
Research Article
Robust Finite-Time𝐻

∞
Control for Nonlinear Markovian

Jump Systems with Time Delay under Partially Known
Transition Probabilities

Dong Yang and Guangdeng Zong

Institute of Automation, Qufu Normal University, Qufu, Shandong 273165, China

Correspondence should be addressed to Guangdeng Zong; zonggdeng@yahoo.com.cn

Received 7 November 2013; Accepted 7 December 2013; Published 20 February 2014

Academic Editor: Hao Shen

Copyright © 2014 D. Yang and G. Zong.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the problem of robust finite-time𝐻
∞
control for a class of nonlinear Markovian jump systems with

time delay under partially known transition probabilities. Firstly, for the nominal nonlinear Markovian jump systems, sufficient
conditions are proposed to ensure finite-time boundedness, 𝐻

∞
finite-time boundedness, and finite-time 𝐻

∞
state feedback

stabilization, respectively.Then, a robust finite-time𝐻
∞
state feedback controller is designed,which, for all admissible uncertainties,

guarantees the𝐻
∞
finite-time boundedness of the corresponding closed-loop system. All the conditions are presented in terms of

strict linear matrix inequalities. Finally a numerical example is provided to demonstrate the effectiveness of all the results.

1. Introduction

Markovian jump systems, a class of hybrid dynamical sys-
tems, which consists of an indexed family of continuous
or discrete-time subsystems and a set of Markovian chain
that orchestrates the switching between them at stochastic
time instants, have received extensive attention over the
past few decades [1, 2]. Many real world processes, such as
economic systems [3], manufacturing systems [4], electric
power systems [5], and communication systems [6], may be
modeled as Markovian jump systems when any malfunction
of sensors or actuators cause a jump behavior in process
performance. Recently, nonlinear Markovian jump systems
have been extensively applied and developed in various
disciplines of science and engineering, and a great number
of excellent works have been developed [7–9].

Generally speaking, the behavior of nonlinearMarkovian
jump systems is determined by the transition probabilities in
the jumping process. Usually, it is assumed that the infor-
mation on transition probabilities was completely known.
However, transition probabilities may be partially known for
some real systems. For example, the networked control sys-
tems can be modeled by nonlinear Markovian jump systems
with partially known transition probabilities when the packet
dropouts or channel delays occur [10]. In addition, there are

few results about the known bounds of transition probability
rates or the fixed connection weighting matrices [11, 12].
Therefore, it is reasonable to study Markovian jump systems
with partially known transition probabilities, especially, when
it is difficult to measure the bounds of transition probability
rates. It stimulates the research interests of the author.

Uncertainties and time delay frequently occur in various
engineering systems, which usually is a source of instability
and often causes undesirable performance and even makes
the system out of control [14, 15]. Therefore, time delay
systemswith robustness have received an increasing attention
among the control community [16–18]. On the other hand,
one may be interested in not only system stability but also a
bound of system trajectories over a fixed short time [19]. For
instance, for the problem of robot arm control [7], when the
robot works under different environmental conditions with
changing payloads, it requests that the angle position of the
arm should not exceed some threshold in a prescribed time
interval. Meanwhile, the scholars attach more importance to
the 𝐻

∞
control problem, which is to find a stable controller

such that the disturbance attenuation level 𝛾 is below a
prescribed level. There are a great number of useful and
interesting results about 𝐻

∞
control problem for linear

and nonlinear Markovian jump systems in the literature
[20–25]. To the best of our knowledge, the synthesis issue of
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robust finite-time𝐻
∞
control for nonlinearMarkovian jump

systems with time delay under partially known transition
probabilities has not been fully investigated until now, which
motivates us to carry out the present study.

In this paper, we investigate the problem of robust finite-
time𝐻

∞
control for nonlinearMarkovian jump systems with

time delay under partially known transition probabilities.
The main contributions lie in the fact that some tractable
sufficient conditions are provided to ensure 𝐻

∞
finite-time

boundedness or finite-time 𝐻
∞

state feedback stabilization.
A robust finite-time𝐻

∞
state feedback controller is designed,

which guarantees the 𝐻
∞

finite-time boundedness of the
closed-loop system. Seeking computational convenience, all
the conditions are cast in the format of linear matrix inequal-
ities. Finally, a numerical example is provided to demonstrate
the effectiveness of the main results.
Notations. Throughout this paper, the notations used are
fairly standard. For real symmetric matrices 𝐴 and 𝐵, the
notation 𝐴 ≥ 𝐵 (resp., 𝐴 > 𝐵) means that the matrix
𝐴-𝐵 is positive semi-definite (resp., positive definite). 𝐴𝑇
represents the transpose matrix of 𝐴, and 𝐴−1 represents the
inversematrix of𝐴.𝜆max(𝐵) (𝜆min(𝐵)) is themaximum (resp.,
minimum) eigenvalue of a matrix 𝐵. diag{𝐴 𝐵} represents
the block diagonalmatrix of𝐴 and𝐵. 𝐼 is the unit matrix with
appropriate dimensions, and the term of symmetry is stated
by the asterisk ∗ in a matrix.R𝑛 stands for the 𝑛-dimensional
Euclidean space, R𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices,
and M = {1, 2, . . . , 𝑁} means a set of positive numbers.
‖ ∗ ‖ denotes the Euclidean norm of vectors. E{⋅} denotes the
mathematical expectation of the stochastic process or vector.
𝐿
𝑛

2
[0, +∞) is the space of 𝑛-dimensional square integrable

function vector over [0, +∞).

2. Problem Formulation and Preliminaries

Give a probability space (Ω, F, P), where Ω is the sample
space, F is the algebra of events, and P is the probability
measure defined on F. The random process {𝑟

𝑡
, 𝑡 ≥ 0} is

a Markovian stochastic process taking values in a finite set
M = {1, 2, . . . , 𝑁} with the transition probability rate matrix
Π = {𝜋

𝑖𝑗
}, 𝑖, 𝑗 ∈M, and the transition probability frommode

𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ𝑡 is expressed as

𝑃 {𝑟
𝑡+Δ𝑡

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 = 𝑗,

(1)

with the transition probability rates 𝜋
𝑖𝑗
≥ 0, for 𝑖, 𝑗 ∈ M,

𝑖 ̸= 𝑗, and ∑
𝑁

𝑗=1,𝑖 ̸= 𝑗
𝜋
𝑖𝑗

= −𝜋
𝑖𝑖
, where Δ𝑡 > 0, and

lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) = 0.
Consider the following nonlinear Markovian jump sys-

tem with time delay in the probability space (Ω,F,P):

𝑥̇ (𝑡) = (𝐴 (𝑟
𝑡
) + Δ𝐴 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + Δ𝐴

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ (𝐵 (𝑟
𝑡
) + Δ𝐵 (𝑟

𝑡
)) 𝑢 (𝑡) + 𝐺 (𝑟

𝑡
) 𝑤 (𝑡)

+ 𝑓 (𝑟
𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝐶 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) + 𝐷 (𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] ,

(2)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input, 𝑤(𝑡) ∈ 𝐿𝑛

2
[0, +∞) is an arbitrary external disturbance,

𝑧(𝑡) ∈ R𝑙 is the control output, 𝜑(𝑡) represents a vector-
valued initial function, and 𝜏 ∈ R+ is the constant delay.
𝑓(⋅, ⋅, ⋅): M × R𝑛 × R𝑛 → R𝑚 is an unknown nonlinear
function. 𝐴(𝑟

𝑡
), 𝐴

𝑑
(𝑟
𝑡
), 𝐵(𝑟

𝑡
), 𝐺(𝑟

𝑡
), 𝐶(𝑟

𝑡
), 𝐶

𝑑
(𝑟
𝑡
), 𝐷(𝑟

𝑡
), and

𝐸(𝑟
𝑡
) are known mode-dependent constant matrices with

appropriate dimensions. Δ𝐴(𝑟
𝑡
), Δ𝐴

𝑑
(𝑟
𝑡
), and Δ𝐵(𝑟

𝑡
) are

unknown matrices, denoting the uncertainties in the system,
and the uncertainties are time-varying but norm bounded
uncertainties satisfying

Δ𝐴 (𝑟
𝑡
) = 𝑀

1
(𝑟
𝑡
) 𝐹 (𝑡, 𝑟

𝑡
)𝑁

1
(𝑟
𝑡
) ,

Δ𝐵 (𝑟
𝑡
) = 𝑀

2
(𝑟
𝑡
) 𝐹 (𝑡, 𝑟

𝑡
)𝑁

2
(𝑟
𝑡
) ,

Δ𝐴
𝑑
(𝑟
𝑡
) = 𝑀

3
(𝑟
𝑡
) 𝐹 (𝑡, 𝑟

𝑡
)𝑁

3
(𝑟
𝑡
) ,

(3)

where𝑀
1
(𝑟
𝑡
), 𝑁

1
(𝑟
𝑡
),𝑀

2
(𝑟
𝑡
), 𝑁

2
(𝑟
𝑡
),𝑀

3
(𝑟
𝑡
), and 𝑁

3
(𝑟
𝑡
) are

known mode-dependent matrices with appropriate dimen-
sions and 𝐹(𝑡, 𝑟

𝑡
) is the time-varying unknown matrix func-

tion with Lebesgue norm measurable elements satisfying

𝐹(𝑡, 𝑟
𝑡
)
𝑇

𝐹 (𝑡, 𝑟
𝑡
) ≤ 𝐼. (4)

Consider the following state feedback controller:

𝑢 (𝑡) = 𝐾 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐾

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) , (5)

where 𝐾(𝑟
𝑡
) and 𝐾

𝑑
(𝑟
𝑡
) are the state feedback gains to be

designed. Then the closed-loop system is as follows:

𝑥̇ (𝑡) = (𝐴 (𝑟
𝑡
) + Δ𝐴 (𝑟

𝑡
) + 𝐵 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)

+Δ𝐵 (𝑟
𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + Δ𝐴

𝑑
(𝑟
𝑡
) + 𝐵 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)

+Δ𝐵 (𝑟
𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐺 (𝑟
𝑡
) 𝑤 (𝑡) + 𝑓 (𝑟

𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = (𝐶 (𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐶
𝑑
(𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] .

(6)

For notational simplicity, when 𝑟(𝑡) = 𝑖, 𝑖 ∈ M, 𝐴(𝑟
𝑡
),

𝐴
𝑑
(𝑟
𝑡
), 𝐵(𝑟

𝑡
), 𝐺(𝑟

𝑡
), 𝐾(𝑟

𝑡
), 𝐾

𝑑
(𝑟
𝑡
), 𝐶(𝑟

𝑡
), 𝐶

𝑑
(𝑟
𝑡
), 𝐷(𝑟

𝑡
), 𝐸(𝑟

𝑡
),

Δ𝐴(𝑟
𝑡
),Δ𝐵(𝑟

𝑡
),𝑀

1
(𝑟
𝑡
),𝑁

1
(𝑟
𝑡
),𝑀

2
(𝑟
𝑡
),𝑁

2
(𝑟
𝑡
),𝑀

3
(𝑟
𝑡
),𝑁

3
(𝑟
𝑡
),

and 𝑓(𝑟
𝑡
, 𝑥(𝑡), 𝑥(𝑡 − 𝜏)) are, respectively, denoted as 𝐴

𝑖
, 𝐴

𝑑𝑖
,

𝐵
𝑖
, 𝐺

𝑖
, 𝐾

𝑖
, 𝐾

𝑑𝑖
, 𝐶

𝑖
, 𝐶

𝑑𝑖
, 𝐷

𝑖
, 𝐸

𝑖
, Δ𝐴

𝑖
, Δ𝐵

𝑖
,𝑀

1𝑖
, 𝑁

1𝑖
,𝑀

2𝑖
, 𝑁

2𝑖
,

𝑀
3𝑖
,𝑁

3𝑖
, and 𝑓

𝑖
(𝑥(𝑡), 𝑥(𝑡 − 𝜏)).
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In addition, the transition probability rates are considered
to be partially known; that is, some elements in matrix Π =

{𝜋
𝑖𝑗
} are unknown. For instance, for system (2) with four

subsystems, the transition probability rate matrix Π may be
as

Π =

[

[

[

[

𝜋
11
𝜋
12

? ?

? ? 𝜋
23
𝜋
24

𝜋
31

? 𝜋
33

?

𝜋
41

? ? ?

]

]

]

]

, (7)

where “?” represents the unknown transition probability rate.
∀𝑖 ∈M, we denoteM = 𝐿

𝑖

𝑘
∪ 𝐿

𝑖

𝑢𝑘
, and

𝐿
𝑖

𝑘
≜ {𝑗 : 𝜋

𝑖𝑗
is known, for 𝑗 ∈M} ,

𝐿
𝑖

𝑢𝑘
≜ {𝑗 : 𝜋

𝑖𝑗
is unknown, for 𝑗 ∈M} .

(8)

Moreover, if 𝐿𝑖
𝑘
̸= 0, it is further described as

𝐿
𝑖

𝑘
= {𝑘

𝑖

1
, 𝑘
𝑖

2
, . . . 𝑘

𝑖

𝑚
} , 1 ≤ 𝑚 ≤M, (9)

where 𝑘𝑖
𝑚

∈ M represents the 𝑚th known transition
probability rate of the set 𝐿𝑖

𝑘
in the 𝑖th row of the transition

probability rate matrix Π.

Remark 1. When 𝐿𝑖
𝑢𝑘
= 0, 𝐿𝑖

𝑘
= M, it is reduced to the

case where the transition probability rates of the Markovian
jump process {𝑟

𝑡
, 𝑡 ≥ 0} are completely known. When 𝐿𝑖

𝑘
=

0, 𝐿𝑖
𝑢𝑘
= M, it means that the transition probability rates

of the Markovian jump process {𝑟
𝑡
, 𝑡 ≥ 0} are completely

unknown.Mixing the above two aspects, here, a general form
is considered.

In this paper, the following assumptions, definitions, and
lemmas play an important role in our later development.

Assumption 2. The external disturbance 𝑤(𝑡) is varying and
satisfies the constraint condition:

∫

𝑇

𝑡0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 ≤ 𝑑, 𝑑 ≥ 0. (10)

Assumption 3. ∀𝑖 ∈ M, 𝑓
𝑖
(0, 0) = 0, and 𝑓

𝑖
(𝑥(𝑡), 𝑥(𝑡 − 𝜏))

satisfies the following inequality
󵄩
󵄩
󵄩
󵄩
𝑓
𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))

󵄩
󵄩
󵄩
󵄩

2

≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
]

𝑇

[

𝐹
𝑖

11
𝐹
𝑖

12

∗ 𝐹
𝑖

22

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
] ,

(11)

where

𝐹
𝑖
:= [

𝐹
𝑖

11
𝐹
𝑖

12

∗ 𝐹
𝑖

22

] ≥ 0. (12)

Definition 4 (finite-time stability). For a given time constant
𝑇 > 0, system (2) (𝑢(𝑡) = 0, 𝑤(𝑡) = 0) is said to be finite-time
stable with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
), if

E {𝑥
𝑇

0
𝐻
𝑖
𝑥
0
} ≤ 𝑐

1
󳨐⇒ E {𝑥(𝑡)

𝑇

𝐻
𝑖
𝑥 (𝑡)} ≤ 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] ,

(13)

where 0 < 𝑐
1
< 𝑐

2
,𝐻

𝑖
> 0.

Definition 5 (finite-time boundedness). For a given time
constant 𝑇 > 0, system (2) (𝑢(𝑡) = 0) is said to be finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if the condition (13)

holds, where 0 < 𝑐
1
< 𝑐

2
,𝐻

𝑖
> 0.

Definition 6 (𝐻
∞

finite-time boundedness). For a given time
constant 𝑇 > 0, system (2) (𝑢(𝑡) = 0) is said to be𝐻

∞
finite-

time bounded with respect to (𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exists

a positive constant 𝛾, such that the following two conditions
are true:

(1) system (2) is finite-time bounded with respect to
(𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑);

(2) under zero initial condition (𝑥(𝑡
0
) = 0, 𝑡

0
= 0), for

any external disturbance𝑤(𝑡) ̸= 0 satisfying condition
(10), the control output 𝑧(𝑡) of system (2) satisfies

E{∫
𝑇

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡} ≤ 𝛾
2

∫

𝑇

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡. (14)

Definition 7 (finite-time 𝐻
∞

state feedback stabilization).
The system (2) is said to be finite-time 𝐻

∞
state feedback

stabilizable with respect to (𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exist a

positive constant 𝛾 and a state feedback controller in the form
of (5), such that the closed-loop system (6) is𝐻

∞
finite-time

bounded.

Definition 8 (see [26]). In the Euclidean space {R𝑛×M×R+},
introduce the stochastic Lyapunov function for system (2) as
𝑉(𝑥(𝑡), 𝑖), and the weak infinitesimal operator satisfies

L𝑉 (𝑥 (𝑡) , 𝑖)

= lim
Δ 𝑡→0

1

Δ
𝑡

[E {𝑉 (𝑥 (𝑡 + Δ
𝑡
) 𝑟 (𝑡 + Δ

𝑡
))} − 𝑉 (𝑥 (𝑡) , 𝑖)]

=

𝜕

𝜕𝑡

𝑉 (𝑥 (𝑡) , 𝑖) +

𝜕

𝜕𝑥

𝑉 (𝑥 (𝑡) , 𝑖) 𝑥̇ (𝑡) +

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑉 (𝑥 (𝑡) , 𝑗) .

(15)

Remark 9. It easily follows from (12) that 𝐹𝑖
11
≥ 0, 𝐹𝑖

22
≥ 0. So

𝐹
𝑖

11
and 𝐹𝑖

22
can be decomposed as

𝐹
𝑖

11
= (𝐹

𝑖

11
)

1/2

(𝐹
𝑖

11
)

1/2

, 𝐹
𝑖

22
= (𝐹

𝑖

22
)

1/2

(𝐹
𝑖

22
)

1/2

. (16)

Remark 10. It is noticed that finite-time stability can be
regarded as a particular case of finite-time boundedness by
setting 𝑤(𝑡) = 0. That is, finite-time boundedness implies
finite-time stability, but the converse is not true.

Lemma 11 (see [27]). Let 𝑇,𝑀, 𝐹, and 𝑁 be real matrices of
appropriate dimensions with𝐹𝑇𝐹 ≤ 𝐼; then for a positive scalar
𝜀 > 0, there holds:

𝑇 +𝑀𝐹𝑁 +𝑁
𝑇

𝐹
𝑇

𝑀
𝑇

≤ 𝑇 + 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁. (17)

The aim in this paper is to find a tractable solution to the
problem of finite-time𝐻

∞
state feedback stabilization.
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3. Main Results

3.1. Finite-Time Boundedness Analysis. In this subsection, we
will consider the problem of finite-time boundedness for the
nominal system of nonlinear Markovian jump system (2)
with 𝐹(𝑡, 𝑟

𝑡
) = 0 for all 𝑡 ≥ 0; that is,

𝑥̇ (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) + 𝐵 (𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐺 (𝑟
𝑡
) 𝑤 (𝑡) + 𝑓 (𝑟

𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝐶 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐶

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏) + 𝐷 (𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] .

(18)

Under the controller (5), the closed-loop system is

𝑥̇ (𝑡) = (𝐴 (𝑟
𝑡
) + 𝐵 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + 𝐵 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐺 (𝑟
𝑡
) 𝑤 (𝑡) + 𝑓 (𝑟

𝑡
, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = (𝐶 (𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐶
𝑑
(𝑟
𝑡
) + 𝐷 (𝑟

𝑡
)𝐾

𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏)

+ 𝐸 (𝑟
𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏 0] .

(19)

Theorem 12. Given 𝑇 > 0, if there exist positive constants 𝛼
and 𝜀

𝑓𝑖
, symmetric positive definite matrices 𝑃

𝑖
∈ R𝑛×𝑛, 𝑄 ∈

R𝑞×𝑞 and 𝑆 ∈ R𝑝×𝑝, and symmetric matrices𝑊
𝑖
∈ R𝑛×𝑛, such

that for all 𝑖 ∈M

[

[

Λ
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0

∗ ∗ −𝛼𝑆

]

]

< 0, (20)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (21)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (22)

𝑐
1
[𝜆max (𝑃̃𝑖) + 𝜏𝜆max (𝑄𝑖)] + 𝑑𝜆max (𝑆) (1 − 𝑒

−𝛼𝑇

)

𝜆min (𝑃̃𝑖)

< 𝑒
−𝛼𝑇

𝑐
2
,

(23)

then system (18) (𝑢 = 0) under partially known transition prob-
abilities is finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑),

where

Λ
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

𝑃̃
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(24)

Proof. For system (18) (𝑢 = 0), choose a Lyapunov function
candidate

𝑉 (𝑥 (𝑡) , 𝑖) = 𝑉
1
(𝑥 (𝑡) , 𝑖) + 𝑉

2
(𝑥 (𝑡) , 𝑖)

= 𝑥(𝑡)
𝑇

𝑃
𝑖
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝜉) 𝑄𝑥 (𝜉) 𝑑𝜉,

(25)

where 𝑃
𝑖
> 0. Then by Definition 8, we get

L𝑉
1
(𝑥 (𝑡) , 𝑖) = 𝑥

𝑇

(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗

]

]

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝑥

𝑇

(𝑡) 𝑃
𝑖
𝐺
𝑖
𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑓
𝑖
+ 𝑥

𝑇

(𝑡 − 𝜏)𝐴
𝑇

𝑑𝑖
𝑃
𝑖
𝑥 (𝑡)

+ 𝑤
𝑇

(𝑡) 𝐺
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑓

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) .

(26)

Based on Lemma 11, there exist scalars 𝜀
𝑓𝑖
such that

𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑓
𝑖
+ 𝑓

𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡)

≤ 𝜀
𝑓𝑖
𝑓
𝑇

𝑖
𝑓
𝑖
+ 𝜀

−1

𝑓𝑖
𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑃
𝑖
𝑥 (𝑡)

≤ 𝜀
𝑓𝑖
[𝑥
𝑇

(𝑡) 𝐹
𝑖

11
𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝐹
𝑖

12
𝑥 (𝑡 − 𝜏)

+𝑥
𝑇

(𝑡 − 𝜏) 𝐹
𝑖

21
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏) 𝐹
𝑖

22
𝑥 (𝑡 − 𝜏)]

+ 𝜀
−1

𝑓𝑖
𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑃
𝑖
𝑥 (𝑡) .

(27)

Substituting (27) into (26) yields

L𝑉
1
(𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇

(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜀

𝑓𝑖
𝐹
𝑖

11

]

]

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇

(𝑡) [𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡 − 𝜏) [𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡) + 𝑤

𝑇

(𝑡) 𝐺
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) 𝜀
𝑓𝑖
𝐹
𝑖

22
𝑥 (𝑡 − 𝜏) .

(28)

It is easy to obtain that

L𝑉
2
(𝑥 (𝑡) , 𝑖) = 𝑥

𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏) .

(29)
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From (28) and (29), the following holds:
L𝑉 (𝑥 (𝑡) , 𝑖)

=L𝑉
1
(𝑥 (𝑡) , 𝑖) +L𝑉

2
(𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇

(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄

]

]

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇

(𝑡) [𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇

(𝑡) 𝐺
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏) [𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) [𝜀
𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏) .

(30)

Due to the fact that ∑𝑁
𝑗=1
𝜋
𝑖𝑗
𝑊
𝑖
= 0 for arbitrary symmetric

matrices𝑊
𝑖
, (30) can be written as

L𝑉 (𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇

(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄

]

]

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇

(𝑡) [𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇

(𝑡) 𝐺
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏) [𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) [𝜀
𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏)

= 𝑥
𝑇

(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄

]

]

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇

(𝑡) [𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇

(𝑡) 𝐺
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏) [𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) [𝜀
𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡) ∑

𝑗∈𝐿
𝑖

𝑢𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) 𝑥 (𝑡) .

(31)

Noticing that 𝜋
𝑖𝑗
≥ 0 for all 𝑖 ̸= 𝑗 and 𝜋

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑖 ̸= 𝑗
𝜋
𝑖𝑗
< 0

for all 𝑖 ∈ M, if 𝑖 ∈ 𝐿
𝑖

𝑘
(the elements of the diagonal

are known), by inequalities (20) and (21), the following
inequalities hold:

L𝑉 (𝑥 (𝑡) , 𝑖) < 𝛼𝑥(𝑡)
𝑇

𝑃
𝑖
𝑥 (𝑡) + 𝛼𝑤

𝑇

(𝑡) 𝑆𝑤 (𝑡)

< 𝛼𝑥(𝑡)
𝑇

𝑃
𝑖
𝑥 (𝑡) + 𝛼∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝜉) 𝑄𝑥 (𝜉) 𝑑𝜉

+ 𝛼𝑤
𝑇

(𝑡) 𝑆𝑤 (𝑡)

= 𝛼𝑉 (𝑥 (𝑡) , 𝑖) + 𝛼𝑤
𝑇

(𝑡) 𝑆𝑤 (𝑡) .

(32)

If 𝑖 ∈ 𝐿𝑖
𝑢𝑘

(the elements of the diagonal are unknown),
according to the inequalities (20)–(22), inequality (32) holds.
Multiplying (32) by 𝑒−𝛼𝑡 yields

L (𝑒
−𝛼𝑡

𝑉 (𝑥 (𝑡) , 𝑖)) < 𝛼𝑒
−𝛼𝑡

𝑤
𝑇

(𝑡) 𝑆𝑤 (𝑡) . (33)

Applying Dynkin’s formula for (33), we obtain

𝑒
−𝛼𝑡

𝑉 (𝑥 (𝑡) , 𝑖) − 𝑉 (𝑥
0
, 𝑡
0
) < 𝛼∫

𝑡

0

𝑒
−𝛼𝑠

𝑤
𝑇

(𝑠) 𝑆𝑤 (𝑠) 𝑑𝑠,

(34)

which shows

𝑉 (𝑥 (𝑡) , 𝑖) < 𝑒
𝛼𝑡

𝑉 (𝑥
0
, 𝑡
0
) + 𝛼𝑒

𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠

𝑤
𝑇

(𝑠) 𝑆𝑤 (𝑠) 𝑑𝑠

< 𝑒
𝛼𝑡

𝑉 (𝑥
0
, 𝑡
0
) + 𝛼𝑑𝜆max (𝑆) 𝑒

𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠

𝑑𝑠

= 𝑒
𝛼𝑡

[𝑉 (𝑥
0
, 𝑡
0
) + 𝛼𝑑𝜆max (𝑆)

1 − 𝑒
−𝛼𝑡

𝛼

] .

(35)

This together with 𝑃̃
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
and 𝑄

𝑖
=

𝐻
−1/2

𝑖
𝑄𝐻

−1/2

𝑖
gives rise to

𝑉 (𝑥 (𝑡) , 𝑖) < 𝑒
𝛼𝑡

[𝑐
1
(𝜆max (𝑃̃𝑖) + 𝜏𝜆max (𝑄𝑖))

+𝑑𝜆max (𝑆) (1 − 𝑒
−𝛼𝑡

) ] .

(36)

Considering that

𝑉 (𝑥 (𝑡) , 𝑖) ≥ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) ≥ 𝜆min (𝑃̃𝑖) 𝑥

𝑇

(𝑡)𝐻
𝑖
𝑥 (𝑡) (37)

and combining (36) and (37), it follows that

E {𝑥
𝑇

(𝑡)𝐻
𝑖
𝑥 (𝑡)}

<

𝑒
𝛼𝑡

[𝑐
1
(𝜆max (𝑃̃𝑖)+𝜏𝜆max (𝑄𝑖))+𝑑𝜆max (𝑆) (1−𝑒

−𝛼𝑡

)]

𝜆min (𝑃̃𝑖)

< 𝑐
2
.

(38)

Condition (38) implies that, for 𝑡 ∈ [0 𝑇], E{𝑥𝑇(𝑡)𝐻
𝑖
𝑥(𝑡)} <

𝑐
2
.
The proof is complete.
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Corollary 13. Given 𝑇 > 0, if there exist positive constants 𝛼,
𝜀
𝑓𝑖
, and 𝛾, symmetric positive definite matrices 𝑃

𝑖
∈ R𝑛×𝑛, and

𝑄 ∈ R𝑞×𝑞, and symmetric matrices𝑊
𝑖
∈ R𝑛×𝑛, such that for all

𝑖 ∈M

[

[

[

[

Λ
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0

∗ ∗ −𝛾
2

𝐼

]

]

]

]

< 0, (39)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (40)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (41)

𝑐
1
[𝜆max (𝑃̃𝑖) + 𝜏𝜆max (𝑄𝑖)] +

𝛾
2

𝑑

𝛼

(1 − 𝑒
−𝛼𝑇

)

< 𝜆min (𝑃̃𝑖) 𝑒
−𝛼𝑇

𝑐
2
,

(42)

then system (18) (𝑢 = 0)under partially known transition prob-
abilities is finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑),

where
Λ
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

𝑃̃
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(43)

3.2. Finite-Time 𝐻
∞

Performance Analysis. In this subsec-
tion, based on Corollary 13, some sufficient conditions will be
provided ensuring the𝐻

∞
finite-time boundedness of system

(18) and the𝐻
∞

finite-time stabilization of system (19).

Theorem 14. Given 𝑇 > 0 and 𝑤(𝑡) satisfying (10), system
(18) (𝑢 = 0) under partially known transition probabilities is
𝐻
∞
finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there

exist positive constants 𝛼, 𝜀
𝑓𝑖
, and 𝛾, symmetric positive definite

matrices 𝑃
𝑖
∈ R𝑛×𝑛 and 𝑄 ∈ R𝑞×𝑞, and symmetric matrices

𝑊
𝑖
∈ R𝑛×𝑛, such that for all 𝑖 ∈M

[

[

[

[

Λ
1𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
+ 𝐶

𝑇

𝑖
𝐶
𝑑𝑖
𝑃
𝑖
𝐺
𝑖
+ 𝐶

𝑇

𝑖
𝐸
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
+ 𝐶

𝑇

𝑑𝑖
𝐶
𝑑𝑖

𝐶
𝑇

𝑑𝑖
𝐸
𝑖

∗ ∗ −𝛾
2

𝐼 + 𝐸
𝑇

𝑖
𝐸
𝑖

]

]

]

]

< 0,

(44)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (45)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (46)

𝑐
1
[𝜆max (𝑃̃𝑖) + 𝜏𝜆max (𝑄𝑖)] +

𝛾
2

𝑑

𝛼

(1 − 𝑒
−𝛼𝑇

)

< 𝜆min (𝑃̃𝑖) 𝑒
−𝛼𝑇

𝑐
2
,

(47)

where

Λ
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

𝑃̃
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(48)

Proof. From (44), the following inequality holds:

[

[

[

[

[

[

[

Λ
1𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
+ 𝐶

𝑇

𝑖
𝐶
𝑑𝑖
𝑃
𝑖
𝐺
𝑖
+ 𝐶

𝑇

𝑖
𝐸
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
+ 𝐶

𝑇

𝑑𝑖
𝐶
𝑑𝑖

𝐶
𝑇

𝑑𝑖
𝐸
𝑖

∗ ∗ −𝛾
2

𝐼 + 𝐸
𝑇

𝑖
𝐸
𝑖

]

]

]

]

]

]

]

=

[

[

[

[

Λ
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0

∗ ∗ −𝛾
2

𝐼

]

]

]

]

+

[

[

[

[

[

[

[

𝐶
𝑇

𝑖

𝐶
𝑇

𝑑𝑖

𝐸
𝑇

𝑖

]

]

]

]

]

]

]

[𝐶
𝑖
𝐶
𝑇

𝑑𝑖
𝐸
𝑖
]

< 0.

(49)

This togetherwith (49) implies (39).Then based on (39)–(42),
system (18) is finite-time bounded.

Then, let us prove that inequality (14) is satisfied for any
external disturbance𝑤(𝑡) ̸= 0under zero initial condition. For
system (18), choosing a Lyapunov function candidate (25), we
have

L𝑉 (𝑥 (𝑡) , 𝑖)

≤ 𝑥
𝑇

(𝑡)
[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖

+∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

𝑓𝑖
𝐹
𝑖

11
+ 𝑄

]

]

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐺
𝑖
𝑤 (𝑡) + 𝑥

𝑇

(𝑡) [𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
] 𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇

(𝑡) 𝐺
𝑇

𝑖
𝑃
𝑖
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏) [𝐴
𝑇

𝑑𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

21
] 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) [𝜀
𝑓𝑖
𝐹
𝑖

22
− 𝑄] 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡) ∑

𝑗∈𝐿
𝑖

𝑢𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) 𝑥 (𝑡) ,

(50)

for any symmetric matrices𝑊
𝑖
.
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According to inequality (44), (45), and (46), we derive

L𝑉 (𝑥 (𝑡) , 𝑖) < 𝛼𝑉 (𝑥 (𝑡) , 𝑖) + 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 𝑧
𝑇

(𝑡) 𝑧 (𝑡) ,

L [𝑒
−𝛼𝑡

𝑉 (𝑥 (𝑡) , 𝑖)] < 𝑒
−𝛼𝑡

[𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 𝑧
𝑇

(𝑡) 𝑧 (𝑡)] .

(51)

Under zero initial condition, using Dynkin’s formula yields

𝑒
−𝛼𝑡

𝑉 (𝑥 (𝑡) , 𝑖)

< ∫

𝑡

0

𝑒
−𝛼𝑠

[𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠) − 𝑧
𝑇

(𝑠) 𝑧 (𝑠)] 𝑑𝑠,

E∫
𝑡

0

𝑒
−𝛼𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 < ∫

𝑡

0

𝑒
−𝛼𝑠

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠.

(52)

Further, it implies that

E∫
𝑇

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 < 𝛾
2

𝑒
𝛼𝑇

∫

𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠. (53)

Therefore expression (14) holds with 𝛾 = √𝑒𝛼𝑇𝛾.
The proof is complete.

Corollary 15. Given 𝑇 > 0 and 𝑤(𝑡) satisfying (10), system
(19)under partially known transition probabilities is finite-time
𝐻
∞

state feedback stabilizable via a state feedback controller
(5) with respect to (𝑐

1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exist positive

constants 𝛼, 𝜀
𝑓𝑖
, and 𝛾, symmetric positive definite matrices

𝑃
𝑖
∈ R𝑛×𝑛 and 𝑄 ∈ R𝑞×𝑞, and symmetric matrices𝑊

𝑖
∈ R𝑛×𝑛,

such that for all 𝑖 ∈M

[

[

[

[

Λ̃
1𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
+ 𝐶

𝑇

𝑖
𝐶
𝑑𝑖
𝑃
𝑖
𝐺
𝑖
+ 𝐶

𝑇

𝑖
𝐸
𝑖

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
+ 𝐶

𝑇

𝑑𝑖
𝐶
𝑑𝑖

𝐶
𝑇

𝑑𝑖
𝐸
𝑖

∗ ∗ −𝛾
2

𝐼 + 𝐸
𝑇

𝑖
𝐸
𝑖

]

]

]

]

< 0,

(54)

𝑃
𝑗
−𝑊

𝑖
≤ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (55)

𝑃
𝑗
−𝑊

𝑖
≥ 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (56)

𝑐
1
[𝜆max (𝑃̃𝑖) + 𝜏𝜆max (𝑄𝑖)] +

𝛾
2

𝑑

𝛼

(1 − 𝑒
−𝛼𝑇

)

< 𝜆min (𝑃̃𝑖) 𝑒
−𝛼𝑇

𝑐
2
,

(57)

where
Λ̃
1𝑖
= 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝑄

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
−𝑊

𝑖
) + 𝜀

−1

𝑓𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

11
− 𝛼𝑃

𝑖
,

𝐴
𝑖
= 𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑖
, 𝐴

𝑑𝑖
= 𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
,

𝐶
𝑇

𝑖
= 𝐶

𝑖
+ 𝐷

𝑖
𝐾
𝑖
, 𝐶

𝑑𝑖
= 𝐶

𝑑𝑖
+ 𝐷

𝑖
𝐾
𝑑𝑖
,

𝑃̃
𝑖
= 𝐻

−1/2

𝑖
𝑃
𝑖
𝐻
−1/2

𝑖
, 𝑄

𝑖
= 𝐻

−1/2

𝑖
𝑄𝐻

−1/2

𝑖
.

(58)

It is clear that (54) is a nonlinear matrix inequality due to
the existence of the nonlinear terms𝐾𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
,𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
,𝐾𝑇
𝑑𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
,

and 𝑃
𝑖
𝐵
𝑖
𝐾
𝑑𝑖
. In order to solve the desired controller 𝐾

𝑖
, we

give the following result.

Theorem 16. Given 𝑇 > 0, system (18) under partially
known transition probabilities is finite-time𝐻

∞
state feedback

stabilizable via a state feedback controller with respect to
(𝑐
1
, 𝑐
2
, 𝑇,𝐻

𝑖
, 𝑑), if there exist positive scalars 𝛼, 𝛾, 𝜀

𝑓𝑖
, 𝜆
1
, and

𝜆
2
, symmetric positive definite matrices𝑋

𝑖
∈ R𝑛×𝑛, symmetric

matricesW
𝑖
∈ R𝑛×𝑛, and matrices 𝑌

𝑖
∈ R𝑚×𝑛 and𝐾

𝑑𝑖
∈ R𝑛×𝑚

such that for all 𝑖 ∈M

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
1

11𝑖
Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

𝑆
1𝑖 (𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑀
1𝑖 (𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑘
,

(59)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
2

11𝑖
Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

𝑆
2𝑖 (𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 0

∗ ∗ −𝛾
2
𝐼 𝐸

𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑀
2𝑖 (𝑥)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑢𝑘
,

(60)

[

−W
𝑖

𝑋
𝑖

∗ −𝑋
𝑗

] < 0, 𝑗 ∈ 𝐿
𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (61)

𝑋
𝑗
−W

𝑗
> 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (62)

[

[

−𝑒
−𝛼𝑇

𝑐
2
+ 𝑐

1
𝜏𝜆
2
+

𝛾
2

𝑑

𝛼

(1 − 𝑒
−𝛼𝑇

) √𝑐1

√𝑐1
−𝜆

1

]

]

< 0, (63)

𝜆
1
𝐻
−1

𝑖
< 𝑋

𝑖
< 𝐻

−1

𝑖
, 0 < 𝑄 < 𝜆

2
𝐻
𝑖
, (64)

where
Π
1

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
+ 𝜋

𝑖𝑖
𝑋
𝑖
− 𝛼𝑋

𝑖
,

Π
2

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
− 𝛼𝑋

𝑖
,

Π
12𝑖
= 𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
+ 𝜀

𝑓𝑖
𝑋
𝑖
𝐹
𝑖

12
,

Π
22𝑖
= −𝑄 + 𝜀

𝑓𝑖
𝐹
𝑖

22
,

Π
14𝑖
= 𝑋

𝑖
𝐶
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐷
𝑇

𝑖
,

Π
24𝑖
= 𝐶

𝑇

𝑑𝑖
+ 𝐾

𝑇

𝑑𝑖
𝐷
𝑇

𝑖
,
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𝑆
1𝑖
(𝑥)

= [√𝜋𝑖𝑘
𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑟−1

𝑋
𝑖
, √𝜋𝑖𝑘

𝑖

𝑟+1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
1𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑟−1

, 𝑋
𝑘
𝑖

𝑟+1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

𝑆
2𝑖
(𝑥) = [√𝜋𝑖𝑘

𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
2𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

(65)

with 𝑘𝑖
1
, 𝑘
𝑖

2
, . . . 𝑘

𝑖

𝑚
described in (9) and 𝑘𝑖

𝑟
= 𝑖. Moreover, the

finite-time 𝐻
∞

state feedback controller gains in (5) are given
by 𝐾

𝑖
= 𝑌

𝑖
𝑋
−1

𝑖
.

Proof. It is clear that system (18) is finite-time 𝐻
∞

state
feedback stabilizable if the conditions (54)–(57) are satisfied.
Notice that inequality (54) is equivalent to the following
condition:

Σ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

Λ̃
1𝑖
𝑃
𝑖
𝐴
𝑑𝑖
+ 𝜀

𝑓𝑖
𝐹
𝑖

12
𝑃
𝑖
𝐺
𝑖
𝐶
𝑇

𝑖
𝑃
𝑖
𝜀
𝑓𝑖
(𝐹
𝑖

11
)

1/2

∗ −𝑄 + 𝜀
𝑓𝑖
𝐹
𝑖

22
0 𝐶

𝑇

𝑑𝑖
0 0

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0.

(66)

Pre- and postmultiplying inequality (66) by block diagonal
matrix diag {𝑃−1

𝑖
𝐼 𝐼 𝐼 𝐼 𝐼}, letting 𝑋

𝑖
= 𝑃

−1

𝑖
, 𝑌
𝑖
= 𝐾

𝑖
𝑋
𝑖
,

andW
𝑖
= 𝑃

−1

𝑖
𝑊
𝑖
𝑃
−1

𝑖
, we have

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1𝑖

Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

∗ Π
22𝑖

0 Π
24𝑖

0 0

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(67)

where

Ξ
1𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

+ ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
− 𝛼𝑋

𝑖
.

(68)

Since 𝜋
𝑖𝑖
< 0, ∀𝑖 ∈ M, inequality (67) is discussed in the

following two cases.

Case 1. When 𝑖 ∈ 𝐿𝑖
𝑘
, the left side of (67) becomes

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
2𝑖

Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

∗ Π
22𝑖

0 Π
24𝑖

0 0

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

∑

𝑗∈𝐿
𝑖

𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(69)

where

Ξ
2𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
− 𝛼𝑋

𝑖
.

(70)

Applying Schur complement lemma to (69), then (59) easily
follows.
Case 2. When 𝑖 ∈ 𝐿𝑖

𝑢𝑘
, the inequality (69) turns into

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
3𝑖

Π
12𝑖

𝐺
𝑖

Π
14𝑖

𝐼 𝜀
𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

∗ Π
22𝑖

0 Π
24𝑖

0 0

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

𝑖
0 0

∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

∑

𝑗∈𝐿
𝑖

𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(71)

where

Ξ
3𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
. (72)

Similar to the proving process of the case one, we can prove
that (60) is true.

Pre- and postmultiplying inequalities (55) and (56) by
𝑃
−1

𝑖
, respectively, and letting 𝑋

𝑖
= 𝑃

−1

𝑖
, 𝑌

𝑖
= 𝐾

𝑖
𝑋
𝑖
,
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andW
𝑖
= 𝑃

−1

𝑖
𝑊
𝑖
𝑃
−1

𝑖
, we have

𝑋
𝑖
𝑋
−1

𝑗
𝑋
𝑖
− 𝑅

𝑖
< 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (73)

𝑋
𝑗
− 𝑅

𝑗
> 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖. (74)

Inequality (73) is equivalent to LMI (61). Denoting 𝑋
𝑖
=

𝑃̃
−1

𝑖
= 𝐻

1/2

𝑖
𝑋
𝑖
𝐻
1/2

𝑖
and taking 𝜆max(𝑋𝑖) = 1/𝜆min(𝑃̃𝑖) into

consideration, we conclude that condition (57) holds. Hence,
the following conditions

𝜆
1
< 𝜆min (𝑋𝑖) , 𝜆max (𝑋𝑖) < 1, 0 < 𝜆min (𝑄) ,

𝜆max (𝑄) < 𝜆2,

(75)

guarantee that

𝑐
1

𝜆
1

+ 𝑐
1
𝜏𝜆
2
+

𝛾
2

𝑑

𝛼

(1 − 𝑒
−𝛼𝑡

) < 𝑒
−𝛼𝑡

𝑐
2
. (76)

It should be easily observed that condition (76) implies LMI
(63) and (75) is equivalent to (64). Therefore if LMIs (59)–
(64) hold, the closed-loop system (19) is 𝐻

∞
finite-time

bounded, and then system (18) can be stabilized via the state
feedback controller (5).

This completes the proof of Theorem 16.

3.3. Robust Finite-Time 𝐻
∞

Control. In this subsection, a
robust finite-time 𝐻

∞
state feedback controller is designed

to guarantee the finite-time 𝐻
∞

state feedback stabilization
of system (2).

Theorem 17. Given 𝑇 > 0, the problem of robust finite-
time𝐻

∞
state feedback stabilizable for system (2) under partly

known transition probabilities is solvable, if there exist positive
scalars 𝛼, 𝛾, 𝜀

𝑓𝑖
, 𝜀
1𝑖
, 𝜀
2𝑖
, 𝜀
3𝑖
, 𝜀
4𝑖
, 𝜆
1
, and 𝜆

2
, symmetric positive

definite matrices 𝑋
𝑖
∈ R𝑛×𝑛, symmetric matrices W

𝑖
∈ R𝑛×𝑛,

and matrices 𝑌
𝑖
∈ R𝑚×𝑛 and 𝐾

𝑑𝑖
∈ R𝑛×𝑚 such that for all

𝑖 ∈M

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π̃
1

11𝑖
Π
12𝑖

𝐺
𝑖
Π
14𝑖

𝑋
𝑖
𝑁
𝑇

1𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

2𝑖
0 0 𝐼 𝜀

𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

𝑆
1𝑖
(𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 𝑁
𝑇

3𝑖
𝐾
𝑇

𝑑𝑖
𝑁
𝑇

2𝑖
0 0 0

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

𝑖
0 0 0 0 0 0 0

∗ ∗ ∗ −𝐼 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝜀
1𝑖
𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
2𝑖
𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3𝑖
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
4𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑀
1𝑖
(𝑥)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑘
, (77)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π̃
2

11𝑖
Π
12𝑖

𝐺
𝑖
Π
14𝑖

𝑋
𝑖
𝑁
𝑇

1𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

2𝑖
0 0 𝐼 𝜀

𝑓𝑖
𝑋
𝑖
(𝐹
𝑖

11
)

1/2

𝑆
2𝑖
(𝑥)

∗ Π
22𝑖

0 Π
24𝑖

0 0 𝑁
𝑇

3𝑖
𝐾
𝑇

𝑑𝑖
𝑁
𝑇

2𝑖
0 0 0

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

𝑖
0 0 0 0 0 0 0

∗ ∗ ∗ −𝐼 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝜀
1𝑖
𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
2𝑖
𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3𝑖
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
4𝑖
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝑓𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑀
2𝑖
(𝑥)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, 𝑖 ∈ 𝐿
𝑖

𝑢𝑘
, (78)

[

−W
𝑖
𝑋
𝑖

∗ −𝑋
𝑗

] < 0, 𝑗 ∈ 𝐿
𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖, (79)

𝑋
𝑗
−W

𝑗
> 0, 𝑗 ∈ 𝐿

𝑖

𝑢𝑘
, 𝑗 = 𝑖, (80)

[

[

[

−𝑒
−𝛼𝑇

𝑐
2
+ 𝑐

1
𝜏𝜆
2
+

𝛾
2

𝑑

𝛼

(1 − 𝑒
−𝛼𝑇

) √𝑐1

√𝑐1
−𝜆

1

]

]

]

< 0, (81)
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𝜆
1
𝐻
−1

𝑖
< 𝑋

𝑖
< 𝐻

−1

𝑖
, 0 < 𝑄 < 𝜆

2
𝐻
𝑖
, (82)

where

Π̃
1

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
+ 𝜀

1𝑖
𝑀
1𝑖
𝑀
𝑇

1𝑖
+ 𝜀

2𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖

+ 𝜀
3𝑖
𝑀
3𝑖
𝑀
𝑇

3𝑖
+ 𝜀

4𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖
+ 𝜋

𝑖𝑖
𝑋
𝑖
− 𝛼𝑋

𝑖
,

Π̃
2

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ 𝑄

𝑖

− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
W
𝑖
+ 𝜀

1𝑖
𝑀
1𝑖
𝑀
𝑇

1𝑖
+ 𝜀

2𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖

+ 𝜀
3𝑖
𝑀
3𝑖
𝑀
𝑇

3𝑖
+ 𝜀

4𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖
− 𝛼𝑋

𝑖
,

Π
12𝑖
= 𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
+ 𝜀

𝑓𝑖
𝑋
𝑖
𝐹
𝑖

12
,

Π
22𝑖
= −𝑄 + 𝜀

𝑓𝑖
𝐹
𝑖

22
,

Π
14𝑖
= 𝑋

𝑖
𝐶
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐷
𝑇

𝑖
,

Π
24𝑖
= 𝐶

𝑇

𝑑𝑖
+ 𝐾

𝑇

𝑑𝑖
𝐷
𝑇

𝑖
,

𝑆
1𝑖
(𝑥)

= [√𝜋𝑖𝑘
𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑟−1

𝑋
𝑖
, √𝜋𝑖𝑘

𝑖

𝑟+1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
1𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑟−1

, 𝑋
𝑘
𝑖

𝑟+1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

𝑆
2𝑖
(𝑥) = [√𝜋𝑖𝑘

𝑖

1

𝑋
𝑖
, . . . , √𝜋𝑖𝑘

𝑖

𝑚

𝑋
𝑖
] ,

𝑀
2𝑖
(𝑥) = diag {𝑋

𝑘
𝑖

1

, . . . , 𝑋
𝑘
𝑖

𝑚

} ,

(83)

with 𝑘𝑖
1
, 𝑘
𝑖

2
, . . . 𝑘

𝑖

𝑚
described in (9) and 𝑘𝑖

𝑟
= 𝑖. Moreover, the

finite-time 𝐻
∞

state feedback controller gains in (5) are given
by 𝐾

𝑖
= 𝑌

𝑖
𝑋
−1

𝑖
.

Proof . In (59) and (60), replacing 𝐴
𝑖
, 𝐴

𝑑𝑖
, and 𝐵

𝑖
with (𝐴

𝑖
+

Δ𝐴
𝑖
), (𝐴

𝑑𝑖
+Δ𝐴

𝑑𝑖
), and (𝐵

𝑖
+Δ𝐵

𝑖
), respectively, the following

conditions are obtained:

Π

1

11𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝑋

𝑖
Δ𝐴

𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ Δ𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝑌

𝑇

𝑖
Δ𝐵

𝑇

𝑖

+ 𝐵
𝑖
𝑌
𝑖
+ Δ𝐵

𝑖
𝑌
𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
𝑅
𝑖
+ 𝜋

𝑖𝑖
𝑋
𝑖
,

Π

1

21𝑖
= 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝑋

𝑖
Δ𝐴

𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑖
+ Δ𝐴

𝑖
𝑋
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖

+ 𝑌
𝑇

𝑖
Δ𝐵

𝑇

𝑖
+ 𝐵

𝑖
𝑌
𝑖
+ Δ𝐵

𝑖
𝑌
𝑖
− ∑

𝑗∈𝐿
𝑖

𝑘

𝜋
𝑖𝑗
𝑅
𝑖
,

Π
12𝑖
= 𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
+ 𝐵

𝑖
𝐾
𝑑𝑖
+ Δ𝐵

𝑖
𝐾
𝑑𝑖
+ 𝜀

𝑓𝑖
𝑋
𝑖
𝐹
𝑖

12
.

(84)

Based on Lemma 11, there exist scalars 𝜀
1𝑖
, 𝜀
2𝑖
, 𝜀
3𝑖
, and 𝜀

4𝑖

such that

𝑋
𝑖
Δ𝐴

𝑇

𝑖
+ Δ𝐴

𝑖
𝑋
𝑖
= 𝑋

𝑖
𝑁
𝑇

1𝑖
𝐹
𝑇

𝑖
(𝑡)𝑀

𝑇

1𝑖
+𝑀

1𝑖
𝐹
𝑖
(𝑡)𝑁

1𝑖
𝑋
𝑖

≤ 𝜀
1𝑖
𝑀
1𝑖
𝑀
𝑇

1𝑖
+ 𝜀

−1

1𝑖
𝑋
𝑖
𝑁
𝑇

1𝑖
𝑁
1𝑖
𝑋
𝑖
,

𝑌
𝑇

𝑖
Δ𝐵

𝑇

𝑖
+ Δ𝐵

𝑖
𝑌
𝑖
= 𝑌

𝑇

𝑖
𝑁
𝑇

2𝑖
𝐹
𝑇

𝑖
(𝑡)𝑀

𝑇

2𝑖
+𝑀

2𝑖
𝐹
𝑖
(𝑡)𝑁

2𝑖
𝑌
𝑖

≤ 𝜀
2𝑖
𝑀
2𝑖
𝑀
𝑇

2𝑖
+ 𝜀

−1

2𝑖
𝑌
𝑇

𝑖
𝑁
𝑇

2𝑖
𝑁
2𝑖
𝑌
𝑖
.

[

[

[

[

[

[

[

[

[

[

0 Δ𝐴
𝑑𝑖

0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

0 𝑀
3𝑖
𝐹
𝑖
(𝑡)𝑁

3𝑖
0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

𝑀
3𝑖

0

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

𝐹
𝑖
[0 𝑁

3𝑖
0 0 0 0 0]

+

[

[

[

[

[

[

[

[

[

[

[

0

𝑁
𝑇

3𝑖

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

]

𝐹
𝑖
[𝑀

𝑇

3𝑖
0 0 0 0 0 0]

≤ 𝜀
3𝑖

[

[

[

[

[

[

[

[

[

[

𝑀
3𝑖

0

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

[𝑀
𝑇

3𝑖
0 0 0 0 0 0]

+ 𝜀
−1

3𝑖

[

[

[

[

[

[

[

[

[

[

[

[

0

𝑁
𝑇

3𝑖

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

]

]

[0 𝑁
3𝑖
0 0 0 0 0] ,
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[

[

[

[

[

[

[

[

[

[

0 Δ𝐵
𝑖
𝐾
𝑑𝑖

0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

0 𝑀
2𝑖
𝐹
𝑖
(𝑡)𝑁

2𝑖
𝐾
𝑑𝑖

0 0 0 0 0

∗ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

𝑀
2𝑖

0

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

𝐹
𝑖
[0 𝑁

2𝑖
𝐾
𝑑𝑖
0 0 0 0 0]

+

[

[

[

[

[

[

[

[

[

[

0

𝐾
𝑇

𝑑𝑖
𝑁
𝑇

2𝑖

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

𝐹
𝑖
[𝑀

𝑇

2𝑖
0 0 0 0 0 0]

≤ 𝜀
4𝑖

[

[

[

[

[

[

[

[

[

[

𝑀
2𝑖

0

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

[𝑀
𝑇

2𝑖
0 0 0 0 0 0]

+ 𝜀
−1

4𝑖

[

[

[

[

[

[

[

[

[

[

0

𝑁
𝑇

3𝑖

0

0

0

0

0

]

]

]

]

]

]

]

]

]

]

[0 𝑁
3𝑖
0 0 0 0 0] .

(85)

Applying Schur complement lemma to (85), (77) can be
obtained. Similar to the above proving process, we can prove
that (78) holds.Therefore, if LMIs (77)–(82) hold, the closed-
loop system (6) is robust 𝐻

∞
finite-time bounded, and

further system (18) can be stabilized via the state feedback
controller (5).

The proof is complete.

Remark 18. It should be pointed out that the conditions in
Theorems 16 and 17 are not strict linear matrix inequalities
such as conditions (20), (39), (44), (54), (59), (60), (77), and

(78), due to the product of unknown scalars andmatrices. An
efficientway to solve this problem is to choose the appropriate
values of the unknown scalars and then solve a set of LMIs
for the fixed values of these parameters. For example, if 𝛼, 𝜀

𝑓𝑖

are fixed, then conditions (59) and (60) ofTheorem 16 can be
converted to LMIs conditions.

4. Numerical Examples

This section considers the following four-mode uncertain
nonlinear Markovian jump systems with time delay as fol-
lows.

Mode 1

𝐴
1
= [

2 2

1 −3
] , 𝐴

𝑑1
= [

−0.2 0.3

0.1 −0.2
] , 𝐵

1
= [

1

1
] ,

𝐺
1
= [

1

0
] , 𝐶

1
= [1 2] , 𝐶

𝑑1
= [0.1 −0.1] ,

𝐷
1
= 𝐸

1
= 0.1, 𝑀

11
= [

0.1 0

0 0.1
] ,

𝑁
11
= [

0.1 0.1

0 0.1
] ,

𝑀
21
= [

0.1 0

0 0.1
] , 𝑁

21
= [

0.1

0
] ,

𝑀
31
= [

0.01 0

0 0.01
] , 𝑁

31
= [

0.01 0

0 0.01
] .

(86)

Mode 2

𝐴
2
= [

1 2

0 −1
] , 𝐴

𝑑2
= [

0.2 −0.1

−0.1 −0.3
] , 𝐵

2
= [

2

1
] ,

𝐺
2
= [

0.5

0
] , 𝐶

2
= [1 1] ,

𝐶
𝑑2
= [0.2 0.1], 𝐷

2
= 𝐸

2
= 0.2, 𝑀

12
= [

0.1 0

0 0.3
] ,

𝑁
12
= [

0.2 0.3

0 0.2
] , 𝑀

22
= [

0.1 0

0 0.3
] , 𝑁

22
= [

0.2

0
] ,

𝑀
32
= [

0.01 0

0 0.03
] , 𝑁

32
= [

0.02 0.03

0 0.02
] .

(87)

Mode 3

𝐴
3
= [

2 3

1 −1
] , 𝐴

𝑑3
= [

0.1 −0.3

−0.2 0.3
] , 𝐵

3
= [

3

1
] ,

𝐺
3
= [

0.3

0
] , 𝐶

3
= [1 3] ,



12 Abstract and Applied Analysis

Table 1

Case I Case II
1 2 3 4 1 2 3 4

1 −1.2 0.3 0.5 0.4 1 ? 0.3 ? 0.4
2 0.2 −1 0.3 0.5 2 ? −1 0.3 ?
3 0.8 0.1 −1.3 0.4 3 0.8 ? −1.3 ?
4 0.2 0.1 0.5 −0.8 4 0.2 ? ? ?

Case III Case VI
1 2 3 4 1 2 3 4

1 −1.2 ? 0.5 ? 1 ? ? ? ?
2 0.2 ? ? 0.5 2 ? ? ? ?
3 ? 0.1 ? 0.4 3 ? ? ? ?
4 ? 0.1 0.5 −0.8 4 ? ? ? ?

Table 2

Case I Completely known

Controller gains

𝐾
1
= [−22.2335 −19.0199] 𝐾

𝑑1
= [−0.9097 0.9098]

𝐾
2
= [−7.0199 −2.3824] 𝐾

𝑑2
= [−0.9490 −0.4701]

𝐾
3
= [−6.9528 −9.8454] 𝐾

𝑑3
= [0.6466 −0.3225]

𝐾
4
= [−7.9573 −2.4935] 𝐾

𝑑4
= [−0.4998 −0.2499]

Case II Partially known

Controller gains

𝐾
1
= [−22.5382 −18.9685] 𝐾

𝑑1
= [−0.8142 0.8142]

𝐾
2
= [−7.9189 −2.8820] 𝐾

𝑑2
= [−0.9007 −0.4391]

𝐾
3
= [−6.9801 −9.8455] 𝐾

𝑑3
= [0.6272 −0.3112]

𝐾
4
= [−8.1348 −2.4949] 𝐾

𝑑4
= [−0.4996 −0.2498]

Case III Partially known

Controller gains

𝐾
1
= [−20.2412 −18.1608] 𝐾

𝑑1
= [−0.8925 0.9362]

𝐾
2
= [−6.2413 −2.7888] 𝐾

𝑑2
= [−0.9283 −0.5364]

𝐾
3
= [−6.9091 −9.8876] 𝐾

𝑑3
= [0.7272 −0.2134]

𝐾
4
= [−8.6329 −2.4765] 𝐾

𝑑4
= [−0.4998 −0.2499]

Case VI Completely unknown

Controller gains

𝐾
1
= [−21.8153 −18.7884] 𝐾

𝑑1
= [−0.8143 0.8143]

𝐾
2
= [−3.8757 −0.3739] 𝐾

𝑑2
= [−0.9008 −0.4391]

𝐾
3
= [−6.9153 −9.8460] 𝐾

𝑑3
= [0.6272 −0.3112]

𝐾
4
= [−7.9143 −2.4877] 𝐾

𝑑4
= [−0.4996 −0.2498]

𝐶
𝑑3
= [−0.2 0.1] , 𝐷

3
= 𝐸

3
= 0.3,

𝑀
13
= [

0.1 0

0 0.2
] , 𝑁

13
= [

0.2 0.3

0 0.5
] ,

𝑀
23
= [

0.1 0

0 0.2
] , 𝑁

23
= [

0.3

0
] ,

𝑀
33
= [

0.01 0

0 0.02
] , 𝑁

33
= [

0.02 0.03

0 0.05
] .

(88)

Mode 4

𝐴
4
= [

1 1

2 −3
] , 𝐴

𝑑4
= [

−0.1 0.3

0.2 −0.1
] , 𝐵

4
= [

4

1
] ,

𝐺
4
= [

0.4

0
] , 𝐶

4
= [0 1] ,

𝐶
𝑑4
= [−0.2 0.1] , 𝐷

4
= 𝐸

4
= 0.4,

𝑀
14
= [

0.2 0

0 0.1
] , 𝑁

14
= [

0.2 0.4

0 0.3
] ,

𝑀
24
= [

0.2 0

0 0.1
] , 𝑁

24
= [

0.4

0
] ,

𝑀
34
= [

0.02 0

0 0.01
] , 𝑁

34
= [

0.02 0.04

0 0.03
] ,

𝐻
1
= 𝐻

2
= 𝐻

3
= 𝐻

4
= [

2 0

0 2
] , 𝐶

1
= 0.5,

𝐶
2
= 4, 𝑑 = 4, 𝑇 = 1.2.

(89)
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Figure 1: The trajectory of 𝑥(𝑡).

Choose 𝜏 = 1, 𝛼 = 0.5, the exogenous disturbance 𝑤(𝑡) =
[1/(5𝑡 + 1) 1/(𝑡 + 1)], and the nonlinearities

𝑓
1
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡))
0.1 sin (𝑥 (𝑡 − 𝜏))] ,

𝑓
2
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡 − 𝜏))
−0.15 sin (𝑥 (𝑡)) ] ,

𝑓
3
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡))
0.1 sin (𝑥 (𝑡 − 𝜏))] ,

𝑓
4
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) = [

0.1 sin (𝑥 (𝑡 − 𝜏))
−0.15 sin (𝑥 (𝑡)) ] ,

𝐹
1

11
= [

1.1841 0.1704

0.1562 1.1370
] , 𝐹

1

22
= [

0.0606 0.1000

0.1000 0.3355
] ,

𝐹
2

11
= [

0.3299 0

0.7999 0.5000
] , 𝐹

2

22
= [

0.4000 0

0 0.2500
] ,

𝐹
3

11
= [

1.1841 0.1704

0.1562 1.1370
] , 𝐹

3

22
= [

0.0606 0.1000

0.1000 0.3355
] ,

𝐹
4

11
= [

0.3299 0

0.7999 0.5000
] , 𝐹

4

22
= [

0.4000 0

0 0.2500
] ,

𝐹
1

12
= 𝐹

2

12
= 𝐹

3

12
= 𝐹

4

12
= 0.

(90)

The four cases for the transition probability matrix consid-
ered in Table 1.

Solving the LMIs (77)–(82) in Theorem 17, the robust
finite-time𝐻

∞
state feedback controller gains of𝐾

𝑖
are given

by Table 2.
Figures 1, 2, and 3 are presented. For every figure, the four

different transition probability matrices cases are included,
which can be better to demonstrate the effectiveness of the
design method. Figure 1 depicts the trajectories of system
state 𝑥(𝑡) and the corresponding switching signal. It can
be seen that system (6) is robust finite-time stable, which
implies that system (2) is robust finite-time𝐻

∞
state feedback

stabilizable via the designed state feedback controller (5).
Figure 2 depicts the trajectories of system state 𝑥(𝑡) with
𝑤(𝑡) ̸= 0 and the corresponding switching signal. It can be
seen that system (6) is robust finite-time bounded. The
trajectory of the output 𝑧(𝑡) is described in Figure 3, which
further shows the effectiveness of the designed controller (5).

5. Conclusions

In this paper, we have dealt with the problem of robust finite-
time 𝐻

∞
control for a class of nonlinear Markovian jump

systems with time delay under partially known transition
probabilities. Based on the free-weightingmatrices approach,
all sufficient conditions have been firstly proposed to ensure
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Figure 2: The trajectory of 𝑥(𝑡) with 𝑤(𝑡) ̸= 0.
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Figure 3: The trajectory of 𝑧(𝑡).
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finite-time boundedness, 𝐻
∞

finite-time boundedness, and
finite-time 𝐻

∞
state feedback stabilization for the given

system. We have also designed a robust finite-time 𝐻
∞

state
feedback controller, which guarantees the 𝐻

∞
finite-time

boundedness of the closed-loop system. All the conditions
have been presented in terms of strict linear matrix inequal-
ities. Finally, a numerical example has been provided to
demonstrate the effectiveness of all the results.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural Sci-
ence Foundation of China under grants 61273123, 61374004,
61104136, and 61304059, in part by the Program for New
Century Excellent Talents in University under Grant NCET-
13-0878, and in part by the Program for Scientific Research
Innovation Team in Colleges and Universities of Shandong
Province.

References

[1] X. M. Yao, L. G. Wu, W. X. Zheng, and C. H. Wang, “Passivity
analysis and passification ofMarkovian jump systems,”Circuits,
Systems, and Signal Processing, vol. 29, no. 4, pp. 709–725, 2010.

[2] T. Shi, H. Su, and J. Chu, “Robust 𝐻
∞

control for uncertain
discrete-time Markovian jump systems with actuator satura-
tion,” Journal of Control Theory and Applications, vol. 9, no. 4,
pp. 465–471, 2011.

[3] W. H. Chen, J. X. Xu, and Z. H. Guan, “Guaranteed cost control
for uncertain Markovian jump systems with mode-dependent
time-delays,” IEEE Transactions on Automatic Control, vol. 48,
no. 12, pp. 2270–2277, 2003.

[4] L. J. Shen and U. Buscher, “Solving the serial batching problem
in job shop manufacturing systems,” European Journal of Oper-
ational Research, vol. 221, no. 1, pp. 14–26, 2012.

[5] W. Assawinchaichote, S. K. Nguang, and P. Shi, “Robust 𝐻
∞

fuzzy filter design for uncertain nonlinear singularly perturbed
systems withMarkovian jumps: an LMI approach,” Information
Sciences, vol. 177, no. 7, pp. 1699–1714, 2007.

[6] M. Atlans, “Command and control theory: a challenge to
control science,” IEEE Transactions on Automatic Control, vol.
32, no. 4, pp. 286–293, 1987.

[7] H.N.WuandK.Y.Cai, “Mode-independent robust stabilization
for uncertain Markovian jump nonlinear systems via fuzzy
control,” IEEE Transactions on Systems, Man, and Cybernetics
B, vol. 36, no. 3, pp. 509–519, 2006.

[8] H. N. Wu and K. Y. Cai, “Robust fuzzy control for uncer-
tain discrete-time nonlinear Markovian jump systems without
mode observations,” Information Sciences, vol. 177, no. 6, pp.
1509–1522, 2007.

[9] F. Liu and Y. Cai, “Passive analysis and synthesis of Markovian
jump systems with norm bounded uncertainty and unknown
delay,” Dynamics of Continuous, Discrete & Impulsive Systems
A, vol. 13, no. 1, pp. 157–166, 2006.

[10] L. X. Zhang and E. K. Boukas, “Stability and stabilization of
Markovian jump linear systems with partly unknown transition
probabilities,” Automatica, vol. 45, no. 2, pp. 463–468, 2009.

[11] X. L. Luan, F. Liu, and P. Shi, “Finite-time filtering for non-linear
stochastic systems with partially known transition jump rates,”
IET Control Theory & Applications, vol. 4, no. 5, pp. 735–745,
2010.

[12] Y. Yin, F. Liu, and P. Shi, “Finite-time gain-scheduled control
on stochastic bioreactor systemswith partially known transition
jump rates,” Circuits, Systems, and Signal Processing, vol. 30, no.
3, pp. 609–627, 2011.

[13] Y. Zhang, Y. He, M. Wu, and J. Zhang, “Stabilization for
Markovian jump systems with partial information on transi-
tion probability based on free-connection weighting matrices,”
Automatica, vol. 47, no. 1, pp. 79–84, 2011.

[14] L.Weiss andE. F. Infante, “Finite time stability under perturbing
forces and on product spaces,” IEEE Transactions on Automatic
Control, vol. 12, no. 2, pp. 54–59, 1967.

[15] F. Amato and M. Ariola, “Finite-time control of discrete-time
linear systems,” IEEETransactions onAutomatic Control, vol. 50,
no. 5, pp. 724–729, 2005.

[16] G. D. Zong, R. H. Wang, W. X. Zheng, and L. I. Hou,
“Finite-time stabilization for a class of switched time-delay
systems under asynchronous switching,” Applied Mathematics
and Computation, vol. 219, no. 11, pp. 5757–5771, 2013.

[17] H. G. Li, Q. Zhou, B. Chen, and H. H. Liu, “Parameter-
dependent robust stability for uncertain Markovian jump sys-
tems with time delay,” Journal of the Franklin Institute, vol. 348,
no. 4, pp. 738–748, 2011.

[18] K. Ramakrishnan and G. Ray, “Robust stability criterion for
Markovian jump systems with nonlinear perturbations and
mode-dependent time delays,” International Journal of General
Systems, vol. 41, no. 4, pp. 373–393, 2012.

[19] L. L. Hou, G. D. Zong, and Y. Q. Wu, “Observer-based finite-
time exponential 𝐿

2
− 𝐿

∞
control for discrete-time switched

delay systems with uncertainties,” Transactions of the Institute
of Measurement and Control, vol. 35, no. 3, pp. 310–320, 2013.

[20] Y. Zhang, S. Xu, and J. Zhang, “Delay-dependent robust 𝐻
∞

control for uncertain fuzzy Markovian Jump systems,” Interna-
tional Journal of Control Automation and Systems, vol. 7, no. 4,
pp. 520–529, 2009.

[21] J. Gao, B. Huang, and Z. Wang, “LMI-based robust𝐻
∞
control

for uncertain linearMarkovian jump systemswith time-delays,”
Automatica, vol. 37, no. 7, pp. 1141–1146, 2001.

[22] S. P. He and F. Liu, “Unbiased 𝐻
∞

filtering for neutral Markov
jump systems,”AppliedMathematics and Computation, vol. 206,
no. 1, pp. 175–185, 2008.

[23] S. P. He and F. Liu, “Robust finite-time𝐻
∞
control of stochastic

jump systems,” International Journal of Control Automation and
Systems, vol. 8, no. 9, pp. 1336–1341, 2010.

[24] S. P. He and F. Liu, “Stochastic finite-time stabilization for
uncertain jump systems via state feedback,” Journal of Dynamic
Systems, Measurement and Control, vol. 132, no. 3, Article ID
034504, 4 pages, 2010.

[25] P. Balasubramaniam, R. Krishnasamy, and R. Rakkiyappan,
“Delay-dependent stability criterion for a class of non-linear
singular Markovian jump systems with mode-dependent inter-
val time-varying delays,” Communications in Nonlinear Science
and Numerical Simulation, vol. 17, no. 9, pp. 3612–3627, 2012.



16 Abstract and Applied Analysis

[26] X. Mao, “Stability of stochastic differential equations with
Markovian switching,” Stochastic Processes and Their Applica-
tions, vol. 79, no. 1, pp. 45–67, 1999.

[27] Y. Y. Wang, L. H. Xie, and C. E. de Souza, “Robust control of a
class of uncertain nonlinear systems,” Systems&Control Letters,
vol. 19, no. 2, pp. 139–149, 1992.


