
(𝑥)
𝐿𝑞(R𝑁)‖

𝑢‖
𝑁

𝐿
𝑁𝑞


(R𝑁)

=
𝑉

−

0
(𝑥)
𝐿𝑞(R𝑁)‖

𝑢‖
𝑁

𝐿
𝑁𝑞


(R𝑁)
.

(16)

Then, by (H2), there exists 𝛿
0
such that

𝑉
−

0
(𝑥)
𝐿𝑞(R𝑁)

≤ (1 − 𝛿
0
) 𝑆

𝑁𝑞
 . (17)

Therefore, we have

‖𝑢‖
𝑁

𝐸
≥ 𝛿

0
∫
R𝑁
|∇𝑢|

𝑁
𝑑𝑥. (18)

Remark 3. In this paper, we denote 𝐶 as positive (possibly
different) constants.

Remark 4. If 𝑉 ∈ 𝑅(𝑉
0
), then 𝑉 satisfies (H1)–(H3).

Lemma 5. If (H1)–(H3) are satisfied, then
(1) the embedding 𝐸 → 𝑊

1,𝑁
(R𝑁

) → 𝐿
𝑞
(R𝑁

) is
continuous, for all 1 ≤ 𝑞 < ∞;

(2) the embedding 𝐸 → 𝐿
𝑞
(R𝑁

) is compact, for all 𝑞 ≥ 𝑁.

Proof. (1) From Lemma 2 and Sobolev-Poincare inequality,
we obtain the conclusion.

(2) Let {𝑢
𝑘
} ⊂ 𝐸 satisfy ‖𝑢

𝑘
‖
𝐸
≤ 𝐶 for all 𝑘, andwe assume

𝑢
𝑘
⇀ 𝑢,

𝑢
𝑘
→ 𝑢,

𝑢
𝑘
→ 𝑢,

weakly in 𝐸,

strongly in 𝐿𝑞

loc (R
𝑁
) , ∀𝑞 ≥ 1,

a.e. in R𝑁
.

(19)

In view of (H3), for every 𝜀 → 0, there exists 𝑅 > 0 such
that

(∫
|𝑥|>𝑅

1

𝑉
1/(𝑁−1)

0

𝑑𝑥)

1−1/𝑁

< 𝜀. (20)

Hence, we have

∫
|𝑥|>𝑅

𝑢𝑘
− 𝑢

 𝑑𝑥 = ∫
|𝑥|>𝑅

𝑉
1/𝑁

0

𝑉
1/𝑁

0

𝑢𝑘
− 𝑢

 𝑑𝑥

≤ (∫
|𝑥|>𝑅

1

𝑉
1/(𝑁−1)

0

𝑑𝑥)

1−1/𝑁

×(∫
|𝑥|>𝑅

𝑉
0

𝑢𝑘
− 𝑢



𝑁
𝑑𝑥)

1/𝑁

≤ 𝜀
𝑢𝑘

− 𝑢
𝐸
≤ 𝐶𝜀.

(21)

From (19), we have 𝑢
𝑘
→ 𝑢 in 𝐿1

(𝐵
𝑅
(0)) and 𝐵

𝑅
(0) ⊂ R𝑁

is the ball centered at 0 with radius 𝑅. This together with (21)
leads to lim sup

𝑘→+∞
∫
R𝑁
|𝑢

𝑘
−𝑢|𝑑𝑥 ≤ 𝐶𝜀. Since 𝜀 is arbitrary,

we have

lim
𝑘→+∞

∫
R𝑁

𝑢𝑘
− 𝑢

 𝑑𝑥 = 0. (22)

Hence, for every 𝑞 ≥ 𝑁, we have

∫
R𝑁

𝑢𝑘
− 𝑢



𝑞
𝑑𝑥 ≤ ∫

R𝑁

𝑢𝑘
− 𝑢



1/2𝑢𝑘
− 𝑢



𝑞−1/2
𝑑𝑥

≤ (∫
R𝑁

𝑢𝑘
− 𝑢

 𝑑𝑥)

1/2

×(∫
R𝑁

𝑢𝑘
− 𝑢



2𝑞−1
𝑑𝑥)

1/2

≤ 𝐶(∫
R𝑁

𝑢𝑘
− 𝑢

 𝑑𝑥)

1/2

→ 0.

(23)

Lemma 6. 𝐸 is a reflexive Banach space.

Proof. Suppose that ∀𝑢
1
∈ 𝐸, ∀𝑢

2
∈ 𝐸, we have

𝑢1

𝐸
≤ 1,

𝑢2

𝐸
≤ 1,

𝑢1
− 𝑢

2

𝐸
> 𝜀, (24)

and there exists 𝛿 = 1 −
𝑁
√1 − (𝜀/4)

𝑁, using the following
inequality



𝑎 + 𝑏

2



𝑝

+



𝑎 + 𝑏

2



𝑝

≤
1

2
(|𝑎|

𝑝
+ |𝑏|

𝑝
) ,

∀𝑎, 𝑏, 𝑝 ∈ R,

(25)

such that


𝑢
1
+ 𝑢

2

2



𝑁

𝐸

=



𝑢
1
+ 𝑢

2

2



𝑁

𝐸

−



𝑢
1
− 𝑢

2

2



𝑁

𝐸

+



𝑢
1
− 𝑢

2

2



𝑁

𝐸

≤
1

2
(∫

R𝑁

∇𝑢1



𝑁
𝑑𝑥 + ∫

R𝑁

∇𝑢2



𝑁
𝑑𝑥)

+
1

2
∫
R𝑁
𝑉 (𝑥) (

𝑢1



𝑁
+
𝑢2



𝑁
) 𝑑𝑥 − (

𝜀

2
)

𝑁

≤ 1 − (
𝜀

2
)

𝑁

< (1 − 𝛿)
𝑁
.

(26)

Hence, 𝐸 is uniformly convex. We obtain that 𝐸 is a reflexive
Banach space.

Now, we define the functional 𝐼 : 𝐸 → R

𝐼 (𝑢) =
1

𝑁
∫
R𝑁
|∇𝑢|

𝑁
𝑑𝑥 +

1

𝑁
∫
R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢)

|𝑥|
𝛽
𝑑𝑥 −

𝜆

𝑁
∫
R𝑁

|𝑢|
𝑁

|𝑥|
𝛽
𝑑𝑥 − 𝜀∫

R𝑁
ℎ𝑢 𝑑𝑥;

(27)
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then the functional 𝐼(𝑢) is well defined by Lemma 5. More-
over, 𝐼(𝑢) is the 𝐶1 functional on 𝐸 and ∀𝑢, V ∈ 𝐸; we
have

𝐷𝐼 (𝑢) V = ∫
R𝑁
|∇𝑢|

𝑁−2
∇𝑢∇V 𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥) |𝑢|

𝑁−2
𝑢V 𝑑𝑥

− ∫
R𝑁

𝑓 (𝑥, 𝑢) V

|𝑥|
𝛽

𝑑𝑥 − 𝜆∫
R𝑁

|𝑢|
𝑁−2

𝑢V
|𝑥|

𝛽
𝑑𝑥

− 𝜀∫
R𝑁
ℎV 𝑑𝑥.

(28)

Hence, the critical point of the functional 𝐼(𝑢) is the weak
solution of problem (1).

Lemma 7. Let 0 < 𝛼 ≤ (1 − 𝛽/𝑁)𝛼
𝑁
, 0 < 𝛽 < 𝑁, 𝑢 ∈ 𝐸 and

‖𝑢‖
𝐸
≤ 1; then for some 𝑞 > 𝑁 and 𝛼/𝛼

𝑁
+ 𝛽/𝑁 + 1/𝑞 ≤ 1,

one has

∫
R𝑁

[exp (𝛼|𝑢|𝑁/(𝑁−1)
) − 𝑆

𝑁−2 (𝛼, 𝑢)] |𝑢|

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶‖𝑢‖𝐿𝑞(R𝑁).

(29)

Proof. Let 𝑅(𝛼, 𝑢) = exp(𝛼|𝑢|𝑁/(𝑁−1)
) − 𝑆

𝑁−2
(𝛼, 𝑢); 𝑢∗ is the

Schwarz symmetrization of 𝑢; we can conclude that

∫
R𝑁

𝑅 (𝛼, 𝑢) |𝑢|

|𝑥|
𝛽

𝑑𝑥 = ∫
R𝑁

𝑅 (𝛼, 𝑢
∗
)
𝑢

∗

|𝑥|
𝛽

𝑑𝑥. (30)

Let 𝑢
= 𝑢/‖𝑢‖

𝐸
. It is easy to obtain that 𝑅(𝛼, 𝑢) is increasing

with respect to |𝑢|. If ‖𝑢‖
𝐸
≤ 1; then there holds

∫
R𝑁

exp (𝛼|𝑢|𝑁/(𝑁−1)
) − 𝑆

𝑁−2 (𝛼, 𝑢)

|𝑥|
𝛽

𝑑𝑥

≤ ∫
R𝑁

exp(𝛼𝑢


𝑁/(𝑁−1)

) − 𝑆
𝑁−2

(𝛼, 𝑢

)

|𝑥|
𝛽

𝑑𝑥.

(31)

Now, we prove that there exists a uniform constant 𝐶 such
that, for all radially decreasing symmetric functions 𝑢 ∈

𝑊
1,𝑁
(R𝑁

) and ‖𝑢‖
𝐸
= 1,

∫
R𝑁

exp (𝛼∗
|𝑢|

𝑁/(𝑁−1)
) − 𝑆

𝑁−2
(𝛼

∗
, 𝑢)

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶, (32)

where 𝛼∗
= (1 − 𝛽/𝑁)𝛼

𝑁
. In the following, assume that 𝑢

is radially decreasing function in R𝑁 and ‖𝑢‖
𝐸
= 1. Take 𝑟

sufficiently large; that is, 𝑟 > 𝑁
1/𝑁
𝑤

−1/𝑁

𝑁−1
‖𝑢

∗
‖
𝐿
𝑁
(R𝑁). By the

radial lemma, for all |𝑥| ≥ 𝑟, we have 𝑢∗
(𝑥) < 1 and

∫
|𝑥|≥𝑟

𝑅 (𝛼
∗
, 𝑢)

|𝑥|
𝛽

𝑑𝑥 = ∫
|𝑥|≥𝑟

𝑅 (𝛼
∗
, 𝑢

∗
)

|𝑥|
𝛽

𝑑𝑥

≤
1

𝑟𝛽
∫
|𝑥|>𝑟

(
(𝛼

∗
)
𝑁−1𝑢

∗

𝑁

(𝑁 − 1)!

+

∞

∑

𝑚=𝑁

(𝛼
∗
)
𝑚𝑢

∗

𝑚𝑁/(𝑁−1)

𝑚!
)𝑑𝑥

≤

𝑢
∗

𝑁

𝐿
𝑁
(R
𝑁
)

𝑟𝛽
(

∞

∑

𝑚=𝑁−1

(𝛼
∗
)
𝑚

𝑚!
) ≤ 𝐶.

(33)

Define the set 𝑆 = {𝑥 ∈ B
𝑟
(0) : |𝑢(𝑥) − 𝑢(𝑟)| > 2|𝑢(𝑟)|}.

Assume that 𝑆 is nonempty; then for all 𝑥 ∈ 𝑆 and 𝜀 > 0 we
have

|𝑢 (𝑥)|
𝑁/(𝑁−1)

= |𝑢 (𝑥) − 𝑢 (𝑟) + 𝑢 (𝑟)|
𝑁/(𝑁−1)

= |𝑢 (𝑥) − 𝑢 (𝑟)|
𝑁/(𝑁−1)

(1 +
𝑢 (𝑟)

|𝑢 (𝑥) − 𝑢 (𝑟)|
)

𝑁/(𝑁−1)

≤ |𝑢 (𝑥) − 𝑢 (𝑟)|
𝑁/(𝑁−1)

+
𝑁

𝑁 − 1
(
3

2
)

1/(𝑁−1)

× |𝑢 (𝑟)| |𝑢 (𝑥) − 𝑢 (𝑟)|
1/(𝑁−1)

≤ (1 + 𝜀) |𝑢 (𝑥) − 𝑢 (𝑟)|
𝑁/(𝑁−1)

+ (
3

2
)

𝑁/(𝑁−1)
2

(
|𝑢 (𝑟)|

𝑁

(𝑁 − 1) 𝜀
)

1/𝑁−1

.

(34)

Since

‖𝑢‖
𝑁

𝐸
= ‖∇𝑢‖

𝑁

𝐿
𝑁
(R
𝑁
)
+ ∫

R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥 = 1, (35)

so we have

‖∇𝑢‖
𝑁

𝐿
𝑁
(R
𝑁
)
= 1 − ∫

R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥,

‖∇𝑢‖
𝑁/(𝑁−1)

𝐿
𝑁
(R
𝑁
)
= (1 − ∫

R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥)

1/(𝑁−1)

.

(36)

Thus, we obtain

1

‖∇𝑢‖
𝑁/(𝑁−1)

𝐿
𝑁
(R
𝑁
)

= (
1

1 − ∫
R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥
)

1/(𝑁−1)

. (37)

From Hardy-Littlewood inequality, we have

∫
R𝑁
𝑉 (𝑥)

𝑢
∗

𝑁
𝑑𝑥 ≥ ∫

R𝑁
𝑉

0 (𝑥) |𝑢|
𝑁
𝑑𝑥. (38)
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Since 𝑉(𝑥) ∈ 𝑅(𝑉
0
), we have ∫

R𝑁
𝑉(𝑥)|𝑢

∗
|
𝑁
𝑑𝑥 =

∫
R𝑁
𝑉(𝑥)|𝑢|

𝑁
𝑑𝑥. Let

1 + 𝜀 =
1

‖∇𝑢‖
𝑁/(𝑁−1)

𝐿
𝑁
(R
𝑁
)

= (
1

1 − ∫
R𝑁
𝑉 (𝑥) |𝑢|

𝑁
𝑑𝑥
)

1/(𝑁−1)

≥ (
1

1 − ∫
R𝑁
𝑉

0 (𝑥) |𝑢|
𝑁
𝑑𝑥
)

1/(𝑁−1)

≥ (
1

1 − (𝛿 − 𝑆
𝑁
) ∫

R𝑁
|𝑢|

𝑁
𝑑𝑥
)

1/(𝑁−1)

.

(39)

Applying the mean value theorem to the function 𝜓(𝑡) =
𝑡
1/(𝑁−1), we obtain that there exists 𝜉 which satisfies

1 − (𝛿 − 𝑆
𝑁
) ‖𝑢‖

𝑁

𝐿
𝑁
(R
𝑁
)
≤ 𝜉 ≤ 1, (40)

such that

1 − [1 − (𝛿 − 𝑆
𝑁
) ‖𝑢‖

𝑁

𝐿
𝑁
(R
𝑁
)
]

1/(𝑁−1)

=
(𝛿 − 𝑆

𝑁
)

𝑁 − 1
𝜉
(2−𝑁)/(𝑁−1)

‖𝑢‖
𝑁

𝐿
𝑁
(R
𝑁
)
.

(41)

So we have

𝜀 =

‖𝑢‖
𝑁

𝐿
𝑁
(R
𝑁
)

(𝑁 − 1) 𝜉
(𝑁−2)/(𝑁−1)(1 − (𝛿 − 𝑆

𝑁
) ‖𝑢‖

𝑁

𝐿
𝑁
(R
𝑁
)
)

1/(𝑁−1)

≥

‖𝑢‖
𝑁

𝐿
𝑁
(R
𝑁
)

𝑁 − 1
.

(42)

By |𝑢(𝑟)| ≤ (𝑁/𝑤
𝑁−1

)
1/𝑁
‖𝑢‖

𝐿
𝑁
(R𝑁)/𝑟, we have

(
3

2
)

𝑁/(𝑁−1)
2

(
|𝑢 (𝑟)|

𝑁

(𝑁 − 1) 𝜀
)

1/(𝑁−1)

≤ 𝐶, (43)

and ∀𝑥 ∈ 𝑆,

|𝑢 (𝑥)|
𝑁/(𝑁−1)

≤
|𝑢 (𝑥) − 𝑢 (𝑟)|

𝑁/(𝑁−1)

(‖∇𝑢‖
𝑁

𝐿
𝑁
(R
𝑁
)
)

1/(𝑁−1)
+ 𝐶. (44)

Obviously, 𝑢 − 𝑢(𝑟) ∈ 𝑊1,𝑁
(B

𝑟
(0)), and

∫
B𝑟(0)

|∇ (𝑢 − 𝑢 (𝑟))|
𝑁
𝑑𝑥 ≤ ∫

B𝑟(0)
|∇𝑢|

𝑁
𝑑𝑥 ≤ 1. (45)

Let 𝑢
= (𝑢(𝑥) − 𝑢(𝑟))/‖∇(𝑢(𝑥) − 𝑢(𝑟))‖

𝐿
𝑁
(R𝑁); we obtain

∫
B𝑟(0)

𝑒
𝛼
∗
|𝑢|
𝑁/(𝑁−1)

|𝑥|
𝛽

𝑑𝑥

= ∫
𝑆

𝑒
𝛼
∗
|𝑢|
𝑁/(𝑁−1)

|𝑥|
𝛽

𝑑𝑥 + ∫
B𝑟(0)\𝑆

𝑒
𝛼
∗
|𝑢|
𝑁/(𝑁−1)

|𝑥|
𝛽

𝑑𝑥

≤ 𝐶∫
B𝑟(0)

𝑒
𝛼
∗
|𝑢

|
𝑁/(𝑁−1)

|𝑥|
𝛽

𝑑𝑥 + 𝐶 ≤ 𝐶.

(46)

Hence, we obtain that (32) holds. For 0 < 𝛼 ≤ (1 − 𝛽/𝑁)𝛼
𝑁
,

‖ 𝑢‖
𝐸
≤ 1, we have

∫
R𝑁

exp (𝛼|𝑢|𝑁/(𝑁−1)
) − 𝑆

𝑁−2 (𝛼, 𝑢)

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶. (47)

Since 𝛼/𝛼
𝑁
+ 𝛽/𝑁+ 1/𝑞 ≤ 1 and 1/𝑞 + 1/𝑞

= 1, 𝑞 > 𝑁, that
is, 𝛼𝑞

< 𝛼
𝑁
, 𝛼𝑞

/𝛼
𝑁
+ 𝛽𝑞


/𝑁 ≤ 1, we have

∫
R𝑁

𝑅 (𝛼, 𝑢) |𝑢|

|𝑥|
𝛽

𝑑𝑥

≤ ∫
R𝑁

𝑅 (𝛼𝑞

, 𝑢)

|𝑥|
𝛽𝑞

𝑑𝑥‖𝑢‖𝐿𝑞(R𝑁) ≤ 𝐶‖𝑢‖𝐿𝑞(R𝑁).

(48)

As the proof of Lemma 7, we can obtain the following.

Lemma 8. For 0 < 𝛼 ≤ (1 − 𝛽/𝑁)𝛼
𝑁
, 0 < 𝛽 < 𝑁, 𝑢 ∈ 𝐸 and

‖ 𝑢‖
𝐸
≤ 1, 𝑞 > 𝑁, and 𝛼/𝛼

𝑁
+ 𝛽/𝑁 + 1/𝑞 ≤ 1, one has

∫
R𝑁

[exp (𝛼|𝑢|𝑁/(𝑁−1)
) − 𝑆

𝑁−2 (𝛼, 𝑢)] |𝑢|
𝑞

|𝑥|
𝛽

𝑑𝑥

≤ 𝐶 (𝑁, 𝛼) ‖𝑢‖
𝑞

𝐸
.

(49)

2.2. The Eigenvalue Problem. We consider the following
eigenvalue problem:

− div (|∇𝑢|𝑁−2
∇𝑢) + 𝑉 (𝑥) |𝑢|

𝑁−2
𝑢 = 𝜆

|𝑢|
𝑁−2

𝑢

|𝑥|
𝛽
, 𝑥 ∈ R

𝑁
,

𝑢 ̸= 0, 𝑥 ∈ R
𝑁
.

(50)

Now, we denote the set𝑀 = {𝑢 ∈ 𝐸 : ∫
R𝑁
(|𝑢|

𝑁
/|𝑥|

𝛽
)𝑑𝑥 =

1}, and define
𝜆

1
= inf

0 ̸= 𝑢∈𝑀

{𝐼
𝑁 (𝑢) : 𝑢 ∈ 𝐸 \ {0}} > 0, 0 < 𝛽 < 𝑁, (51)

where 𝐼
𝑁
(𝑢) = ∫

R𝑁
(|∇𝑢|

𝑁
+ 𝑉(𝑥)|𝑢|

𝑁
)𝑑𝑥.

Lemma 9 (see [12]). Let 𝑢 > 0, V > 0 be two continuous
functions in Ω differentiable a.e., and

𝐿 (𝑢, V) = |∇𝑢|𝑝 + (𝑝 − 1)
𝑢

𝑝

V𝑝
|∇V|𝑝 − 𝑝

𝑢
𝑝−1

V𝑝−1
|∇V|𝑝−2

∇V∇𝑢,

𝑅 (𝑢, V) = |∇𝑢|𝑝 − |∇V|𝑝−2
∇(

𝑢
𝑝

V𝑝−1
)∇V.

(52)
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Then (1) 𝐿(𝑢, V) = 𝑅(𝑢, V) ≥ 0, (2) 𝐿(𝑢, V) = 0 a.e. in Ω if
and only if 𝑢 = 𝑘V for some 𝑘 > 0.

Proposition 10. Assume that (H1)–(H3) hold; then 𝜆
1
> −∞

is the lowest eigenvalue of Problem (50) and 𝜆
1
is principal.

Proof. From Lemma 2, we have 𝜆
1
> −∞. Furthermore, any

minimizing sequence {𝑢
𝑛
} is bounded. Up to a subsequence,

there exists 𝑢 ∈ 𝐸 such that

𝑢
𝑛
⇀ 𝑢

0
, in𝐸,

𝑢
𝑛
→ 𝑢

0
, in 𝐿𝑁𝑟



(R
𝑁
) .

(53)

Hence, we have

𝐼
𝑁
(𝑢

0
) ≤ lim

𝑛→+∞
𝐼
𝑁
(𝑢

𝑛
) = 𝜆

1
, 𝑢

0
∈ 𝑀, (54)

and consequently we have

𝐼
𝑁
(𝑢

0
) = 𝜆

1
. (55)

From Lemma 5, we obtain that 𝑀 is weakly closed in 𝐸.
By the Lagrange Multipliers rule, 𝜆

1
is an eigenvalue of

problem (50). Moreover 𝐼
𝑁
(|𝑢|) = 𝐼

𝑁
(𝑢) for any 𝑢, so that 𝜆

1

possesses a nonnegative eigenfunction. We conclude that the
eigenvalue is principal from Harnack inequality in [13].

Proposition 11. The eigenvalue 𝜆
1
is isolated. That is, there

exists 𝜀 > 0, such that there are no other eigenvalues of problem
(50) in the interval (𝜆

1
, 𝜆

1
+ 𝜀).

Proof. Assume by contradiction there exists a sequence of
eigenvalue 𝜆

𝑚
of problem (50) with 0 < 𝜆

𝑚
↘ 𝜆

1
. Let {𝑢

𝑚
}

be an eigenfunction associated with 𝜆
𝑚
. Then {𝑢

𝑚
} satisfies

−Δ
𝑁
𝑢

𝑚
+ 𝑉 (𝑥)

𝑢𝑚



𝑁−2
𝑢

𝑚
= 𝜆

𝑚

𝑢𝑚



𝑁−2
𝑢

𝑚

|𝑥|
𝛽

,

∫
R𝑁

∇𝑢𝑚



𝑁
𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥)

𝑢𝑚



𝑁
𝑑𝑥

− ∫
R𝑁

𝜆
𝑚

|𝑥|
𝛽

𝑢𝑚



𝑁
𝑑𝑥 = 0.

(56)

We define

V
𝑚
=

𝑢
𝑚

(∫
R𝑁
(
𝑢𝑚



𝑁
/|𝑥|

𝛽
) 𝑑𝑥)

1/𝑁
. (57)

The coercivity of the functional 𝐼
𝑁
(𝑢

𝑚
) = ∫

R𝑁
|∇𝑢

𝑚
|
𝑁
𝑑𝑥 +

∫
R𝑁
𝑉(𝑥)|𝑢

𝑚
|
𝑁
𝑑𝑥 implies that {𝑢

𝑚
} is a bounded sequence.

Hence {V
𝑚
} is bounded in 𝐸. So there exists a subsequence

(still denoted) {V
𝑚
} and V ∈ 𝐸 such that

V
𝑚
⇀ V, weakly in𝐸,

V
𝑚
→ V, strongly in 𝐿𝑁

(R
𝑁
) ,

(58)

and ∫
R𝑁
(|𝑢

𝑚
|
𝑁
/|𝑥|

𝛽
)𝑑𝑥 = 1. On the other hand, we have

∫
R𝑁
|∇V|𝑁𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥) V𝑁

𝑑𝑥

≤ lim inf
𝑛→∞

(∫
R𝑁

∇V𝑛



𝑁
𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥) V𝑁

𝑛
𝑑𝑥) = 𝜆

1
,

(59)

and ∫
R𝑁
|∇V|𝑁𝑑𝑥 + ∫

R𝑁
𝑉(𝑥)V𝑁

𝑑𝑥 = 𝜆
1
> 0. So we conclude

that V is an eigenfunction associated with 𝜆
1
and V > 0.

Then we conclude from the convergence in measure of the
sequence {V

𝑛
} towards V that

Ω
−

𝑛

 → 0, (60)

where Ω−

𝑛
denotes the negative set of V

𝑛
, which contradicts

Proposition 11.

Proposition 12. The first eigenvalue 𝜆
1
is simple, in the sense

that the eigenfunctions associated with it are merely constant
multiples of each other.

Proof. Let 𝜑, 𝜁 be two eigenfunctions associated with 𝜆
1
.

We assume without restriction that 𝜑 > 0, 𝜁 > 0; then 𝜑
satisfies −Δ𝜑+𝑉(𝑥)𝜑𝑁−1

= 𝜆
1
(𝑁)(𝜑

𝑁−1
/|𝑥|

𝛽
). Testing it with

function 𝜑, we get

∫
R𝑁

∇𝜑


𝑁
𝑑𝑥 − ∫

R𝑁
[−𝑉 (𝑥) +

𝜆
1

|𝑥|
𝛽
]𝜑

𝑁
𝑑𝑥 = 0. (61)

Let 𝜀 → 0, from Lemma 9, we have

0 ≤ ∫
R𝑁
𝐿 (𝜑, 𝜁 + 𝜀) 𝑑𝑥

= ∫
R𝑁
𝑅 (𝜑, 𝜁 + 𝜀) 𝑑𝑥

= ∫
R𝑁
[−𝑉 (𝑥) +

𝜆
1

|𝑥|
𝛽
]𝜑

𝑁
𝑑𝑥

− ∫
R𝑁

∇𝜁


𝑁−2
∇(

𝜑
𝑁

(𝜁 + 𝜀)
𝑁−1

)∇𝜁 𝑑𝑥.

(62)

The function 𝜑𝑁
/(𝜁 + 𝜀)

𝑁−1, where 𝜀 > 0, belongs to 𝐸 and
then it is admissible for the weak formulation of −Δ

𝑁
𝜁 +

𝑉(𝑥)|𝜁|
𝑁−2

𝜁 = 𝜆
1
(|𝜁|

𝑁−2
𝜁/|𝑥|

𝛽
), a.e., and

∫
R𝑁

∇𝜁


𝑁−2
∇𝜁∇

𝜑
𝑁

(𝜁 + 𝜀)
𝑁−1

𝑑𝑥

− ∫
R𝑁
[−𝑉 (𝑥) + 𝜆

1

|𝑥|
𝛽
]𝜑

𝑁 𝜁
𝑁−1

(𝜁 + 𝜀)
𝑁−1

𝑑𝑥 = 0.

(63)

It follows from (62) and (63) that we have
0 ≤ 𝐿 (𝜑, 𝜁 + 𝜀)

= ∫
R𝑁
𝜆

1
[1 −

𝜁
𝑁−1

(𝜁 + 𝜀)
𝑁−1

]
𝜑

𝑁

|𝑥|
𝛽
𝑑𝑥

− ∫
R𝑁
𝑉 (𝑥) 𝜑

𝑁
[1 −

𝜁
𝑁−1

(𝜁 + 𝜀)
𝑁−1

]𝑑𝑥.

(64)
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Let 𝜀 → 0; we have 𝐿(𝜑, 𝜁) = 0. By Lemma 9, there exists
𝑘 > 0 such that 𝜑 = 𝑘𝜁.

3. The Proof of Theorem 1

3.1. Palais-Smale Sequence. Now,we check that the functional
𝐼 satisfies the geometric conditions of the Mountain Pass
Theorem.

Lemma 13. Suppose that (H1)–(H3) and (f1)–(f5) hold. Then
there exists 𝜀

2
such that, for 0 < 𝜀 < 𝜀

2
, there exists 𝜌

𝜀
> 0 such

that 𝐼(𝑢) > 0 if ‖ 𝑢‖
𝐸
= 𝜌

𝜀
. Furthermore, 𝜌

𝜀
can be chosen such

that 𝜌
𝜀
→ 0, as 𝜀 → 0.

Proof. From (f5), for every 𝜀 > 0, there exists 𝜎 > 0 such that
|𝑢| ≤ 𝜎 implies

𝐹 (𝑥, 𝑢) ≤
𝜀

𝑁
|𝑢|

𝑁
, ∀𝑥 ∈ R

𝑁
. (65)

Moreover, using (f1), for each 𝑞 > 𝑁 and 𝑘/𝛼
𝑁
+𝛽/𝑁+1/𝑞 ≤

1, we find a constant 𝐶 such that

𝐹 (𝑥, 𝑢) ≤ 𝐶|𝑢|
𝑞
[exp (𝑘|𝑢|𝑁/(𝑁−1)

) − 𝑆
𝑁−2 (𝑘, 𝑢)] ,

∀ |𝑢| ≥ 𝜎, 𝑥 ∈ R
𝑁
.

(66)

Combining (65) and (66), we have

𝐹 (𝑥, 𝑢) ≤
𝜀

𝑁
|𝑢|

𝑁
+ 𝐶|𝑢|

𝑞

× [exp (𝑘|𝑢|𝑁/(𝑁−1)
) − 𝑆

𝑁−2 (𝑘, 𝑢)] ,

∀ (𝑥, 𝑢) ∈ R
𝑁
×R.

(67)

Since the embedding 𝐸 → 𝐿
𝑁
(R𝑁

) is continuous, we obtain

𝐼 (𝑢) ≥
1

𝑁
‖𝑢‖

𝑁

𝐸
−
𝜀 + 𝜆

𝑁
∫
R𝑁

|𝑢|
𝑁

|𝑥|
𝛽
𝑑𝑥

− 𝐶‖𝑢‖
𝑞

𝐸
− 𝜀‖ℎ‖∗‖𝑢‖𝐸

≥
1

𝑁
(1 −

𝜆 + 𝜀

𝜆
1

) ‖𝑢‖
𝑁

𝐸

− 𝐶‖𝑢‖
𝑞

𝐸
− 𝜀‖ℎ‖∗‖𝑢‖𝐸.

(68)

Thus, we have

𝐼 (𝑢) ≥ ‖𝑢‖𝐸 [
1

𝑁
(1 −

𝜆 + 𝜀

𝜆
1

) ‖𝑢‖
𝑁−1

𝐸
− 𝐶‖𝑢‖

𝑞−1

𝐸
− 𝜀‖ℎ‖∗] .

(69)

Since 𝑞 > 𝑁 and 0 < 𝜆 < 𝜆
1
and letting 𝜀 < 𝜆

1
−𝜆, we choose

𝜌 > 0 such that (1/𝑁)(1−(𝜆+𝜀)/𝜆
1
)𝜌

𝑁−1
−𝐶𝜌

𝑞−1
−𝜀‖ℎ‖

∗
> 0.

Thus, if 𝜀 is sufficiently small, we find some 𝜌
𝜀
> 0 such that

𝐼(𝑢) > 0 if ‖𝑢‖
𝐸
= 𝜌

𝜀
and even 𝜌

𝜀
→ 0 as 𝜀 → 0.

Lemma 14. If 0 < 𝜆 < 𝜆
1
, there exists 𝑒 ∈ 𝐸, with ‖𝑒‖

𝐸
> 𝜌

𝜀
,

such that 𝐼(𝑒) < inf
‖𝑢‖𝐸=𝜌𝜀

𝐼(𝑢).

Proof. Let 𝑢 ∈ 𝐸 \ {0}, 𝑢 > 0 with compact support Ω =

supp(𝑢). By (f4), we obtain that for 𝑝 > 𝑁, there exists a
positive constant 𝐶 > 0 such that for every𝑀 > 0,

∀ |𝑢| > 𝐶, ∀𝑥 ∈ Ω, 𝐹 (𝑥, 𝑢) ≥ 𝑀|𝑢|
𝑁
. (70)

Then, we have

𝐼 (𝑡𝑢) ≤
𝑡
𝑁

𝑁
‖𝑢‖

𝑁

𝐸
−𝑀𝑡

𝑁
∫
Ω

|𝑢|
𝑁

|𝑥|
𝛽
𝑑𝑥

− 𝜀𝑡 ∫
Ω

ℎ𝑢 𝑑𝑥 −
𝜆

𝑁
∫
Ω

|𝑡𝑢|
𝑁

|𝑥|
𝛽
𝑑𝑥

≤
𝑡
𝑁

𝑁
‖𝑢‖

𝑁

𝐸

− 𝑡
𝑁
(𝑀 +

𝜆

𝑁
)∫

Ω

|𝑢|
𝑁

|𝑥|
𝛽
𝑑𝑥 − 𝜀𝑡 ∫

Ω

ℎ𝑢 𝑑𝑥

≤ 𝑡
𝑁
(
‖𝑢‖

𝑁

𝐸

𝑁
− (𝑀 +

𝜆

𝑁
)∫

|𝑥|<𝑅

|𝑢|
𝑁

|𝑥|
𝛽
𝑑𝑥) .

(71)

Choose 𝑅 > 0 and 𝐵
𝑅
(0) ⊂ Ω and let

𝑀 >
𝑅

𝛽
‖𝑢‖

𝑁

𝐸

𝑁‖𝑢‖
𝑁

𝐿
𝑁
(R𝑁)

−
𝜆

𝑁
>

𝑅
𝛽
‖𝑢‖

𝑁

𝐸

𝑁‖𝑢‖
𝑁

𝐿
𝑁
(R
𝑁
)

−
𝜆

1

𝑁
; (72)

we have 𝐼(𝑡𝑢) → −∞ as 𝑡 → ∞. Setting 𝑒 = 𝑡𝑢 with 𝑡 being
sufficient large, we obtain the conclusion.

It is well known that the failure of the (PS) compactness
condition creates some difficulties in studying the class of
elliptic problems involving critical growth. In Lemma 15,
instead of (PS) sequence, we analyze the compactness of
Cerami sequences of the functional 𝐼.

Lemma 15. Let (𝑢
𝑛
) ⊂ 𝐸 be a Cerami sequence of 𝐼; that is,

𝐼 (𝑢
𝑛
) → 𝐶

𝑀
, (1 +

𝑢𝑛

𝐸
)
𝐷𝐼 (𝑢𝑛

)
𝐸

→ 0,

as 𝑛 → ∞.

(73)

Then there exists a subsequence of (𝑢
𝑛
) (still denoted by (𝑢

𝑛
))

and 𝑢 ∈ 𝐸 such that

𝑓 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

→
𝑓 (𝑥, 𝑢)

|𝑥|
𝛽
, in 𝐿1

loc (R
𝑁
) ,

∇𝑢
𝑛
→ ∇𝑢, a.e. in R

N
,

∇𝑢𝑛



𝑁−2 ∇𝑢𝑛

 ⇀ |∇𝑢|
𝑁−2

|∇𝑢| , (𝐿
𝑁/(𝑁−1)

loc (R
𝑁
))

𝑁

,

𝑢
𝑛
⇀ 𝑢, in 𝐸,

(74)

where 𝐶
𝑀
∈ (0, (1/𝑁)(1 − 𝛽/𝑁)(𝛼

𝑁
/𝛼

0
)). Furthermore, 𝑢 is a

nontrivial weak solution of problem (1).
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Proof. Let 𝑢
𝑛
∈ 𝐸, V ∈ 𝐸, as 𝑛 → ∞; we have

1

𝑁
∫
R𝑁

∇𝑢𝑛



𝑁
𝑑𝑥 +

1

𝑁
∫
R𝑁
𝑉 (𝑥)

𝑢𝑛



𝑁
𝑑𝑥

− ∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥 −
𝜆

𝑁
∫
R𝑁

𝑢𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥

− 𝜀∫
R𝑁
ℎ𝑢

𝑛
→ 𝐶

𝑀
,

(75)

𝐷𝐼 (𝑢𝑛
) V

=



∫
R𝑁

∇𝑢𝑛



𝑁−2
∇𝑢

𝑛
∇V 𝑑𝑥

+ ∫
R𝑁
𝑉 (𝑥)

𝑢𝑛



𝑁−2
𝑢

𝑛
V 𝑑𝑥 − ∫

R𝑁

𝑓 (𝑥, 𝑢
𝑛
) V

|𝑥|
𝛽

𝑑𝑥

−𝜆∫
R𝑁

𝑢𝑛



𝑁−2
𝑢

𝑛
V

|𝑥|
𝛽

𝑑𝑥 − 𝜀∫
R𝑁
ℎV 𝑑𝑥



≤
𝜏
𝑛‖V‖𝐸

(1 +
𝑢𝑛

𝐸
)
,

(76)

where 𝜏
𝑛
→ 0 as 𝑛 → ∞. Let V = 𝑢

𝑛
in (76); we have

− ∫
R𝑁

∇𝑢𝑛



𝑁
𝑑𝑥 − ∫

R𝑁
𝑉 (𝑥)

𝑢𝑛



𝑁
𝑑𝑥

+ ∫
R𝑁

𝑓 (𝑥, 𝑢
𝑛
) 𝑢

𝑛

|𝑥|
𝛽

𝑑𝑥

+ 𝜆∫
R𝑁

𝑢𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥 + 𝜀∫

R𝑁
ℎ𝑢

𝑛
𝑑𝑥

≤
𝜏
𝑛

𝑢𝑛

𝐸

(1 +
𝑢𝑛

𝐸
)
→ 0, as 𝑛 → ∞.

(77)

Suppose that
𝑢𝑛

𝐸
→ ∞. (78)

Set

V
𝑛
=

𝑢
𝑛

𝑢𝑛

𝐸

; (79)

we have ‖V
𝑛
‖
𝐸
= 1. From [5], we have

∫
R𝑁

lim inf
𝑛→+∞

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽𝑢

+

𝑛
(𝑥)


𝑁

V
+

𝑛



𝑁

𝑑𝑥 = +∞. (80)

However, since {𝑢
𝑛
} is the Cerami sequence at the level 𝐶

𝑀
,

we have that

𝑢𝑛



𝑁

𝐸
= 𝑁𝐼 (𝑢

𝑛
) + 𝑁∫

R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥

+ 𝑁𝜀∫
R𝑁
ℎ𝑢

𝑛
𝑑𝑥 + 𝜆∫

R𝑁

𝑢𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥 + 𝑜 (1) .

(81)

Then there exists some constant 𝐶 such that

𝑢𝑛

𝐸
[1 −

𝜆

𝜆
1

− 𝑁𝜀‖ℎ‖∗]

≤ 𝑁𝐶
𝑀
+ 𝑁∫

R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥 + 𝑜 (1) , as 𝜀 → 0,

(82)

which implies that

∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥 → ∞,

lim inf
𝑛→∞

∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽𝑢

+

𝑛



𝑁

V
+

𝑛



𝑁

𝑑𝑥

= lim inf
𝑛→∞

∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽𝑢

+

𝑛



𝑁

𝐸

𝑑𝑥.

(83)

Let Ψ = ∫
R𝑁
(𝐹(𝑥, 𝑢

𝑛
)/|𝑥|

𝛽
)𝑑𝑥; then we have

lim inf
𝑛→∞

∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽𝑢

+

𝑛



𝑁

V
+

𝑛



𝑁

𝑑𝑥

≤ lim inf
𝑛→∞

Ψ

𝑁𝐶
𝑀
+ 𝑁Ψ +𝑁𝜀∫

R𝑁
ℎ𝑢+

𝑛
𝑑𝑥 + 𝑜 (1)

.

(84)

So we can conclude that

lim inf
𝑛→∞

∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽𝑢

+

𝑛



𝑁

V
+

𝑛



𝑁

𝑑𝑥

≤ lim inf
𝑛→∞

Ψ

𝑁𝐶
𝑀
+ 𝑁Ψ +𝑁𝜀∫

R𝑁
ℎ𝑢+

𝑛
𝑑𝑥 + 𝑜 (1)

=
1

𝑁
.

(85)

Note that 𝐹(𝑥, 𝑢
𝑛
) ≥ 0; by Fatou Lemma, (80), and (85), we

get a contradiction. So V ≤ 0 which means that V+

𝑘
⇀ 0 in 𝐸.

Let 𝑡
𝑛
∈ [0, 1], such that

𝐼 (𝑡
𝑛
𝑢

𝑛
) = max

𝑡∈[0,1]

𝐼 (𝑡𝑢
𝑛
) . (86)

For any given 𝑅 ∈ (0, (1 − 𝛽/𝑁)𝛼
𝑁
/𝛼

0
)
(𝑁−1)/𝑁, let 𝜀 = (1 −

𝛽/𝑁)𝛼
𝑁
/𝑅

𝑁/(𝑁−1)
−𝛼

0
> 0, by (f1); there exists 𝐶 = 𝐶(𝑅) > 0

such that

𝐹 (𝑥, 𝑢
𝑛
) ≤ 𝐶

𝑢𝑛



𝑁
+



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



𝑅 (𝛼
0
+ 𝜀, 𝑢

𝑛
) ,

∀ (𝑥, 𝑢
𝑛
) ∈ Ω ×R

𝑁
.

(87)

Since ‖𝑢
𝑛
‖
𝐸
→ ∞, we have

𝐼 (𝑡
𝑛
𝑢

𝑛
) ≥ 𝐼(

𝑅𝑢
𝑛

𝑢𝑛

𝐸

) = 𝐼 (𝑅V
𝑛
) , (88)
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and by (f3), ‖V
𝑛
‖
𝐸

= 1, and ∫
R𝑁
(𝐹(𝑥, V+

𝑛
)/|𝑥|

𝛽
)𝑑𝑥 =

∫
R𝑁
(𝐹(𝑥, V

𝑛
)/|𝑥|

𝛽
)𝑑𝑥, we have

𝑁𝐼 (𝑅V
𝑛
)

≥ 𝑅
𝑁
− (𝑁𝐶𝑅

𝑁
+ 𝜆𝑅

𝑁
)∫

R𝑁

V
+

𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥

− 𝑁



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



∫
R𝑁

𝑅 (𝛼
0
+ 𝜀, 𝑅

V
+

𝑛

)

|𝑥|
𝛽

𝑑𝑥

− 𝑁𝑅



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



∫
R𝑁
ℎ
V

+

𝑛

 𝑑𝑥

≥ 𝑅
𝑁
− (𝑁𝐶𝑅

𝑁
+ 𝜆𝑅

𝑁
)∫

R𝑁

V
+

𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥

− 𝑁



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



× ∫
R𝑁

𝑅 ((𝛼
0
+ 𝜀) 𝑅

𝑁/(𝑁−1)
,
V

+

𝑛

)

|𝑥|
𝛽

𝑑𝑥

− 𝑁𝑅



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



∫
R𝑁
ℎ
V

+

𝑛

 𝑑𝑥

≥ 𝑅
𝑁
− (𝑁𝐶𝑅

𝑁
+ 𝜆𝑅

𝑁
)∫

R𝑁

V
+

𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥

− 𝑁



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



× ∫
R𝑁

𝑅 ((1 − 𝛽/𝑁) 𝛼
𝑁
,
V

+

𝑛

)

|𝑥|
𝛽

𝑑𝑥

− 𝑁𝑅



(1 − 𝛽/𝑁) 𝛼
𝑁

𝑅𝑁/(𝑁−1)
− 𝛼

0



∫
R𝑁
ℎ
V

+

𝑛

 𝑑𝑥.

(89)

Since V+

𝑛
⇀ 0 in 𝐸 and the embedding 𝐸 → 𝐿

𝑁
(R𝑁

)

is compact from and the Hölder inequality, we have
∫
R𝑁
(|V+

𝑛
|
𝑁
/|𝑥|

𝛽
)𝑑𝑥 → 0 (𝑛 → ∞). By Lemma 7, we have

∫
R𝑁
(𝑅((1 − 𝛽/𝑁)𝛼

𝑁
, |V+

𝑛
|)/|𝑥|

𝛽
)𝑑𝑥 ≤ 𝐶.

Let 𝑛 → ∞ in (89) and 𝑅 → [(1 − 𝛽/𝑁)𝛼
𝑁
/𝛼

0
]
(𝑁−1)/𝑁;

we get

lim inf
𝑛→∞

𝐼 (𝑡
𝑛
𝑢

𝑛
) ≥

1

𝑁
[
(1 − 𝛽/𝑁) 𝛼

𝑁

𝛼
0

]

𝑁−1

> 𝐶
𝑀
. (90)

Note that 𝐼(0) = 0 and 𝐼(𝑢
𝑛
) → 𝐶

𝑀
; we suppose that 𝑡

𝑛
∈

(0, 1). Since𝐷𝐼(𝑡
𝑛
𝑢

𝑛
)𝑡

𝑛
𝑢

𝑛
= 0, we have

𝑡
𝑁

𝑛

𝑢𝑛



𝑁

𝐸
= ∫

R𝑁

𝑓 (𝑥, 𝑡
𝑛
𝑢

𝑛
) 𝑡

𝑛
𝑢

𝑛

|𝑥|
𝛽

𝑑𝑥

+ 𝜀𝑡
𝑛
∫
R𝑁
ℎ𝑢

𝑛
𝑑𝑥 + 𝜆𝑡

𝑁

𝑛
∫
R𝑁

𝑢𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥.

(91)

By (f2) and 𝜀
𝑛
→ 0, we have

𝑁𝐼 (𝑡
𝑛
𝑢

𝑛
) = ∫

R𝑁

𝑓 (𝑥, 𝑡
𝑛
𝑢

𝑛
) 𝑡

𝑛
𝑢

𝑛

|𝑥|
𝛽

𝑑𝑥

− 𝑁∫
R𝑁

𝐹 (𝑥, 𝑡
𝑛
𝑢

𝑛
)

|𝑥|
𝛽

𝑑𝑥 + 𝑜 (1) .

(92)

Moreover, we have

∫
R𝑁

𝑓 (𝑥, 𝑢
𝑛
) 𝑢

𝑛

|𝑥|
𝛽

𝑑𝑥 − 𝑁∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥

=
𝑢𝑛



𝑁

𝐸
+ 𝑁𝐶

𝑀
−
𝑢𝑛



𝑁

𝐸
+ 𝑜 (1) ,

(93)

which is a contraction to (75); this proves that {𝑢
𝑛
} is bounded

in 𝐸. Thus, we have

∫
R𝑁

𝑓 (𝑥, 𝑢
𝑛
) 𝑢

𝑛

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶, ∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶. (94)

From Lemma 5, the embedding 𝐸 → 𝐿
𝑞
(R𝑁

) is compact for
all 𝑞 ≥ 𝑁. If {𝑢

𝑛
} ∈ 𝐸, we get

𝑢
𝑛
⇀ 𝑢, in 𝐸,

𝑢
𝑛
→ 𝑢, in 𝐿𝑞

loc (R
𝑁
) ,

𝑢
𝑛
→ 𝑢, a.e. in R

𝑁
,

(95)

From (f1), the Trudinger-Moser inequality, and the Hölder
inequality, we have 𝑓(𝑥, 𝑢

𝑛
)/|𝑥|

𝛽
∈ 𝐿

1

loc(R
𝑁
). From Lemma

2.1 in [14], we have

𝑓 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

→
𝑓 (𝑥, 𝑢)

|𝑥|
𝛽
, in 𝐿1

loc (R
𝑁
) . (96)

For any fixed 𝛿 > 0, set

Σ
𝛿
= {𝑥 ∈ R

𝑁
: lim

𝑟→0

lim
𝑛→∞

∫
B𝑟(𝑥)

(
∇𝑢𝑛



𝑁
+
𝑢𝑛



𝑁
) 𝑑𝑥 ≥ 𝛿} .

(97)

Because {𝑢
𝑛
} is bounded, Σ

𝛿
is a finite set. From Lemma 4.4

in ([4]), for any compact set 𝐾 ⊂⊂ R𝑁
\ Σ

𝛿
, we have

lim
𝑛→∞

∫
𝐾

𝑓 (𝑥, 𝑢𝑛
) 𝑢

𝑛
− 𝑓 (𝑥, 𝑢) 𝑢



|𝑥|
𝛽

𝑑𝑥 = 0. (98)

Now, we prove that

lim
𝑛→∞

∫
𝐾

∇𝑢𝑛
− ∇𝑢



𝑁
𝑑𝑥 = 0. (99)

It is enough to prove that for any 𝑥
∈ R𝑁

\ Σ
𝛿
and 𝐵

𝑟
(𝑥


) ⊂

R𝑁
\ Σ

𝛿
there holds

lim
𝑛→∞

∫
B𝑟/2(𝑥


)

∇𝑢𝑛
− ∇𝑢



𝑁
𝑑𝑥 = 0. (100)
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We take 𝜙 ∈ 𝐶
∞

0
(𝐵

𝑟
(𝑥


)) with 0 ≤ 𝜙 ≤ 1 and 𝜙 = 1 on

B
𝑟/2
(𝑥


). Then {𝜙𝑢

𝑛
} is a bounded sequence. Choosing V

𝑛
=

𝜙𝑢
𝑛
and V = 𝜙𝑢 in (76), we have

∫
𝐵𝑟(𝑥

)

𝜙 (
∇𝑢𝑛



𝑁−2
∇𝑢

𝑛
− |∇𝑢|

𝑁−2
∇𝑢) (∇𝑢

𝑛
− ∇𝑢) 𝑑𝑥

≤ ∫
𝐵𝑟(𝑥

)

∇𝑢𝑛



𝑁−2
∇𝑢

𝑛
∇𝜙 (𝑢 − 𝑢

𝑛
) 𝑑𝑥

+ ∫
𝐵𝑟(𝑥

)

𝜙|∇𝑢|
𝑁−2

∇𝑢 (∇𝑢 − ∇𝑢
𝑛
) 𝑑𝑥

+ ∫
𝐵𝑟(𝑥

)

𝜙 (𝑢
𝑛
− 𝑢)

𝑓 (𝑥, 𝑢
𝑛
)

|𝑥|
𝛽

𝑑𝑥

+ 𝜏
𝑛

𝜙𝑢𝑛

𝐸
+ 𝜏

𝑛

𝜙𝑢
𝐸
+ 𝜀∫

𝐵𝑟(𝑥

)

𝜙ℎ (𝑢
𝑛
− 𝑢) 𝑑𝑥

+ 𝜆∫
𝐵𝑟(𝑥

)

𝑢𝑛

 𝑢𝑛
𝜙

|𝑥|
𝛽

(𝑢
𝑛
− 𝑢) 𝑑𝑥.

(101)

Adapting an argument similar to [4], we have

lim
𝑛→∞

∫
𝐾

∇𝑢𝑛
− ∇𝑢



𝑁
𝑑𝑥 = 0. (102)

Since Σ
𝛿
is finite, it follows that ∇𝑢

𝑛
→ ∇𝑢 a.e. This implies,

up to a subsequence that |∇𝑢
𝑛
|
𝑁−2

∇𝑢
𝑛
⇀ |∇𝑢|

𝑁−2
∇𝑢 in

(𝐿
𝑁/(𝑁−1)

loc (R𝑁
))

𝑁

. Let 𝑛 → ∞ in (76), and 𝑓(𝑥, 𝑢
𝑛
)/|𝑥|

𝛽
→

𝑓(𝑥, 𝑢)/|𝑥|
𝛽 in 𝐿1

loc(R
𝑁
); we obtain

⟨𝐷𝐼 (𝑢) , V⟩ = 0, ∀V ∈ 𝐶∞

0
(R

𝑁
) . (103)

Remark 16. The idea and proof of Lemma 15 follow as in
Lemma 4.1 in [5].

3.2. Min-Max Value. In order to get a more precise informa-
tion about the minimax level obtained by the Mountain Pass
Theorem, we consider the following sequence of scale which
is called the Moser function:

𝑀
𝑙 (𝑥, 𝑟) =

1

𝑤
1/𝑁

𝑁−1

{{{{{{

{{{{{{

{

(log 𝑙)(𝑁−1)/𝑁
, if |𝑥| ≤ 𝑟

𝑙
,

log (𝑟/ |𝑥|)
(log 𝑙)1/𝑁

, if 𝑟
𝑙
≤ |𝑥| ≤ 𝑟,

0, if |𝑥| ≥ 𝑟.

(104)

Hence, we have𝑀
𝑙
(𝑥, 𝑟) ∈ 𝑊

1,𝑁
(R𝑁

), the support of𝑀
𝑙
(𝑥, 𝑟)

is the ball 𝐵
𝑟
(0), and

∫
R𝑁


∇𝑀

𝑙 (𝑥, 𝑟)


𝑁

𝑑𝑥 = 1,

∫
R𝑁


𝑀

𝑙 (𝑥, 𝑟)


𝑁

𝑑𝑥 = 𝑜(
1

log 𝑙
) .

(105)

Let𝑀
𝑙
(𝑥, 𝑟) = 𝑀

𝑙
(𝑥, 𝑟)/‖𝑀

𝑙
(𝑥, 𝑟)‖

𝑁

𝐸
; we have

𝑀
𝑁/(𝑁−1)

𝑙
(𝑥, 𝑟) = 𝑤

−1/(𝑁−1)

𝑁−1
log 𝑙 + 𝑑

𝑙
, for |𝑥| ≤ 𝑟

𝑙
,

(106)

where

𝑑
𝑙
= 𝑤

−1/(𝑁−1)

𝑁−1
log 𝑙 (𝑀𝑙 (𝑥, 𝑟)



−1/(𝑁−1)

𝐸
− 1) . (107)

From (105), we conclude that ‖𝑀
𝑙
(𝑥, 𝑟)‖

𝐸
→ 1, as 𝑙 → ∞.

Consequently, we have

𝑑
𝑙

log 𝑙
→ 0, as 𝑙 → ∞. (108)

Lemma 17. Suppose that (H1)–(H3) and (f1)–(f6) hold. Then
there exists 𝑘 ∈ N such that

max
𝑡≥0

{
𝑡
𝑁

𝑁
− ∫

R𝑁

𝐹 (𝑥, 𝑡𝑀
𝑘
)

|𝑥|
𝛽

𝑑𝑥 −
𝜆

𝑁
∫
R𝑁

𝑡𝑀𝑘



𝑁

|𝑥|
𝛽
𝑑𝑥}

<
1

𝑁
(
𝑁 − 𝛽

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

.

(109)

Proof. Choose 𝑟 > 0 as in (f6) and 𝛽
0
> 0 such that

lim
𝑠→∞

𝑠𝑓 (𝑥, 𝑠) exp (−𝛼0|𝑠|
𝑁/(𝑁−1)

)

≥ 𝛽
0
>

2

𝑒(𝛼𝑁𝑑(𝑁−𝛽)/𝑁) + 𝐶𝑟𝑁−𝛽 − 𝑟𝑁−𝛽/ (𝑁 − 𝛽)

× (
𝑁 − 𝛽

𝛼
0

)

𝑁−1

,

(110)

where

𝐶 = lim
𝑘→∞

𝜉
𝑘
log 𝑘∫

𝜉𝑘

0

exp [ (𝑁 − 𝛽)

× log 𝑘 (𝑠𝑁/(𝑁−1)
− 𝜉

𝑘
𝑠)] 𝑑𝑠 > 0,

𝜉
𝑘
=

𝑀

𝑘

𝐸
, 𝐶 ≥

1 − 𝑒
−(𝑁−𝛽) log 𝑛

𝑁 − 𝛽
.

(111)

Suppose, by contradiction, that, for all 𝑘, we get

max
𝑡≥0

{
𝑡
𝑁

𝑁
− ∫

R𝑁

𝐹 (𝑥, 𝑡𝑀
𝑘
)

|𝑥|
𝛽

𝑑𝑥 −
𝜆

𝑁
∫
R𝑁

𝑡𝑀𝑘



𝑁

|𝑥|
𝛽
𝑑𝑥}

≥
1

𝑁
(
(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

,

(112)

where𝑀
𝑘
(𝑥) = 𝑀

𝑘
(𝑥, 𝑟). For each 𝑘, there exists 𝑡

𝑘
> 0 such

that

𝑡
𝑁

𝑘

𝑁
− ∫

R𝑁

𝐹 (𝑥, 𝑡
𝑘
𝑀

𝑘
)

|𝑥|
𝛽

𝑑𝑥 −
𝜆

𝑁
∫
R𝑁

𝑡𝑘𝑀𝑘



𝑁

|𝑥|
𝛽

𝑑𝑥

= max
𝑡≥0

{
𝑡
𝑁

𝑁
− ∫

R𝑁

𝐹 (𝑥, 𝑡𝑀
𝑘
)

|𝑥|
𝛽

𝑑𝑥

−
𝜆

𝑁
∫
R𝑁

𝑡𝑀𝑘



𝑁

|𝑥|
𝛽
𝑑𝑥} .

(113)
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Thus; we have

𝑡
𝑁

𝑘

𝑁
− ∫

R𝑁

𝐹 (𝑥, 𝑡
𝑘
𝑀

𝑘
)

|𝑥|
𝛽

𝑑𝑥 −
𝜆

𝑁
∫
R𝑁

𝑡𝑘𝑀𝑘



𝑁

|𝑥|
𝛽

𝑑𝑥

≥
1

𝑁
(
(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

.

(114)

From 𝐹(𝑥, 𝑢) ≥ 0, 0 < 𝜆 < 𝜆
1
, we obtain

𝑡
𝑁

𝑘
≥ (

𝑁 − 𝛽

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

. (115)

Let 𝑡 = 𝑡
𝑘
, we have

𝑡
𝑁

𝑘
=

∫
R𝑁
(𝑡

𝑘
𝑀

𝑘
𝑓 (𝑥, 𝑡

𝑘
𝑀

𝑘
) /|𝑥|

𝛽
) 𝑑𝑥

(1 − 𝜆∫
|𝑥|≤𝑟

(
𝑀𝑘



𝑁
/|𝑥|

𝛽
) 𝑑𝑥)

≥

∫
|𝑥|≤𝑟

(𝑡
𝑘
𝑀

𝑘
𝑓 (𝑥, 𝑡

𝑘
𝑀

𝑘
) /|𝑥|

𝛽
) 𝑑𝑥

1 + 𝜆/𝜆
1

.

(116)

By (f6), given that 𝜏 > 0, there exist 𝑅
𝜏
> 0 and |𝑥| ≤ 𝑟; we

have

𝑢𝑓 (𝑥, 𝑢) ≥ (𝛽0
− 𝜏) exp (𝛼

0|𝑢|
𝑁/(𝑁−1)

) . (117)

From (116) and (117), for large 𝑘, we obtain

𝑡
𝑁

𝑘
≥

𝜆
1
(𝛽

0
− 𝜏) ∫

|𝑥|≤𝑟/𝑘
(exp (𝛼

0

𝑡𝑘𝑀𝑘



𝑁/(𝑁−1)
) /|𝑥|

𝛽
) 𝑑𝑥

(𝜆
1
+ 𝜆)

≥
(𝛽

0
− 𝜏) 𝑘

−𝑁+𝛽
𝑤

𝑁−1
𝑟
𝑁−𝛽

2 (𝑁 − 𝛽)

× exp (𝛼
0
𝑡
𝑁/(𝑁−1)

𝑘
𝑤

−1/(𝑁−1)

𝑁−1
log 𝑘 + 𝛼

0
𝑡
𝑁/(𝑁−1)

𝑘
𝑑

𝑘
) .

(118)

Let

𝐿
𝑘
=
𝛼

0
𝑁 log 𝑘
𝛼

𝑁

𝑡
𝑁/(𝑁−1)

𝑘
+ 𝛼

0
𝑡
𝑁/(𝑁−1)

𝑘
𝑑

𝑘
− (𝑁 − 𝛽) log 𝑘;

(119)

we have

1 ≥
(𝛽

0
− 𝜏) 𝑟

𝑁−𝛽
𝑤

𝑁−1

2 (𝑁 − 𝛽)
exp 𝐿 (𝑘) . (120)

Hence, the sequence {𝑡
𝑘
} is bounded. Otherwise, up to

subsequences, we have lim
𝑘→∞

𝐿(𝑘) = ∞, which leads to a
contradiction. From (108) and (115) and

𝑡
𝑁

𝑘
≥
(𝛽

0
− 𝜏) 𝑟

𝑁−𝛽
𝑤

𝑁−1

2 (𝑁 − 𝛽)

× exp[(𝑁
𝛼

0
𝑡
𝑁/(𝑁−1)

𝑘

𝛼
𝑁

− (𝑁 − 𝛽)) log 𝑘

+𝛼
0
𝑡
𝑁/(𝑁−1)

𝑘
𝑑

𝑘
] ,

(121)

it follows that

𝑡
𝑁

𝑘
→ (

(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

. (122)

From [4], we have

∫
|𝑥|≤𝑟

exp (𝛼
0

𝑡𝑘𝑀𝑘



𝑁/(𝑁−1)
)

|𝑥|
𝛽

𝑑𝑥

≥ ∫
|𝑥|≤𝑟/𝑘

exp (𝛼
𝑁

𝑀𝑘



𝑁/(𝑁−1)
(𝑁 − 𝛽) /𝑁)

|𝑥|
𝛽

𝑑𝑥

+ ∫
𝑟/𝑘≤|𝑥|≤𝑟

exp (𝛼
𝑁

𝑀𝑘



𝑁/(𝑁−1)
(𝑁 − 𝛽) /𝑁)

|𝑥|
𝛽

𝑑𝑥,

∫
|𝑥|≤𝑟/𝑘

exp (𝛼
𝑁

𝑀𝑘



𝑁/(𝑁−1)
(𝑁 − 𝛽) /𝑁)

|𝑥|
𝛽

𝑑𝑥

=
𝑤

𝑁−1

𝑁 − 𝛽
𝑟
𝑁−𝛽

𝑘
[𝑁−𝛽+(𝑑𝑘𝛼𝑁/ log 𝑘)(𝑁−𝛽)/𝑁]

.

(123)

Now, using the change of variable

𝑠 =
log (𝑟/ |𝑥|)
𝜁
𝑘
log 𝑘

with 𝜁
𝑘
=
𝑀𝑘

𝐸
, (124)

by straight forward computation, we have

∫
𝑟/𝑘≤|𝑥|≤𝑟

exp (𝛼
𝑁

𝑀𝑘



𝑁/(𝑁−1)
(𝑁 − 𝛽) /𝑁)

|𝑥|
𝛽

𝑑𝑥

= 𝑤
𝑁−1

𝑟
𝑁−𝛽

𝜁
𝑘
log 𝑘

× ∫

𝜁
−1

𝑘

0

exp [(𝑁 − 𝛽) log 𝑘 (𝑠𝑁/(𝑁−1)
− 𝜁

𝑘
𝑠)] 𝑑𝑠,

(125)

which converges to 𝐶𝑤
𝑁−1

𝑟
𝑁−𝛽 as 𝑘 → ∞, where

𝐶 = lim
𝑘→∞

𝜁
𝑘
log 𝑘∫

𝜉𝑘

0

exp [ (𝑁 − 𝛽)

× log 𝑘 (𝑠𝑁/(𝑁−1)
− 𝜉

𝑘
𝑠)] 𝑑𝑠>0.

(126)

Finally, let 𝑘 → ∞ in (118); from (108) and (115), we have

(
(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

≥
(𝛽

0
− 𝜏)

2

× [
𝑟
𝑁−𝛽

𝑤
𝑁−1

(𝑁 − 𝛽)
𝑒
(𝛼𝑁𝑑(𝑁−𝛽)/𝑁)

,

+𝐶𝑟
𝑁−𝛽

𝑤
𝑁−1

−
𝑟
𝑁−𝛽

𝑤
𝑁−1

𝑁 − 𝛽
]

(127)
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which implies that

𝛽
0
≤

2

𝑒(𝛼𝑁𝑑(𝑁−𝛽)/𝑁) + 𝐶𝑟𝑁−𝛽 − 𝑟𝑁−𝛽/ (𝑁 − 𝛽)

×(
𝑁 − 𝛽

𝛼
0

)

𝑁−1

.

(128)

Remark 18. The idea and the proof of Lemma 17 come from
Lemma 3.6 in [5].

Lemma 19. There exist 𝜏 > 0 and V ∈ 𝐸 with ‖V‖
𝐸
= 1 such

that 𝐼(𝑡V) < 0 for all 0 < 𝑡 < 𝜍. In particular, inf
‖V‖𝐸≤𝜍

𝐼(𝑢) < 0.

Proof. See Lemma 3.3 in [10].

Corollary 20. Under the conditions (H1)–(H3) and (f1)–(f4),
if 𝜀 → 0, then one has

max
𝑡≥0

𝐼 (𝑡𝑀
𝑘
) <

1

𝑁
(
(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

. (129)

From Lemmas 13 and 19, we conclude that

∞ < 𝐶
0
= inf

‖V‖𝐸≤𝜍

𝐼 (𝑢) < 0. (130)

Corollary 21. There exist 𝜀
2
∈ (0, 𝜀

1
] and 𝑢 ∈ 𝑊1,𝑁

(R𝑁
) with

compact support such that, for all 0 < 𝜀 < 𝜀
2
,

𝐼 (𝑡𝑢) < 𝐶0
+
1

𝑁
(
(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

, ∀𝑡 ≥ 0. (131)

Lemma 22. If {𝑢
𝑘
} is a Cerami sequence for 𝐼(𝑢) at any level

with

lim inf
𝑛→∞

𝑢𝑘

𝐸
< (

(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

, (132)

then {𝑢
𝑘
} possesses a subsequence which converges strongly to a

solution 𝑢
0
of problem (1).

Proof. See Lemma 4.6 in [4].
In conclusion, we have

0 < 𝐶
𝑀
< 𝐶

0
+
1

𝑁
(
(𝑁 − 𝛽)

𝑁

𝛼
𝑁

𝛼
0

)

𝑁−1

. (133)

3.3. Multiplicity Results. In order to prove the existence of
the second solution of problem (1) follows by the minimum
argument and Ekeland’s Variational Principle.

Proposition 23. Under the conditions (H1)–(H3) and (f1)–
(f6), there exists 𝜀

1
> 0 such that, for each 𝜀 with 0 < 𝜀 < 𝜀

1
,

problem (1) has a solution 𝑢
𝑀
via Mountain Pass Theorem.

Proof. See Proposition 4.1 in [5].

Proposition 24. There exists 𝜀
2
> 0 such that, for each 𝜀 with

0 < 𝜀 < 𝜀
2
, (1) has a minimum type solution 𝑢

0
with 𝐼(𝑢

0
) =

𝐶
0
< 0, where 𝐶

0
is defined in (130).

Proof. See Proposition 5.1 in [5].

Proposition 25. If 𝜀
2
> 0 is sufficiently small, then the

solutions of problem (1) obtained in Propositions 23 and 24 are
distinct.

Proof. By Propositions 23 and 24, there exist sequences {𝑢
𝑛
},

{V
𝑛
} in 𝐸 such that

𝑢
𝑛
→ 𝑢

0
, 𝐼 (𝑢

𝑛
) → 𝐶

0
, 𝐷𝐼 (𝑢

𝑛
) 𝑢

𝑛
→ 0,

V
𝑛
⇀ 𝑢

𝑀
, 𝐼 (V

𝑛
) → 𝐶

𝑀
> 0,

𝐷𝐼 (V
𝑛
) V

𝑛
→ 0, ∇V

𝑛
→ ∇𝑢

𝑀
a.e. in R

𝑁
.

(134)

Suppose by contradiction that 𝑢
0
= 𝑢

𝑀
. As in the proof of

Lemma 15, we have

𝑓 (𝑥, V
𝑛
)

|𝑥|
𝛽

→
𝑓 (𝑥, 𝑢

0
)

|𝑥|
𝛽

in 𝐿1

loc (R
𝑁
) , as 𝑛 → ∞.

(135)

Hence, by (f2) and (f3) and Generalized Lebesgue’s Domi-
nated Convergence Theorem, we obtain that there exists 𝑅 >
0 such that

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

→
𝐹 (𝑥, 𝑢

0
)

|𝑥|
𝛽

in 𝐿1

loc (𝐵𝑅
) , as 𝑛 → ∞.

(136)

Claim 1. ∫
R𝑁
(𝐹(𝑥, V

𝑛
)/|𝑥|

𝛽
)𝑑𝑥 → ∫

R𝑁
(𝐹(𝑥, 𝑢

0
)/|𝑥|

𝛽
)𝑑𝑥, as

𝑛 → ∞. Indeed, by (f2) and (f3), we have

𝐹 (𝑥, 𝑠) ≤ 𝐶|𝑠|
𝑁
+ 𝐶𝑓 (𝑥, 𝑠) ≤ 𝐶|𝑠|

𝑁
+ 𝐶𝑅 (𝛼

0
, 𝑠) 𝑠,

∫
R𝑁

𝑓 (𝑥, V
𝑛
) V

𝑛

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶, ∫
R𝑁

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 ≤ 𝐶.

(137)

Hence, on the domain {|𝑥| > 𝑅 and |V
𝑛
| > 𝐴}, we have

∫
{|𝑥|>𝑅,|V𝑛|>𝐴}

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥

≤ 𝐶∫
|𝑥|>𝑅

V𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥 + 𝐶∫

{|𝑥|>𝑅,|V𝑛|>𝐴}

𝑓 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥

≤
𝐶

𝑅𝛽

V𝑛



𝑁

𝐸
+
𝐶

𝐴
∫
R𝑁

𝑓 (𝑥, V
𝑛
) V

𝑛

|𝑥|
𝛽

𝑑𝑥.

(138)

Since ‖V
𝑛
‖
𝑁

𝐸
is bounded, and using (137), we have

∫
{|𝑥|>𝑅,|V𝑛|>𝐴}

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 ≤ 2𝛿. (139)
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For |𝑠| ≤ 𝐴, we have

|𝐹 (𝑥, 𝑠)| ≤ 𝐶|𝑠|
𝑁
+ 𝐶𝑅 (𝛼

0
, 𝑠) 𝑠

≤ |𝑠|
𝑁[

[

𝐶 + 𝐶

∞

∑

𝑗=𝑁−1

𝛼
𝑗

0

𝑗!
𝐴

(𝑁𝑗/(𝑁−1)+1−𝑁)]

]

≤ 𝐶 (𝛼
0
, 𝐴) |𝑠|

𝑁
.

(140)

Since ‖V
𝑛
‖
𝑁

𝐸
is bounded, we have

∫
{|𝑥|>𝑅,|V𝑛|≤𝐴}

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 ≤ 𝛿. (141)

Combining (139) and (141), we have

∫
|𝑥|>𝑅

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 ≤ 3𝛿. (142)

Similarly, we also have

∫
|𝑥|>𝑅

𝐹 (𝑥, 𝑢
0
)

|𝑥|
𝛽

𝑑𝑥 ≤ 3𝛿. (143)

Combining (136), (142), and (143), we obtain



∫
R𝑁

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 − ∫
R𝑁

𝐹 (𝑥, 𝑢
0
)

|𝑥|
𝛽

𝑑𝑥



≤



∫
𝐵𝑅

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 − ∫
𝐵𝑅

𝐹 (𝑥, 𝑢
0
)

|𝑥|
𝛽

𝑑𝑥



+



∫
|𝑥|>𝑅

𝐹 (𝑥, V
𝑛
)

|𝑥|
𝛽

𝑑𝑥 − ∫
|𝑥|>𝑅

𝐹 (𝑥, 𝑢
0
)

|𝑥|
𝛽

𝑑𝑥



≤ 𝐶𝛿.

(144)

Hence, the claim is proved.

Claim 2. 𝐼(V
𝑛
) → 𝐼(𝑢

0
) = 𝐶

0
< 0. Indeed, we have

lim
𝑛→∞

∇V𝑛



𝑁

𝐿
𝑁
(R
𝑁
)

= 𝑁𝐶
𝑀
− lim

𝑛→∞
∫
R𝑁
𝑉 (𝑥)

V𝑛



𝑁
𝑑𝑥

+ 𝑁∫
R𝑁

𝐹 (𝑥, 𝑢
0
)

|𝑥|
𝛽

𝑑𝑥 + 𝜆∫
R𝑁

V𝑛



𝑁

|𝑥|
𝛽
𝑑𝑥.

(145)

From [10], we have


∫
R𝑁

𝑓 (𝑥, V
𝑛
) (V

𝑛
− 𝑢

0
)

|𝑥|
𝛽

𝑑𝑥



→ 0,

∫
R𝑁

∇V𝑛



𝑁−2
∇V

𝑛
(∇V

𝑛
− ∇𝑢

0
) 𝑑𝑥

+ ∫
R𝑁
𝑉 (𝑥)

V𝑛



𝑁−2V
𝑛
(V

𝑛
− 𝑢

0
) 𝑑𝑥 → 0.

(146)

On the other hand, since V
𝑛
→ 𝑢

0
, we have

∫
R𝑁

∇𝑢0



𝑁−2
∇𝑢

0
(∇V

𝑛
− ∇𝑢

0
) 𝑑𝑥 → 0,

∫
R𝑁
𝑉 (𝑥)

𝑢0



𝑁−2
𝑢

0
(V

𝑛
− 𝑢

0
) 𝑑𝑥 → 0.

(147)

By the inequality (|𝑥|𝑁−2
𝑥 − |𝑦|

𝑁−2
𝑦)(𝑥 − 𝑦) ≥ 2

2−𝑁
|𝑥 − 𝑦|

𝑁,
we have

∫
R𝑁

∇V𝑛
− ∇𝑢

0



𝑁
𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥)

V𝑛
− 𝑢

0



𝑁
𝑑𝑥

≤ 𝐶
1
∫
R𝑁
(
∇V𝑛



𝑁−2
∇V

𝑛
−
∇𝑢0



𝑁−2
∇𝑢

0
) (V

𝑛
− 𝑢

0
) 𝑑𝑥

+ 𝐶
1
∫
R𝑁
𝑉 (𝑥) (

V𝑛



𝑁−2V
𝑛
−

𝑢

𝑁−2

0


𝑢

0
(V

𝑛
− 𝑢

0
)) 𝑑𝑥.

(148)

Hence, we have V
𝑛
→ 𝑢

0
in 𝐸 and 𝐼(V

𝑛
) → 𝐼(𝑢

0
) = 𝐶

0
< 0.

It is a contradiction. The proof is complete.
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