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The purpose of this paper is to present two new forward-backward splitting schemes with relaxations and errors for finding a
common element of the set of solutions to the variational inclusion problem with two accretive operators and the set of fixed points
of strict pseudocontractions in infinite-dimensional Banach spaces. Under mild conditions, some weak and strong convergence
theorems for approximating these common elements are proved.Themethods in the paper are novel and different from those in the
early and recent literature. Further, we consider the problem of finding a common element of the set of solutions of a mathematical
model related to equilibrium problems and the set of fixed points of a strict pseudocontractions.

1. Introduction

The theory of nonexpansive mappings is very important
because it is applied to convex optimization, the theory
of nonlinear evolution equations, and others. Browder and
Petryshyn [1] introduced a class of nonlinear mappings,
called strict pseudocontractions, which includes the class of
nonexpansive mappings. For strict pseudocontractions, we
are interested in finding fixed points of themappings.We also
know the class of inverse-strongly accretive operators which
is related to nonexpansive mappings. For inverse-strongly
accretive operators, we are interested in finding zero points
of the mappings.

Let𝐶 be a nonempty closed convex subset of a realHilbert
space 𝐻. Let 𝐴 : 𝐶 → 𝐻 be a single-valued nonlinear
mapping and let 𝐵 : 𝐻 → 2

𝐻 be a multivalued mapping.
The so called quasi-variational inclusion problem is to find a
𝑧 ∈ 𝐻 such that

0 ∈ (𝐴 + 𝐵) 𝑧. (1)

The set of solutions of (1) is denoted by (𝐴+𝐵)
−1
(0). A number

of problems arising in structural analysis, mechanics, and

economics can be studied in the framework of this kind of
variational inclusions; see, for instance, [2–5]. The problem
(1) includes many problems as special cases.

(1) If 𝐵 = 𝜕𝜙 : 𝐻 → 2
𝐻, where 𝜙 : 𝐻 → R ∪ +∞ is

a proper convex lower semicontinuous function and
𝜕𝜙 is the subdifferential and if only erential of 𝜕𝜙, then
the variational inclusion problem (1) is equivalent to
finding 𝑢 ∈ 𝐻 such that

⟨𝐴𝑢, 𝑦 − 𝑢⟩ + 𝜙 (𝑦) − 𝜙 (𝑢) ≥ 0, ∀𝑦 ∈ 𝐻, (2)

which is called the mixed quasi-variational inequality (see,
Noor [6]).

(2) If 𝐵 = 𝜕𝛿
𝐶
, where 𝐶 is a nonempty closed convex

subset of 𝐻 and 𝛿
𝐶

: 𝐻 → [0,∞] is the indicator
function of 𝐶, that is,

𝛿
𝐶
= {

0, 𝑥 ∈ 𝐶,

+∞, 𝑥 ∉ 𝐶,
(3)
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then the variational inclusion problem (1) is equivalent to
finding 𝑢 ∈ 𝐶 such that

⟨𝐴𝑢, V − 𝑢⟩ ≥ 0, ∀V ∈ 𝐶. (4)

This problem is called Hartman-Stampacchia variational
inequality (see, e.g., [7]).

In [8], Zhang et al. investigated the problem of finding
a common element of the set of solutions to the inclusion
problem and the set of fixed points of nonexpansivemappings
by considering the following iterative algorithm:

𝑦
𝑛
= 𝐽
𝑀,𝜆

(𝑥
𝑛
− 𝜆𝐴𝑥

𝑛
) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥 + (1 − 𝛼

𝑛
) 𝑆𝑦
𝑛
,

(5)

where 𝐴 : 𝐻 → 𝐻 is an 𝛼-cocoercive mapping, 𝑀 :

𝐻 → 2
𝐻 is a maximal monotone mapping, 𝑆 : 𝐻 → 𝐻

is a nonexpansive mapping, and {𝛼
𝑛
} is a sequence in [0, 1].

Under mild conditions, they obtained a strong convergence
theorem.

In [9], Manaka and Takahashi introduced the following
iteration:

𝑥
1
∈ 𝐶, 𝑥

𝑛+1
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑆𝐽
𝜆
𝑛

(𝐼 − 𝜆
𝑛
𝐴) 𝑥
𝑛
,

𝑛 ≥ 1,

(6)

where {𝛼
𝑛
} is a sequence in (0, 1), {𝜆

𝑛
} is a positive sequence,

𝑆 : 𝐶 → 𝐶 is a nonexpansive mapping, 𝐴 : 𝐶 → 𝐻 is an
inverse-strongly monotone mapping, 𝐵 : 𝐷(𝐵) ⊂ 𝐶 → 2

𝐻 is
a maximal monotone operator, and 𝐽

𝜆
𝑛

= (𝐼 + 𝜆
𝑛
𝐵)
−1 is the

resolvent of 𝐵. They showed that the sequence {𝑥
𝑛
} generated

in (6) converges weakly to some 𝑧 ∈ (𝐴 + 𝐵)
−1
(0) ∩ 𝐹(𝑆)

provided that the control sequence satisfies some restrictions.
It is well known that the quasi-variational inclusion

problem in the setting of Hilbert spaces has been extensively
studied in the literature; see, for instance, [4–10]. However,
there is little work in the existing literature on this problem
in the setting of Banach spaces (though there was some work
on finding a common zero of a finite family of accretive
operators [11–13]). The main difficulties are due to the fact
that the inner product structure of a Hilbert space fails to be
true in a Banach space. To overcome these difficulties, López
et al. [14] use the new technique to carry out certain initiative
investigations on splitting methods for accretive operators
in Banach spaces. They considered the following algorithms
with errors in Banach spaces:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) , (7)

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) , (8)

where 𝑢 ∈ 𝐸, {𝑎
𝑛
}, {𝑏
𝑛
} ⊂ 𝐸, and 𝐽

𝑟
𝑛

= (𝐼 + 𝑟
𝑛
𝐵)
−1 is

the resolvent of 𝐵. Then they studied the weak and strong
convergence of algorithms (7) and (8), respectively.

Motivated and inspired by Zhang et al. [8], Manaka and
Takahashi [9], Takahashi et al. [10], Chen and Fan [13], López
et al. [14], and Cho et al. [15], the purpose of this paper is to
introduce two iterative forward-backward splitting methods

for finding a common element of the set of solutions of the
variational inclusion problem (1) with 𝑚-accretive operators
and inverse-strongly accretive operators and the set of fixed
points of strict pseudocontractions in the setting of Banach
spaces. Under suitable conditions, some weak and strong
convergence theorems for approximating to these common
elements are proved. The results presented in the paper
improve and extend the corresponding results in [8–10, 13–
15].

2. Preliminaries

Throughout this paper, we denote by 𝐸 and 𝐸
∗ a real Banach

space and the dual space of 𝐸, respectively. Let 𝐶 be a subset
of 𝐸 and let 𝑇 be a mapping on 𝐶. We use 𝐹(𝑇) to denote the
set of fixed points of 𝑇. The expressions 𝑥

𝑛
→ 𝑥 and 𝑥

𝑛
⇀

𝑥 denote the strong and weak convergence of the sequence
{𝑥
𝑛
}, respectively, and 𝜔

𝑤
(𝑥
𝑛
) stands for the set of weak limit

points of the sequence {𝑥
𝑛
}. B
𝑟
will denote the closed ball

with center zero and radius 𝑟.
Let 𝑞 > 1 be a real number. The (generalized) duality

mapping 𝐽
𝑞
: 𝐸 → 2

𝐸
∗

is defined by

𝐽
𝑞 (𝑥) = {𝑥

∗
∈ 𝐸
∗
: ⟨𝑥, 𝑥

∗
⟩ = ‖𝑥‖

𝑞
,
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 = ‖𝑥‖

𝑞−1
} (9)

for all 𝑥 ∈ 𝐸, where ⟨⋅, ⋅⟩ denotes the generalized duality
pairing between 𝐸 and 𝐸

∗. In particular, 𝐽 = 𝐽
2
is called

the normalized duality mapping and 𝐽
𝑞
(𝑥) = ‖𝑥‖

𝑞−2
𝐽
2
(𝑥) for

𝑥 ̸= 0. If 𝐸 is a Hilbert space, then 𝐽 = 𝐼where 𝐼 is the identity
mapping. It is well known that if𝐸 is smooth, then 𝐽

𝑞
is single-

valued, which is denoted by 𝑗
𝑞
.

A Banach space 𝐸 is said to be uniformly convex if, for
any 𝜀 ∈ (0, 2], there exists 𝛿 > 0 such that, for any 𝑥, 𝑦 ∈

𝑆(𝐸), ‖𝑥 − 𝑦‖ ≥ 𝜀 implies ‖(𝑥 + 𝑦)/2‖ ≤ 1 − 𝛿. It is known
that a uniformly convex Banach space is reflexive and strictly
convex.

The norm of a Banach space 𝐸 is said to be Gâteaux
differentiable if the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(10)

exists for all 𝑥, 𝑦 on the unit sphere 𝑆(𝐸) = {𝑥 ∈ 𝐸 : ‖𝑥‖ =

1}. If, for each 𝑦 ∈ 𝑆(𝐸), limit (10) is uniformly attained
for 𝑥 ∈ 𝑆(𝐸), then the norm of 𝐸 is said to be uniformly
Gâteaux differentiable. The norm of 𝐸 is said to be Fréchet
differentiable if, for each 𝑥 ∈ 𝑆(𝐸), limit (10) is attained
uniformly for 𝑦 ∈ 𝑆(𝐸).

Let 𝜌
𝐸
: [0, 1) → [0, 1) be the modulus of smoothness of

𝐸 defined by

𝜌
𝐸 (𝑡)

= sup {
1

2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) − 1 : 𝑥 ∈ 𝑆 (𝐸) ,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 ≤ 𝑡} .

(11)

A Banach space 𝐸 is said to be uniformly smooth if
𝜌
𝐸
(𝑡)/𝑡 → 0 as 𝑡 → 0. Let 𝑞 > 1. A Banach space 𝐸 is said to

be 𝑞-uniformly smooth, if there exists a fixed constant 𝑐 > 0
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such that 𝜌
𝐸
(𝑡) ≤ 𝑐𝑡

𝑞. It is well known that 𝐸 is uniformly
smooth if and only if the norm of 𝐸 is uniformly Fréchet
differentiable. If 𝐸 is 𝑞-uniformly smooth, then 𝑞 ≤ 2 and
𝐸 is uniformly smooth, and hence the norm of 𝐸 is uniformly
Fréchet differentiable; in particular, the norm of 𝐸 is Fréchet
differentiable. Typical examples of both uniformly convex
and uniformly smooth Banach spaces are 𝐿

𝑝, where 𝑝 > 1.
More precisely, 𝐿𝑝 is min{𝑝, 2}-uniformly smooth for every
𝑝 > 1.

A Banach space 𝐸 is said to satisfy Opial’s condition if
for any sequence {𝑥

𝑛
} in 𝐸 the condition that {𝑥

𝑛
} converges

weakly to 𝑥 ∈ 𝐸 implies that the inequality

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 (12)

holds for every 𝑦 ∈ 𝐸 with 𝑦 ̸= 𝑥.
A Banach space 𝐸 is said to have the Kadec-Klee property

if, for every sequence {𝑥
𝑛
} in 𝐸, 𝑥

𝑛
⇀ 𝑥 and ‖𝑥

𝑛
‖ → ‖𝑥‖

together imply ‖𝑥
𝑛
− 𝑥‖ → 0. As we know the duals of

reflexive Banach spaces with Fréchet differentiable norms
have the Kadec-Klee property.

Definition 1. A mapping 𝑇 : 𝐶 → 𝐸 is said to be

(1) nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ 𝐶; (13)

(2) 𝑘-Lipschitz if there exists 𝑘 > 0 such that
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ 𝐶; (14)

in particular, if 0 < 𝑘 < 1, then 𝑇 is called contractive
and if 𝑘 = 1, then 𝑇 reduces to a nonexpansive
mapping;

(3) 𝜆-strict pseudocontractive in the terminology of
Browder and Petryshyn if for all 𝑥, 𝑦 ∈ 𝐶, there exists
𝜆 > 0 and 𝑗

𝑞
(𝑥 − 𝑦) ∈ 𝐽

𝑞
(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗
𝑞
(𝑥 − 𝑦)⟩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝜆

󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦
󵄩󵄩󵄩󵄩

𝑞
;

(15)

(4) accretive if for all 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗
𝑞
(𝑥 − 𝑦) ∈

𝐽
𝑞
(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗
𝑞
(𝑥 − 𝑦)⟩ ≥ 0; (16)

(5) 𝜂-strongly accretive if for all 𝑥, 𝑦 ∈ 𝐶, there exists 𝜂 >

0 and 𝑗
𝑞
(𝑥 − 𝑦) ∈ 𝐽

𝑞
(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗
𝑞
(𝑥 − 𝑦)⟩ ≥ 𝜂

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

𝑞
; (17)

(6) 𝜇-inverse-strongly accretive if for all 𝑥, 𝑦 ∈ 𝐶, there
exists 𝜇 > 0 and 𝑗

𝑞
(𝑥 − 𝑦) ∈ 𝐽

𝑞
(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗
𝑞
(𝑥 − 𝑦)⟩ ≥ 𝜇

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

𝑞
. (18)

Remark 2. The conception of strict pseudocontractions was
firstly introduced by Browder and Petryshyn [1] in a real
Hilbert space. Let 𝐶 be a nonempty subset of a real Hilbert
space 𝐻, and let 𝑇 : 𝐶 → 𝐶 be a mapping. In light of [1],
𝑇 is said to be a 𝐾-strict pseudocontraction, if there exists a
𝐾 ∈ [0, 1) such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
+ 𝐾

󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦
󵄩󵄩󵄩󵄩

2

∀𝑥, 𝑦 ∈ 𝐶.

(19)

Remark 3. The class of strictly pseudocontractive mappings
has been studied by several authors (see, e.g., [1, 16, 17]).
However, their iterative methods are far less developed
though Browder and Petryshyn [1] initiated their work in
1967. As a matter of fact, strictly pseudocontractive mappings
have more powerful applications in solving inverse problems
(see, e.g., [18]).Therefore it is interesting to develop the theory
of iterative methods for strictly pseudocontractive mappings.

Remark 4. If 𝐸 := 𝐻 is a real Hilbert space, then accretive
and strongly accretive operators coincide withmonotone and
strongly monotone operators, respectively.

Definition 5. A set-valued mapping 𝑇 : 𝐷(𝑇) ⊆ 𝐸 → 2
𝐸 is

said to be

(1) accretive if for any 𝑥, 𝑦 ∈ 𝐷(𝑇), there exists 𝑗(𝑥−𝑦) ∈

𝐽(𝑥 − 𝑦), such that for all 𝑢 ∈ 𝑇(𝑥) and V ∈ 𝑇(𝑦),

⟨𝑢 − V, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0; (20)

(2) 𝑚-accretive if 𝑇 is accretive and (𝐼 + 𝑟𝑇)(𝐷(𝑇)) = 𝐸

for every (equivalently, for some) 𝑟 > 0, where 𝐼

is the identity mapping. In real Hilbert spaces, 𝑚-
accretive operators coincide with maximal monotone
operators.

Let 𝑀 : 𝐷(𝑀) → 2
𝐸 be 𝑚-accretive. The mapping 𝐽

𝑀

𝑟
:

𝐸 → 𝐷(𝑀) defined by

𝐽
𝑀

𝑟
(𝑢) = (𝐼 + 𝑟𝑀)

−1
(𝑢) , ∀𝑢 ∈ 𝐸, (21)

is called the resolvent operator associated with𝑀, where 𝑟 is
any positive number and 𝐼 is the identity mapping. It is well
known that 𝐽𝑀

𝑟
is single-valued and nonexpansive.

In order to prove our main results, we need the following
lemmas.

Lemma 6 (see [19]). Let 𝐸 be a Banach space and let 𝐽
𝑞
be a

generalized duality mapping. Then for any given 𝑥, 𝑦 ∈ 𝐸, the
following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

𝑞
≤ ‖𝑥‖

𝑞
+ 𝑞 ⟨𝑦, 𝑗

𝑞
(𝑥 + 𝑦)⟩ ,

𝑗
𝑞
(𝑥 + 𝑦) ∈ 𝐽

𝑞
(𝑥 + 𝑦) .

(22)

In particular, we have, for any given 𝑥, 𝑦 ∈ 𝐸,
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ ,

𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(23)
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Lemma 7 (see [19]). Let 1 < 𝑝 < ∞, 𝑞 ∈ (1, 2], 𝑟 > 0 be
given.

(i) If 𝐸 is uniformly convex, then there exists a continuous,
strictly increasing, and convex function 𝜑 : [0,∞) →

[0,∞) with 𝜑(0) = 0 such that
󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆)𝑦

󵄩󵄩󵄩󵄩

𝑝
≤ 𝜆‖𝑥‖

𝑝
+ 𝜆

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝
− 𝑊
𝑝 (𝜆) 𝜑 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) ,

𝑥, 𝑦 ∈ B
𝑟
, 0 ≤ 𝜆 ≤ 1,

(24)

where 𝑊
𝑝
(𝜆) = 𝜆

𝑝
(1 − 𝜆) + (1 − 𝜆)

𝑝
𝜆, B
𝑟
= {𝑧 ∈ 𝐸 :

‖𝑧‖ ≤ 𝑟}.
(ii) If 𝐸 is a real 𝑞-uniformly smooth Banach space, then

there exists a constant 𝐶
𝑞
> 0 such that

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

𝑞
≤ ‖𝑥‖

𝑞
+ 𝑞 ⟨𝑦, 𝐽

𝑞 (𝑥)⟩ + 𝐶
𝑞

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑞
,

∀𝑥, 𝑦 ∈ 𝐸.

(25)

Lemma 8 (see [20]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝛿

𝑛
} be sequences of

nonnegative real numbers satisfying the inequality

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 = 1, 2, . . . . (26)

If ∑∞
𝑛=0

𝛿
𝑛
< ∞ and ∑

∞

𝑛=0
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists. In

particular, lim
𝑛→∞

𝑎
𝑛
= 0whenever there exists a subsequence

{𝑎
𝑛
𝑘

} in {𝑎
𝑛
} which strongly converges to zero.

Lemma 9 (see [21]). Let {𝛼
𝑛
} be a sequence of nonnegative

numbers satisfying the following property:

𝛼
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝛼
𝑛
+ 𝑏
𝑛
+ 𝛾
𝑛
𝑐
𝑛
, 𝑛 ∈ N, (27)

where {𝛾
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
} satisfy the restrictions

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞,

(ii) 𝑏
𝑛
≥ 0, ∑∞

𝑛=1
𝑏
𝑛
< ∞,

(iii) lim sup
𝑛→∞

𝑐
𝑛
≤ 0.

Then, lim
𝑛→∞

𝛼
𝑛
= 0.

Lemma 10 (see [16]). Let 𝐶 be a nonempty convex subset of a
real 𝑞-uniformly smooth Banach space 𝐸 and let 𝑇 : 𝐶 → 𝐶

be a 𝜆-strict pseudocontraction. For 𝛼 ∈ (0, 1), we define𝑇
𝛼
𝑥 =

(1−𝛼)𝑥+𝛼𝑇𝑥.Then, as 𝛼 ∈ (0, 𝜌], 𝜌 = min{1, {𝑞𝜆/𝐶
𝑞
}
1/(𝑞−1)

},
𝑇
𝛼
: 𝐶 → 𝐶 is nonexpansive such that 𝐹(𝑇

𝛼
) = 𝐹(𝑇).

Lemma 11 (see [22]). Let 𝐸 be a uniformly convex Banach
space, 𝐶 a closed convex subset of 𝐸, and 𝑇 : 𝐶 → 𝐸 a
nonexpansivemapping with𝐹(𝑇) ̸= 0.Then, 𝐼−𝑇 is demiclosed
at zero.

Lemma 12. Let 𝐶 be a nonempty closed convex subset of a
real 𝑞-uniformly smooth Banach space 𝐸. Let the mapping 𝐴 :

𝐶 → 𝐸 be an 𝛼-inverse-strongly accretive operator. Then the
following inequality holds:

󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦
󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝜆 (𝑞𝛼 − 𝐶

𝑞
𝜆
𝑞−1

)
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞
.

(28)

In particular, if 0 < 𝜆 ≤ (𝑞𝛼/𝐶
𝑞
)
1/(𝑞−1), then ‖𝐼 − 𝜆𝐴‖ is

nonexpansive.

Proof. Indeed, for all 𝑥, 𝑦 ∈ 𝐶, it follows from Lemma 7 that
󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦

󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝜆 (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝑞𝜆 ⟨𝐴𝑥 − 𝐴𝑦, 𝑗

𝑞
(𝑥 − 𝑦)⟩

+ 𝐶
𝑞
𝜆
𝑞󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝑞𝛼𝜆

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

𝑞

+ 𝐶
𝑞
𝜆
𝑞󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝜆 (𝑞𝛼 − 𝐶

𝑞
𝜆
𝑞−1

)
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞
.

(29)

It is clear that if 0 < 𝜆 ≤ (𝑞𝛼/𝐶
𝑞
)
1/(𝑞−1), then 𝐼 − 𝜆𝐴 is

nonexpansive. This completes the proof.

Lemma 13 (see [23]). If 𝐸 is a uniformly convex Banach space
and 𝐶 is a closed convex bounded subset of 𝐸, there is a
continuous strictly increasing function 𝑔 : [0,∞) → [0,∞)

with 𝑔(0) = 0 such that

𝑔 (
󵄩󵄩󵄩󵄩𝑆 (𝑡𝑥 + (1 − 𝑡) 𝑦) − (𝛼𝑆𝑥 + (1 − 𝛼) 𝑆𝑦)

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦

󵄩󵄩󵄩󵄩

(30)

for all 𝑥, 𝑦 ∈ 𝐶, 𝑡 ∈ [0, 1] and nonexpansive mapping 𝑆 : 𝐶 →

𝐸.

Lemma 14 (see [24]). Let 𝐸 be a real reflexive Banach space
such that its dual 𝐸∗ has the Kadec-Klee property. Let {𝑥

𝑛
} be

a bounded sequence in 𝐸 and 𝑥
∗
, 𝑦
∗

∈ 𝜔
𝑤
(𝑥
𝑛
); here 𝜔

𝑤
(𝑥
𝑛
)

denotes the weak 𝑤-limit set of {𝑥
𝑛
}. Suppose lim

𝑛→∞
‖𝑡𝑥
𝑛
+

(1 − 𝑡)𝑥
∗
− 𝑦
∗
‖ exists for all 𝑡 ∈ [0, 1]. Then 𝑥

∗
= 𝑦
∗.

Lemma 15. Assume that 𝐸 is a real uniformly convex and 𝑞-
uniformly smooth Banach space. Suppose that 𝐴 : 𝐸 → 𝐸 is
𝛼-inverse-strongly accretive operator for some 𝛼 > 0 and 𝐵 :

𝐸 → 2
𝐸 is an𝑚-accretive operator. Moreover, denote 𝐽

𝑟
by

𝐽
𝑟
≡ 𝐽
𝐵

𝑟
= (𝐼 + 𝑟𝐵)

−1 (31)

and 𝑇
𝑟
by

𝑇
𝑟
= 𝐽
𝑟 (𝐼 − 𝑟𝐴) = (𝐼 + 𝑟𝐵)

−1
(𝐼 − 𝑟𝐴) . (32)

Then, it holds for all 𝑟 > 0 that 𝐹(𝑇
𝑟
) = (𝐴 + 𝐵)

−1
(0).

Proof. From the definition of 𝑇
𝑟
, we have

𝑥 = 𝑇
𝑟
𝑥 ⇐⇒ 𝑥 = (𝐼 + 𝑟𝐵)

−1
(𝐼 − 𝑟𝐴) 𝑥

⇐⇒ (𝐼 − 𝑟𝐴) 𝑥 ∈ (𝐼 + 𝑟𝐵) 𝑥

⇐⇒ 0 ∈ (𝐴 + 𝐵) 𝑥.

(33)

This completes the proof.



Abstract and Applied Analysis 5

Lemma 15 alludes to the fact that, in order to solve
the inclusion problem (1), it suffices to find a fixed point
of 𝑇
𝑟
. Since 𝑇

𝑟
is already split, an iterative algorithm for

𝑇
𝑟
corresponds to a splitting algorithm for (1). However,

to guarantee convergence (weak or strong) of an iterative
algorithm for 𝑇

𝑟
, we need good metric properties of 𝑇

𝑟

such as nonexpansivity. To this end, some related geometric
conditions on the underlying space 𝐸 are very necessary (see
Lemmas 16 and 17 below).

Lemma 16 (see [14]). Assume that𝐸 is a real uniformly convex
and 𝑞-uniformly smooth Banach space. Suppose that 𝐴 : 𝐸 →

𝐸 is 𝛼-inverse-strongly accretive operator for some 𝛼 > 0 and
𝐵 : 𝐸 → 2

𝐸 is an 𝑚-accretive operator. Then, the following
relations hold.

(i) Given 0 < 𝑠 ≤ 𝑟 and 𝑥 ∈ 𝐸,
󵄩󵄩󵄩󵄩𝑇𝑠𝑥 − 𝑇

𝑟
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 −

𝑠

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥 − 𝑇
𝑟
𝑥
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥 − 𝑇
𝑠
𝑥
󵄩󵄩󵄩󵄩 ≤ 2

󵄩󵄩󵄩󵄩𝑥 − 𝑇
𝑟
𝑥
󵄩󵄩󵄩󵄩 .

(34)

(ii) Given 𝑠 > 0, there exists a continuous, strictly
increasing, and convex function 𝜙

𝑞
: [0,∞) → [0,∞)

with 𝜙
𝑞
(0) = 0 such that, for all 𝑥, 𝑦 ∈ B

𝑠
,

󵄩󵄩󵄩󵄩𝑇𝑟𝑥 − 𝑇
𝑟
𝑦
󵄩󵄩󵄩󵄩

𝑞
≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

𝑞

− 𝑟 (𝛼𝑞 − 𝑟
𝑞−1

𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞

− 𝜙
𝑞
(
󵄩󵄩󵄩󵄩(𝐼 − 𝐽

𝑟
) (𝐼 − 𝑟𝐴) 𝑥

− (𝐼 − 𝐽
𝑟
) (𝐼 − 𝑟𝐴) 𝑦

󵄩󵄩󵄩󵄩) .

(35)

Lemma 17. Let 𝐸 be a real uniformly convex and 𝑞-uniformly
smooth Banach space. Suppose that 𝑆 : 𝐸 → 𝐸 is a
nonexpansive mapping, 𝐴 : 𝐸 → 𝐸 is an 𝛼-inverse-strongly
accretive operator for some 𝛼 > 0, and 𝐵 : 𝐸 → 2

𝐸 is an 𝑚-
accretive operator. Assume that 0 < 𝑟 ≤ (𝑞𝛼/𝐶

𝑞
)
1/(𝑞−1). Then

𝐹(𝑆𝑇
𝑟
) = 𝐹(𝑆) ∩ 𝐹(𝑇

𝑟
).

Proof. Suppose that 𝑥
1
∈ 𝐹(𝑆𝑇

𝑟
); it is sufficient to show that

𝑥
1
∈ 𝐹(𝑆) ∩ 𝐹(𝑇

𝑟
). Indeed, for 𝑥

2
∈ 𝐹(𝑆) ∩ 𝐹(𝑇

𝑟
), we have by

Lemma 16 that
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

𝑞
=

󵄩󵄩󵄩󵄩𝑆𝑇𝑟𝑥1 − 𝑆𝑇
𝑟
𝑥
2

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑇𝑟𝑥1 − 𝑇

𝑟
𝑥
2

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

𝑞

− 𝑟 (𝛼𝑞 − 𝑟
𝑞−1

𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑥
1
− 𝐴𝑥
2

󵄩󵄩󵄩󵄩

𝑞

− 𝜙
𝑞

󵄩󵄩󵄩󵄩(𝐼 − 𝐽
𝑟
) (𝐼 − 𝑟𝐴) 𝑥1

− (𝐼 − 𝐽
𝑟
) (𝐼 − 𝑟𝐴) 𝑥2

󵄩󵄩󵄩󵄩 .

(36)

The property of 𝜙 and the condition 0 < 𝑟 ≤ (𝑞𝛼/𝐶
𝑞
)
1/(𝑞−1)

together imply that
󵄩󵄩󵄩󵄩𝐴𝑥
1
− 𝐴𝑥
2

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝐼 − 𝐽

𝑟
) (𝐼 − 𝑟𝐴) 𝑥1 − (𝐼 − 𝐽

𝑟
) (𝐼 − 𝑟𝐴) 𝑥2

󵄩󵄩󵄩󵄩 = 0.

(37)

It turns out that
󵄩󵄩󵄩󵄩𝑥1 − 𝑇

𝑟
𝑥
1
− 𝑥
2
+ 𝑇
𝑟
𝑥
2

󵄩󵄩󵄩󵄩 = 0, (38)

which imply

𝑇
𝑟
𝑥
1
= 𝑥
1
. (39)

Noticing the assumption of 𝑥
1
= 𝑆𝑇
𝑟
𝑥
1
, we can deduce 𝑥

1
=

𝑆𝑥
1
. This means that 𝑥

1
∈ 𝐹(𝑆) ∩ 𝐹(𝑇

𝑟
).

Lemma 18 (see [25]). Let𝐶 be a nonempty, closed, and convex
subset of a real 𝑞-uniformly smooth Banach space 𝐸. Let 𝑉 :

𝐶 → 𝐸 be a 𝑘-Lipschitz and 𝜂-strongly accretive operator with
constants 𝑘, 𝜂 > 0. Let 0 < 𝜇 < (𝑞𝜂/𝐶

𝑞
𝑘
𝑞
)
1/(𝑞−1) and 𝜏 =

𝜇(𝜂−(𝐶
𝑞
𝜇
𝑞−1

𝑘
𝑞
/𝑞)).Then for 𝑡 ∈ (0,min{1, 1/𝜏}), themapping

𝑆 : 𝐶 → 𝐸 defined by 𝑆 := (𝐼 − 𝑡𝜇𝑉) is a contraction with a
constant 1 − 𝑡𝜏.

Next we give a weak convergence theorem in a Banach
space 𝐸.

3. Main Results

Theorem 19. Let 𝐸 be a uniformly convex and 𝑞-uniformly
smooth Banach space. Let 𝐴 : 𝐸 → 𝐸 be 𝛼-inverse-strongly
accretive, 𝐵 : 𝐸 → 2

𝐸
𝑚-accretive, and 𝑆 : 𝐸 → 𝐸 𝜆-strict

pseudocontractive. Assume that 𝐹(𝑆)∩(𝐴+𝐵)
−1
(0) ̸= 0. Define

a mapping 𝑇𝑥 := (1 − 𝜎)𝑥 + 𝜎𝑆𝑥 for all 𝑥 ∈ 𝐸. For arbitrarily
given 𝑥

1
∈ 𝐸 and 𝜎 ∈ (0, 𝜌], where 𝜌 = min{1, {𝑞𝜆/𝐶

𝑞
}
1/(𝑞−1)

},
let {𝑥
𝑛
} be the sequence generated iteratively by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇 (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) ,

∀𝑛 ≥ 1,

(40)

where 𝐽
𝑟
𝑛

= (𝐼 + 𝑟
𝑛
𝐵)
−1, {𝑎
𝑛
}, {𝑏
𝑛
} ⊂ E, {𝛼

𝑛
} ⊂ (0, 1], and

{𝑟
𝑛
} ⊂ (0, +∞). Assume that

(i) ∑∞
𝑛=1

‖𝑎
𝑛
‖ < ∞ and ∑

∞

𝑛=1
‖𝑏
𝑛
‖ < ∞,

(ii) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1,

(iii) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< (𝑞𝛼/𝐶

𝑞
)
1/(𝑞−1).

Then {𝑥
𝑛
} converges weakly to some point 𝑥 ∈ 𝐹(𝑆) ∩ (𝐴 +

𝐵)
−1
(0).

Proof. We divide the proof into several steps.
Step 1. We prove lim

𝑛→∞
‖𝑥
𝑛
− 𝑧‖ exists for any point 𝑧 ∈

𝐹(𝑆)⋂(𝐴 + 𝐵)
−1
(0).

Putting 𝑇
𝑛
= 𝐽
𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) = (𝐼 + 𝑟

𝑛
𝐵)
−1
(𝐼 − 𝑟
𝑛
𝐴), one has

𝑇 (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) = 𝑇𝑇

𝑛
𝑥
𝑛
+ 𝑔
𝑛
, (41)

where

𝑔
𝑛
= 𝑇 (𝐽

𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) − 𝑇𝑇

𝑛
𝑥
𝑛
. (42)
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Then the iterative formula (40) turns into the form

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝑇𝑇
𝑛
𝑥
𝑛
+ 𝑔
𝑛
) . (43)

Thus, by virtue of Lemmas 10 and 12 and nonexpansivity of
𝐽
𝑟
𝑛

, we have

󵄩󵄩󵄩󵄩𝑔𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) − 𝑇𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑏𝑛

󵄩󵄩󵄩󵄩

≤ 𝑟
𝑛

󵄩󵄩󵄩󵄩𝑎𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑏𝑛
󵄩󵄩󵄩󵄩 .

(44)

By (44) and condition (i), we have that

∞

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑔𝑛
󵄩󵄩󵄩󵄩 < ∞. (45)

Since 𝑧 ∈ 𝐹(𝑆)∩(𝐴+𝐵)
−1
(0), according to Lemmas 10 and 15,

we can deduce 𝑧 ∈ 𝐹(𝑇)∩𝐹(𝑇
𝑛
). Lemma 16 and condition (iii)

together imply 𝑇
𝑛
is nonexpansive. Therefore, we get from

(43) that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑧

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔𝑛
󵄩󵄩󵄩󵄩 .

(46)

In view of (45), (46), and Lemma 8, we get that lim
𝑛→∞

‖𝑥
𝑛
−

𝑧‖ exists. Therefore {𝑥
𝑛
} is bounded.

Step 2. We show lim
𝑛→∞

‖𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ = 0.

Let 𝑀
1
> 0 be such that ‖𝑥

𝑛
‖ < 𝑀

1
, for all 𝑛 ∈ N and let

𝑠 = 𝑞(𝑀
1
+ ‖𝑧‖)

𝑞−1. By (43), Lemmas 6, 10, and 16, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑧) + 𝛼

𝑛
(𝑇𝑇
𝑛
𝑥
𝑛
+ 𝑔
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑧) + 𝛼

𝑛
(𝑇𝑇
𝑛
𝑥
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩

𝑞

+ 𝛼
𝑛
𝑞 ⟨𝑔
𝑛
, 𝑗
𝑞
(𝑥
𝑛+1

− 𝑧)⟩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

𝑞

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝑞
+ 𝛼
𝑛
𝑞
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

𝑞
+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝑞

+ 𝛼
𝑛
𝑞
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

𝑞
− 𝛼
𝑛
𝑟
𝑛
(𝛼𝑞 − 𝑟

𝑞−1

𝑛
𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑧

󵄩󵄩󵄩󵄩

𝑞

− 𝛼
𝑛
𝜙
𝑞
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝐽

𝑟
𝑛

) (𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝐽

𝑟
𝑛

) (𝐼 − 𝑟
𝑛
𝐴) 𝑧

󵄩󵄩󵄩󵄩󵄩
)

+ 𝛼
𝑛
𝑠
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

𝑞
− 𝛼
𝑛
𝑟
𝑛
(𝛼𝑞 − 𝑟

𝑞−1

𝑛
𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑧

󵄩󵄩󵄩󵄩

𝑞

− 𝛼
𝑛
𝜙
𝑞
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑟

𝑛
𝐴𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
+ 𝑟
𝑛
𝐴𝑧

󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛
𝑠
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 .

(47)

Meanwhile, by the fact that 𝑎𝑟 −𝑏
𝑟
≤ 𝑟𝑎
𝑟−1

(𝑎− 𝑏), ∀𝑟 ≥ 1 and
(47), we get that

𝛼
𝑛
𝑟
𝑛
(𝛼𝑞 − 𝑟

𝑞−1

𝑛
𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑧

󵄩󵄩󵄩󵄩

𝑞

+ 𝛼
𝑛
𝜙
𝑞
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑟

𝑛
𝐴𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
+ 𝑟
𝑛
𝐴𝑧

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

𝑞
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞
+ 𝛼
𝑛
𝑠
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩

≤ 𝑞
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩) + 𝛼
𝑛
𝑠
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 .

(48)

Thanks to (45), existence of lim
𝑛→∞

‖𝑥
𝑛
−𝑧‖, (ii) and (iii), one

has

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑧

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑟
𝑛
𝐴𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
+ 𝑟
𝑛
𝐴𝑧

󵄩󵄩󵄩󵄩 = 0.

(49)

It turns out that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (50)

Step 3. We prove lim
𝑛→∞

‖𝑇𝑇
𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ = 0.

Noticing (45) and Lemma 7, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑧) + 𝛼

𝑛
(𝑇𝑇
𝑛
𝑥
𝑛
+ 𝑔
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑧

󵄩󵄩󵄩󵄩

2

− 𝑊
2
(𝛼
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 2

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩

2
)

− 𝑊
2
(𝛼
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩

2
)

− 𝑊
2
(𝛼
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑔𝑛
󵄩󵄩󵄩󵄩

2

− 𝑊
2
(𝛼
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩

2

− 𝑊
2
(𝛼
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩) ,

(51)
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which implies

𝑊
2
(𝛼
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩

2
,

(52)

where𝑊
2
(𝛼
𝑛
) = 𝛼
𝑛
(1−𝛼
𝑛
). From (45), (52), (ii), and existence

of lim
𝑛→∞

‖𝑥
𝑛
− 𝑧‖, it turns out that

lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 + 𝑔

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩) = 0. (53)

It follows from the property of 𝜑 and (45) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (54)

Step 4. We prove 𝜔
𝑤
(𝑥
𝑛
) ⊂ 𝐹(𝑆) ∩ (𝐴 + 𝐵)

−1
(0).

Since 0 < lim inf
𝑛→∞

𝑟
𝑛

≤ lim sup
𝑛→∞

𝑟
𝑛

< 1, there
exists 𝜀 > 0 such that 𝑟

𝑛
≥ 𝜀 for all 𝑛 ≥ 1. Then, by Lemma 16,

we have
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝜀𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ 2 lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (55)

It follows from (50), (54), and (55) that
󵄩󵄩󵄩󵄩𝑇𝑇𝜀𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑇𝜀𝑥𝑛 − 𝑇𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝜀𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝜀𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0.

(56)

By Lemmas 10, 11, and 17 and (56), we get

𝜔
𝑤
(𝑥
𝑛
) ⊂ 𝐹 (𝑇𝑇

𝜀
) = 𝐹 (𝑇) ∩ 𝐹 (𝑇

𝜀
)

= 𝐹 (𝑆) ∩ (𝐴 + 𝐵)
−1

(0) .

(57)

Step 5. We show {𝑥
𝑛
} converges weakly to a fixed point of 𝑥 ∈

𝐹(𝑆) ∩ (𝐴 + 𝐵)
−1
(0).

Indeed, it suffices to show 𝜔
𝑤
(𝑥
𝑛
) consists of exactly

only one point. To this end, we suppose that two different
points 𝑥 and 𝑦 are in 𝜔

𝑤
(𝑥
𝑛
). Then there exist two different

subsequences {𝑛
𝑖
} and {𝑛

𝑗
} such that 𝑥

𝑛
𝑖

⇀ 𝑥 and 𝑥
𝑛
𝑗

⇀ 𝑦 as
𝑖 → ∞ and 𝑗 → ∞. Define 𝑆

𝑛,𝑚
: 𝐸 → 𝐸 by

𝑆
𝑛,𝑚

= 𝑉
𝑛+𝑚−1

𝑉
𝑛+𝑚−2

⋅ ⋅ ⋅ 𝑉
𝑛
,

𝑉
𝑛
= (1 − 𝛼

𝑛
) 𝐼 + 𝛼

𝑛
𝑇𝑇
𝑛
.

(58)

Then 𝑥
𝑛
can be written

𝑥
𝑛+𝑚

= 𝑆
𝑛,𝑚

𝑥
𝑛
+ 𝑐
𝑛,𝑚

, (59)

where
𝑐
𝑛,𝑚

= 𝑉
𝑛+𝑚−1

× (𝑉
𝑛+𝑚−2

(⋅ ⋅ ⋅ 𝑉
𝑛+1

(𝑉
𝑛
𝑥
𝑛
+ 𝛼
𝑛
𝑔
𝑛
) + 𝛼
𝑛+1

𝑔
𝑛+1

⋅ ⋅ ⋅ )

+𝛼
𝑛+𝑚−2

𝑔
𝑛+𝑚−2

)

+ 𝛼
𝑛+𝑚−1

𝑔
𝑛+𝑚−1

− 𝑆
𝑛,𝑚

𝑥
𝑛
.

(60)

Thanks to the nonexpansivity of 𝑉
𝑛
, we have

󵄩󵄩󵄩󵄩𝑐𝑛,𝑚
󵄩󵄩󵄩󵄩 ≤

𝑛+𝑚−1

∑

𝑘=𝑛

󵄩󵄩󵄩󵄩𝛼𝑘𝑔𝑘
󵄩󵄩󵄩󵄩 ≤

𝑛+𝑚−1

∑

𝑘=𝑛

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 . (61)

It follows from (45) that

lim
𝑚,𝑛→∞

󵄩󵄩󵄩󵄩𝑐𝑛,𝑚
󵄩󵄩󵄩󵄩 󳨀→ 0. (62)

Let

𝑓
𝑛 (𝑡) =

󵄩󵄩󵄩󵄩𝑡𝑥𝑛 + (1 − 𝑡) 𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

𝑑
𝑛,𝑚

= 𝑆
𝑛,𝑚

(𝑡𝑥
𝑛
+ (1 − 𝑡) 𝑥) − (𝑡𝑆

𝑛,𝑚
𝑥
𝑛
+ (1 − 𝑡) 𝑥) .

(63)

Applying Lemma 13 to the closed convex bounded subset
𝐷 := co({𝑥

𝑛
} ∪ {𝑥, 𝑦}), we obtain

𝑔 (
󵄩󵄩󵄩󵄩𝑑𝑛,𝑚

󵄩󵄩󵄩󵄩) ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑆𝑛,𝑚𝑥𝑛 − 𝑆

𝑛,𝑚
𝑥
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑥 − 𝑐

𝑛,𝑚

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+𝑚 − 𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑐𝑛,𝑚

󵄩󵄩󵄩󵄩 .

(64)

Since lim
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ exists, (62), (64), and the property of

𝑔 together imply that

lim
𝑚,𝑛→∞

󵄩󵄩󵄩󵄩𝑑𝑛,𝑚
󵄩󵄩󵄩󵄩 󳨀→ 0. (65)

Furthermore, we have

𝑓
𝑛+𝑚 (𝑡) =

󵄩󵄩󵄩󵄩𝑡𝑥𝑛+𝑚 + (1 − 𝑡) 𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑑𝑛,𝑚

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛,𝑚 (𝑡𝑥𝑛 + (1 − 𝑡) 𝑥) − 𝑦

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩𝑐𝑚,𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑑𝑛,𝑚

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑡𝑥𝑛 + (1 − 𝑡) 𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩𝑐𝑚,𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑑𝑛,𝑚

󵄩󵄩󵄩󵄩 + 𝑓
𝑛 (𝑡) + 𝑡

󵄩󵄩󵄩󵄩𝑐𝑚,𝑛
󵄩󵄩󵄩󵄩 .

(66)

After taking first lim sup
𝑚→∞

and then lim inf
𝑛→∞

in (66)
and using (62) and (65), we get

lim sup
𝑚→∞

𝑓
𝑚 (𝑡) ≤ lim inf

𝑛→∞
𝑓
𝑛 (𝑡)

+ lim
𝑚,𝑛→∞

(
󵄩󵄩󵄩󵄩𝑑𝑚,𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑐𝑛,𝑚

󵄩󵄩󵄩󵄩) = lim inf
𝑛→∞

𝑓
𝑛 (𝑡) .

(67)

So lim
𝑛→∞

‖𝑡𝑥
𝑛
+(1−𝑡)𝑥−𝑦‖ exists for all 𝑡 ∈ [0, 1]. It follows

from Lemma 14 that 𝑥 = 𝑦. This completes the proof.

Remark 20. Compared with the known results in the litera-
ture, our results are very different from those in the following
aspects.

(i) Theorem 19 improves and extends Theorem 3 of
Kamimura and Takahashi [4] and Theorem 3.1 of
Manaka and Takahashi [9] from Hilbert spaces to
uniformly convex and 𝑞-uniformly smooth Banach
spaces.
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(ii) Theorem 19 also improves and extends Theorem 3.6
of López et al. [14] from the problem of finding an
element of (𝐴 + 𝐵)

−1
(0) to the problem of finding an

element of (𝐴 + 𝐵)
−1
(0) ∩ 𝐹(𝑆), where 𝑆 is 𝜆-strictly

pseudocontractive on 𝐸.

In the following, we give a strong convergence theorem in
a Banach space 𝐸.

Theorem 21. Let 𝐸 be a uniformly convex and 𝑞-uniformly
smooth Banach space which admits a weakly sequentially
continuous generalized duality mapping 𝑗

𝑞
: 𝐸 → 𝐸

∗. Let
𝐴 : 𝐸 → 𝐸 be 𝛼-inverse-strongly accretive, 𝐵 : 𝐸 → 2

𝐸
𝑚-

accretive, 𝐺 : 𝐸 → 𝐸 𝑘-Lipschitz and 𝜂-strongly accretive,
𝜓 : 𝐸 → 𝐸 𝐿-Lipschitz, and 𝑆 : 𝐸 → 𝐸 𝜆-strictly
pseudocontractive. Define a mapping 𝑇𝑥 := (1 − 𝜎)𝑥 + 𝜎𝑆𝑥 for
all 𝑥 ∈ 𝐸. For arbitrarily given 𝑥

1
∈ 𝐸 and 𝜎 ∈ (0, 𝜌], where

𝜌 = min{1, {𝑞𝜆/𝐶
𝑞
}
1/(𝑞−1)

}, let {𝑥
𝑛
} be the sequence generated

iteratively by

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝜓 (𝑥

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇

× (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
) , ∀𝑛 ≥ 1.

(68)

Assume that {𝛼
𝑛
} ⊂ [0, 1], {𝑟

𝑛
} ⊂ (0, +∞) and {𝑎

𝑛
}, {𝑏
𝑛
} ⊂ 𝐸

satisfying the following conditions:

(i) ∑∞
𝑛=1

‖𝑎
𝑛
‖ < ∞ and ∑

∞

𝑛=1
‖𝑏
𝑛
‖ < ∞,

(ii) ∑∞
𝑛=1

𝛼
𝑛
= ∞, lim

𝑛→∞
𝛼
𝑛
= 0 and ∑

∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| <

∞,

(iii) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< (𝑞𝛼/𝐶

𝑞
)
1/(𝑞−1)

and ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞.

Suppose in addition that (𝑆) ∩ (𝐴 + 𝐵)
−1
(0) ̸= 0, 0 < 𝜇 <

(𝑞𝜂/𝐶
𝑞
𝑘
𝑞
)
1/(𝑞−1) and 0 ≤ 𝛾𝐿 < 𝜏, where 𝜏 = 𝜇(𝜂 −

(𝐶
𝑞
𝜇
𝑞−1

𝑘
𝑞
/𝑞)). Then {𝑥

𝑛
} converges strongly to some point 𝑧 ∈

𝐹(𝑆) ∩ (𝐴 + 𝐵)
−1
(0) which solves the variational inequality:

⟨𝛾𝜓(𝑧)−𝜇𝐺(𝑧), 𝑗
𝑞
(𝑥−𝑧)⟩ ≤ 0, for all 𝑥 ∈ 𝐹(𝑆)∩(𝐴+𝐵)

−1
(0).

Proof. Let {𝑦
𝑛
} be a sequence generated by

𝑦
𝑛+1

= 𝛼
𝑛
𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑇

𝑛
𝑦
𝑛
, (69)

where 𝑇
𝑛
:= 𝐽
𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴). We show ‖𝑦

𝑛
− 𝑥
𝑛
‖ → 0.

It follows from Lemmas 10, 12, and 18 that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝐽

𝑟
𝑛

(𝑦
𝑛
− 𝑟
𝑛
𝐴𝑦
𝑛
)

− 𝛼
𝑛
𝛾𝜓 (𝑥

𝑛
) − (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇

× (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩󵄩
𝑇𝐽
𝑟
𝑛

(𝑦
𝑛
− 𝑟
𝑛
𝐴𝑦
𝑛
)

−𝑇 (𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) + 𝑏
𝑛
)
󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝛾𝐿

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

(𝑦
𝑛
− 𝑟
𝑛
𝐴𝑦
𝑛
)

−𝐽
𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
))
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑏𝑛

󵄩󵄩󵄩󵄩 + 𝛼
𝑛
𝛾𝐿

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛
(𝜏 − 𝛾𝐿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

+ 𝑟
𝑛

󵄩󵄩󵄩󵄩𝑎𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑏𝑛
󵄩󵄩󵄩󵄩 .

(70)

By virtue of Lemma 8, (i), and (70), we have lim
𝑛→∞

‖𝑦
𝑛
−

𝑥
𝑛
‖ = 0.
Hence, to show the desired result, it suffices to prove that

𝑦
𝑛
→ 𝑧.

Step 1. We prove that the sequence {𝑦
𝑛
} is bounded. Taking

𝑥 ∈ 𝐹(𝑆) ∩ (𝐴 + 𝐵)
−1
(0), it follows from Lemmas 10, 12, 15,

and 16 and condition (iii) that
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑇

𝑛
𝑦
𝑛
− 𝑥

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾 (𝜓 (𝑦

𝑛
) − 𝜓 (𝑥)) + 𝛼

𝑛
(𝛾𝜓 (𝑥) − 𝜇𝐺 (𝑥))

+ (𝐼 − 𝛼
𝑛
𝜇𝐺)𝑇𝑇

𝑛
𝑦
𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐺) 𝑥

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝐿

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝜓 (𝑥) − 𝜇𝐺 (𝑥)
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩

= [1 − 𝛼
𝑛
(𝜏 − 𝛾𝐿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝜓 (𝑥) − 𝜇𝐺 (𝑥)
󵄩󵄩󵄩󵄩

≤ max{
󵄩󵄩󵄩󵄩𝛾𝜓 (𝑥) − 𝜇𝐺 (𝑥)

󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝐿
,
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

󵄩󵄩󵄩󵄩} .

(71)

By induction, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩 ≤ max{

󵄩󵄩󵄩󵄩𝛾𝜓 (𝑥) − 𝜇𝐺 (𝑥)
󵄩󵄩󵄩󵄩

𝜏 − 𝛾𝐿
,
󵄩󵄩󵄩󵄩𝑦1 − 𝑥

󵄩󵄩󵄩󵄩} , ∀𝑛 ≥ 1.

(72)

Hence, {𝑦
𝑛
} is bounded, and so are {𝜓(𝑦

𝑛
)} and {𝑇

𝑛
(𝑦
𝑛
)}.

Step 2. We prove that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (73)

Putting 𝑧
𝑛
= 𝑇
𝑛
𝑦
𝑛
= 𝐽
𝑟
𝑛

(𝐼−𝑟
𝑛
𝐴)𝑦
𝑛
, it follows from Lemma 16

that
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇𝑛+1𝑦𝑛+1 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛+1𝑦𝑛+1 − 𝑇

𝑛
𝑦
𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛+1 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
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≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝛼
𝑛

𝑟
𝛽
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛+1

− 𝐽
𝑟
𝛽𝑛

(1 − 𝑟
𝛽
𝑛

𝐴)𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨󵄨
𝑟
𝛽
𝑛

− 𝑟
𝛼
𝑛

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛+1

− 𝐽
𝑟
𝛽𝑛

(1 − 𝑟
𝛽
𝑛

𝐴)𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩

𝑟
𝛽
𝑛

+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟

𝑛

󵄨󵄨󵄨󵄨𝑀2 +
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 ,

(74)

where 𝑀
2

> sup
𝑛≥1

{‖𝑦
𝑛+1

− 𝐽
𝑟
𝛽𝑛

(1 − 𝑟
𝛽
𝑛

𝐴)𝑦
𝑛+1

‖/𝑟
𝛽
𝑛

}, 𝑟
𝛼
𝑛

=

min{𝑟
𝑛+1

, 𝑟
𝑛
}, and 𝑟

𝛽
𝑛

= max{𝑟
𝑛+1

, 𝑟
𝑛
}. Hence from (69) and

(74) we have

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑧

𝑛

−𝛼
𝑛−1

𝛾𝜓 (𝑦
𝑛−1

) − (𝐼 − 𝛼
𝑛−1

𝜇𝐺)𝑇𝑧
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾 (𝜓 (𝑦

𝑛
) − 𝜓 (𝑦

𝑛−1
)) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑧

𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐺)𝑇𝑧

𝑛−1
+ (𝛼
𝑛
− 𝛼
𝑛−1

)

× (𝛾𝜓 (𝑦
𝑛−1

) − 𝜇𝐺𝑇𝑧
𝑛−1

)
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑇𝑧
𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝛾𝐿

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨𝑀3

≤ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝛾𝐿

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨𝑀3

≤ [1 − 𝛼
𝑛
(𝜏 − 𝛾𝐿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨𝑀3 +
󵄨󵄨󵄨󵄨𝑟𝑛 − 𝑟

𝑛−1

󵄨󵄨󵄨󵄨𝑀2,

(75)

where 𝑀
3

> sup
𝑛≥1

{‖𝛾𝜓(𝑦
𝑛
) − 𝜇𝐺𝑇𝑧

𝑛
‖}. It follows from

Lemma 9, (ii), and (iii) that lim
𝑛→∞

‖𝑦
𝑛+1

− 𝑦
𝑛
‖ = 0.

Again from Lemmas 6 and 16, we obtain

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑧

𝑛
− 𝑥

󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝜓 (𝑦

𝑛
) − 𝜇𝐺 (𝑥)) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑧

𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐺) 𝑥

󵄩󵄩󵄩󵄩

𝑞

≤ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩

𝑞

+ 𝑞𝛼
𝑛
⟨𝛾𝜓 (𝑦

𝑛
) − 𝜇𝐺 (𝑥) , 𝑗𝑞 (𝑦𝑛+1 − 𝑥)⟩

≤
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥

󵄩󵄩󵄩󵄩

𝑞
+ 𝑞𝛼
𝑛
𝑀
4

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

󵄩󵄩󵄩󵄩

𝑞
− 𝑟
𝑛
(𝛼𝑞 − 𝑟

𝑞−1

𝑛
𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥

󵄩󵄩󵄩󵄩

𝑞

− 𝜙
𝑞
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑟

𝑛
𝐴𝑦
𝑛
− 𝑇
𝑛
𝑦
𝑛
+ 𝑟
𝑛
𝐴𝑥

󵄩󵄩󵄩󵄩) + 𝑞𝛼
𝑛
𝑀
4
,

(76)

where 𝑀
4
> sup

𝑛≥1
{⟨𝛾𝜓(𝑦

𝑛
) − 𝜇𝐺(𝑥), 𝑗

𝑞
(𝑦
𝑛+1

− 𝑥)⟩}. Mean-
while, by the fact that 𝑎𝑟 − 𝑏

𝑟
≤ 𝑟𝑎
𝑟−1

(𝑎 − 𝑏) for all 𝑟 ≥ 1, we
get that

𝑟
𝑛
(𝛼𝑞 − 𝑟

𝑞−1

𝑛
𝐶
𝑞
)
󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥

󵄩󵄩󵄩󵄩

𝑞

+ 𝜙
𝑞
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑟

𝑛
𝐴𝑦
𝑛
− 𝑇
𝑛
𝑦
𝑛
+ 𝑟
𝑛
𝐴𝑥

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

󵄩󵄩󵄩󵄩

𝑞
−
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

󵄩󵄩󵄩󵄩

𝑞
+ 𝑞𝛼
𝑛
𝑀
4

≤ 𝑞
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

󵄩󵄩󵄩󵄩

𝑞−1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

󵄩󵄩󵄩󵄩) + 𝑞𝛼
𝑛
𝑀
4
.

(77)

It follows immediately from (ii), (iii), (77), existence of
lim
𝑛→∞

‖𝑦
𝑛
− 𝑥‖, and the property of 𝜙

𝑞
that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑟
𝑛
𝐴𝑦
𝑛
− 𝑇
𝑛
𝑦
𝑛
+ 𝑟
𝑛
𝐴𝑥

󵄩󵄩󵄩󵄩 = 0.

(78)

Hence we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (79)

By condition (iii), there exists 𝜀 > 0 such that 𝑟
𝑛
≥ 𝜀 for all

𝑛 ≥ 1. Then, by Lemma 16, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝜀𝑦𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤ lim
𝑛→∞

2
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 = 0. (80)

Step 3. We show lim
𝑛→∞

‖𝑇𝑇
𝜀
𝑦
𝑛
− 𝑦
𝑛
‖ = 0.

From (73), (79), (80), and (ii), we have
󵄩󵄩󵄩󵄩𝑇𝑇𝜀𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑇𝜀𝑦𝑛 − 𝑇𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝜀𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝜀𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇𝑇𝑛𝑦𝑛 − 𝑦

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝜀𝑦𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝜓 (𝑦
𝑛
) − 𝜇𝐺𝑇𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0.

(81)

Lemmas 10, 11, and 17 and (81) together imply that

𝜔
𝑤
(𝑦
𝑛
) ⊂ 𝐹 (𝑇𝑇

𝜀
) = 𝐹 (𝑇) ∩ 𝐹 (𝑇

𝜀
)

= 𝐹 (𝑆) ∩ (𝐴 + 𝐵)
−1

(0) .

(82)

By Song’s Lemma 2.11 [25], we deduce directly that {𝑧
𝑡
}

defined by 𝑧
𝑡
= 𝑡𝛾𝜓(𝑧

𝑡
) − (𝐼 − 𝑡𝜇𝐺)𝑇𝑇

𝜀
𝑧
𝑡
converges strongly

to some point 𝑧 ∈ 𝐹(𝑇𝑇
𝜀
) which is the unique solution of the

variational inequality:

⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑥 − 𝑧)⟩ ≤ 0, ∀𝑥 ∈ 𝐹 (𝑇𝑇
𝜀
) . (83)

Step 4. We prove that

lim sup
𝑛→∞

⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛 − 𝑧)⟩ ≤ 0. (84)
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We take a subsequence {𝑦
𝑛
𝑖

} of {𝑦
𝑛
} such that

lim sup
𝑛→∞

⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛 − 𝑧)⟩

= lim
𝑖→∞

⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛
𝑖

− 𝑧)⟩ .

(85)

Without loss of generality, we may further assume that 𝑦
𝑛
𝑖

⇀

𝑥 due to reflexivity of the Banach space 𝐸 and boundness of
{𝑦
𝑛
}. It follows from (82) that 𝑥 ∈ 𝐹(𝑇𝑇

𝜀
). Since Banach space

𝐸 has a weakly sequentially continuous generalized duality
mapping 𝑗

𝑝
: 𝐸 → 𝐸

∗, we obtain that

lim sup
𝑛→∞

⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛 − 𝑧)⟩

= lim
𝑖→∞

⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛
𝑖

− 𝑧)⟩

= ⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑥 − 𝑧)⟩

≤ 0.

(86)

Step 5. We show ‖𝑦
𝑛
− 𝑧‖ → 0.

By Lemmas 9 and 16 and the fact that 𝑎𝑏 ≤ (1/𝑞)𝑎
𝑞
+((𝑞−

1)/𝑞)𝑏
𝑞/(𝑞−1), we get

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑇

𝑛
𝑦
𝑛
− 𝑧

󵄩󵄩󵄩󵄩

𝑞

= ⟨𝛼
𝑛
𝛾𝜓 (𝑦

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑇

𝑛
𝑦
𝑛
− 𝑧, 𝑗
𝑞
(𝑦
𝑛+1

− 𝑧)⟩

= 𝛼
𝑛
𝛾 ⟨𝜓 (𝑦

𝑛
) − 𝜓 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩

+ 𝛼
𝑛
⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩

+ ⟨(𝐼 − 𝛼
𝑛
𝜇𝐺)𝑇𝑇

𝑛
𝑦
𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐺) 𝑧, 𝑗

𝑞
(𝑦
𝑛+1

− 𝑧)⟩

≤ 𝛼
𝑛
𝛾
󵄩󵄩󵄩󵄩𝜓 (𝑦
𝑛
) − 𝜓 (𝑧)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

+ 𝛼
𝑛
⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

≤ 𝛼
𝑛
𝐿
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

+ 𝛼
𝑛
⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩

+ (1 − 𝛼
𝑛
𝜏)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

≤ [1 − 𝛼
𝑛
(𝜏 − 𝛾𝐿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

𝑞−1

+ 𝛼
𝑛
⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩

≤ [1 − 𝛼
𝑛
(𝜏 − 𝛾𝐿)]

1

𝑞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝑞
+

𝑞 − 1

𝑞

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

𝑞

+ 𝛼
𝑛
⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩ ,

(87)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

𝑞
≤ [1 − 𝛼

𝑛
(𝜏 − 𝛾𝐿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝑞

+ 𝑞𝛼
𝑛
⟨𝛾𝜓 (𝑧) − 𝜇𝐺 (𝑧) , 𝑗𝑞 (𝑦𝑛+1 − 𝑧)⟩ .

(88)

Apply Lemma 9 to (88) to conclude 𝑦
𝑛
→ 𝑧 as 𝑛 → ∞.This

completes the proof.

Remark 22. Theorem 21 improves and extends Theorem 3.7
of López et al. [14] in the following aspects:

(i) from the problemof finding an element of (𝐴+𝐵)
−1
(0)

to the problem of finding an element of (𝐴+𝐵)
−1
(0)∩

𝐹(𝑆), where 𝑆 is 𝜆-strictly pseudocontractive on 𝐸;
(ii) from a fixed element 𝑢 to a Lipschitz mapping 𝜓.

Remark 23. Theorem 21 improves and extends Theorem 2.1
of Zhang et al. [8] in the following aspects:

(i) from Hilbert spaces to uniformly convex and 𝑞-
uniformly smooth Banach spaces;

(ii) fromfinding a common element of the set of solutions
to the variational inclusion problem and the set of
fixed points of nonexpansive mappings to finding
a common element of the set of solutions to the
variational inclusion problem and the set of fixed
points of 𝜆-strict pseudocontractions;

(iii) from a fixed element 𝑢 to a Lipschitz mapping 𝜓;
(iv) from a fixed positive number 𝜆 to a sequence positive

number {𝑟
𝑛
}.

As a direct consequence of Theorem 21, we obtain the
following result.

Corollary 24. Let𝐻 be a real Hilbert space. Let 𝐴 : 𝐻 → 𝐻

be 𝛼-inverse-strongly monotone, 𝐵 : 𝐻 → 2
𝐻 maximal

monotone, 𝐺 : 𝐻 → 𝐻 𝑘-Lipschitz and 𝜂-strongly monotone,
𝜓 : 𝐻 → 𝐻 𝐿-Lipschitz, and 𝑆 : 𝐻 → 𝐻 𝐾-strictly
pseudocontractive. Define a mapping 𝑇𝑥 := (1 − 𝜎)𝑥 + 𝜎𝑆𝑥

for all 𝑥 ∈ 𝐻. For arbitrarily given 𝑥
1
∈ 𝐻 and 𝜎 ∈ [𝐾, 1), let

{𝑥
𝑛
} be the sequence generated iteratively by

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝜓 (𝑥

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝐽

𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
+ 𝑎
𝑛
)) ,

∀𝑛 ≥ 1.

(89)

Assume that {𝛼
𝑛
} ⊂ [0, 1], {𝑟

𝑛
} ⊂ (0, +∞), and {𝑎

𝑛
} ⊂ 𝐻

satisfying the following conditions:

(i) ∑∞
𝑛=1

‖𝑎
𝑛
‖ < ∞,

(ii) ∑∞
𝑛=1

𝛼
𝑛
= ∞, lim

𝑛→∞
𝛼
𝑛
= 0 and ∑

∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| <

∞,

(iii) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝛼 and ∑

∞

𝑛=1

|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞.
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Suppose in addition that𝐹(𝑆)∩(𝐴+𝐵)
−1
(0) ̸= 0, 0 < 𝜇 < 2𝜂/𝑘

2

and 0 ≤ 𝛾𝐿 < 𝜏, where 𝜏 = 𝜇(𝜂 − 𝜇𝑘
2
/2). Then {𝑥

𝑛
} converges

strongly to some point 𝑧 ∈ 𝐹(𝑆) ∩ (𝐴 + 𝐵)
−1
(0) which solves

the variational inequality: ⟨𝛾𝜓(𝑧) − 𝜇𝐺(𝑧), 𝑥 − 𝑧⟩ ≤ 0, for
all 𝑥 ∈ 𝐹(𝑆) ∩ (𝐴 + 𝐵)

−1
(0).

4. Applications

Using Corollary 24, we consider the problem for finding a
common element of the set of solutions of a mathematical
model related to equilibrium problems and the set of fixed
points of a strict pseudocontraction in a Hilbert space. Let 𝐶
be a nonempty, closed, and convex subset of a Hilbert space
and let𝑓 : 𝐶×𝐶 → R be a bifunction satisfying the following
conditions:

(A1) 𝑓(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝑓 is monotone, that is, 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐶;
(A3) for all 𝑥, 𝑦, 𝑧 ∈ 𝐶,

lim sup
𝑡↓0

𝑓 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝑓 (𝑥, 𝑦) ; (90)

(A4) for all 𝑥 ∈ 𝐶, 𝑓(𝑥, ⋅) is convex and lower semicontin-
uous.

Then, the mathematical model related to equilibrium
problems (with respect to 𝐶) is to find 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) = 0 (91)

for all 𝑦 ∈ 𝐶. The set of such solutions 𝑥 is denoted by EP(𝑓).
The following lemma appears implicitly in Blum and

Oettli [26].

Lemma 25. Let 𝐶 be a nonempty, closed, and convex subset of
𝐻 and let𝑓 : 𝐶×𝐶 → R be a bifunction satisfying (A1)–(A4).
Let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then, there exists 𝑧 ∈ 𝐶 such that

𝑓 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (92)

The following lemma was also given in Combettes and
Hirstoaga [27].

Lemma 26. Assume that 𝑓 : 𝐶 × 𝐶 → R satisfies (A1)–(A4).
For 𝑟 > 0 and 𝑥 ∈ 𝐻, define amapping 𝑆

𝑟
: 𝐻 → 𝐶 as follows:

𝑆
𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(93)

for all 𝑥 ∈ 𝐻. Then, the following hold:

(1) 𝑆
𝑟
is single-valued;

(2) 𝑆
𝑟
is a firmly nonexpansive mapping; that is, for all

𝑥, 𝑦 ∈ 𝐻, ‖𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦‖
2
≤ ⟨𝑆
𝑟
𝑥 − 𝑆
𝑟
𝑦, 𝑥 − 𝑦⟩;

(3) 𝐹(𝑆
𝑟
) = 𝐸𝑃(𝑓);

(4) 𝐸𝑃(𝑓) is closed and convex.

Wecall such 𝑆
𝑟
the resolvent of𝑓 for 𝑟 > 0. Using Lemmas

25 and 26, Takahashi et al. [10] proved the following theorem.
See [10] for a more general result.

Theorem 27. Let 𝐻 be a Hilbert space and let 𝐶 be a
nonempty, closed, and convex subset of𝐻. Let 𝑓 : 𝐶 ×𝐶 → R

satisfy (A1)–(A4). Let 𝐴
𝑓
be a multivalued mapping of 𝐻 into

itself defined by

𝐴
𝑓
𝑥 =

{{

{{

{

{𝑧 ∈ 𝐻 : 𝑓 (𝑥, 𝑦) ≥ ⟨𝑦 − 𝑥, 𝑧⟩ ,

∀𝑦 ∈ 𝐶} , 𝑥 ∈ 𝐶,

0, 𝑥 ∉ 𝐶.

(94)

Then, 𝐸𝑃(𝑓) = 𝐴
−1

𝑓
0 and𝐴

𝑓
is a maximal monotone operator

with dom(𝐴
𝑓
) ⊂ 𝐶. Further, for any 𝑥 ∈ 𝐻 and 𝑟 > 0, the

resolvent 𝑆
𝑟
of 𝑓 coincides with the resolvent of 𝐴

𝑓
; that is,

𝑆
𝑟
𝑥 = (𝐼 + 𝑟𝐴

𝑓
)
−1
𝑥.

Theorem 28. Let 𝐻 be a real Hilbert space. Suppose 𝑓 : 𝐻 ×

𝐻 → R is a bifunction satisfying the following conditions:

(B1) 𝑓(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐻;
(B2) 𝑓 is monotone, that is, 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐻;
(B3) for all 𝑥, 𝑦, 𝑧 ∈ 𝐻,

lim sup
𝑡↓0

𝑓 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝑓 (𝑥, 𝑦) ; (95)

(B4) for all 𝑥 ∈ 𝐻, 𝑓(𝑥, ⋅) is convex and lower semicontin-
uous. Assume 𝑆

𝛿
is the resolvent of 𝑓 for 𝛿 > 0, 𝐺 :

𝐻 → 𝐻 is 𝑘-Lipschitz and 𝜂-strongly monotone,
𝜓 : 𝐻 → 𝐻 is 𝐿-Lipschitz, and 𝑆 : 𝐻 → 𝐻 is
𝐾-strictly pseudocontractive. Define a mapping 𝑇𝑥 :=

(1 − 𝜎)𝑥 + 𝜎𝑆𝑥 for all 𝑥 ∈ 𝐻. For arbitrarily given
𝑥
1

∈ 𝐻 and 𝜎 ∈ [𝐾, 1), let {𝑥
𝑛
} be the sequence

generated iteratively by

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝜓 (𝑥

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐺)𝑇𝑆

𝑟
𝑛

𝑥
𝑛
, ∀𝑛 ≥ 1. (96)

Assume that {𝛼
𝑛
} ⊂ [0, 1] and {𝑟

𝑛
} ⊂ (0, +∞) satisfying the

following conditions:

(i) ∑∞
𝑛=1

𝛼
𝑛
= ∞, lim

𝑛→∞
𝛼
𝑛
= 0 and ∑

∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| <

∞,
(ii) ∑∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞.

Suppose in addition that 𝐹(𝑆) ∩ 𝐸𝑃(𝑓) ̸= 0, 0 < 𝜇 < 2𝜂/𝑘
2

and 0 ≤ 𝛾𝐿 < 𝜏, where 𝜏 = 𝜇(𝜂 − 𝜇𝑘
2
/2). Then {𝑥

𝑛
}

converges strongly to some point 𝑧 ∈ 𝐹(𝑆)∩𝐸𝑃(𝑓)which solves
the variational inequality: ⟨𝛾𝜓(𝑧) − 𝜇𝐺(𝑧), 𝑥 − 𝑧⟩ ≤ 0, for
all 𝑥 ∈ 𝐹(𝑆) ∩ 𝐸𝑃(𝑓).

Proof. Put 𝐴 = 0 and 𝑎
𝑛
= 0 for all 𝑛 ∈ N in Corollary 24.

FromTheorem 27, we also know that 𝐽𝐴𝑓𝑟
𝑛

= 𝑆
𝑟
𝑛

for all 𝑛 ∈ N.
So, we obtain the desired result by Corollary 24.
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