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We are concerned with the singularly perturbed Boussinesq-type equation including the singularly perturbed sixth-order
Boussinesq equation, which describes the bidirectional propagation of small amplitude and long capillary-gravity waves on the
surface of shallow water for bond number (surface tension parameter) less than but very close to 1/3. The nonexistence of global
solution to the initial boundary value problem for the singularly perturbed Boussinesq-type equation is discussed and two examples
are given.

1. Introduction

In the numerical study of the ill-posed Boussinesq equation,

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ (𝑢
2
)
𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

. (1)

Darapi and Hua [1] proposed the singularly perturbed
Boussinesq equation

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ (𝑢
2
)
𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝛿𝑢
𝑥𝑥𝑥𝑥𝑥𝑥

(2)

as a dispersive regularization of the ill-posed classical Boussi-
nesq equation (1), where 𝛿 > 0 is a small parameter.
The authors use both filtering and regularization techniques
to control growth of the errors and to provide better
approximate solutions of this equation. Dash and Daripa [2]
presented a formal derivation of (2) from two-dimensional
potential flow equations for water waves through an asymp-
totic series expansion for small amplitude and long wave
length. The physical relevance of (2) in the context of water
waves was also addressed in [2]; it was shown that (2) actually
describes the bidirectional propagation of small amplitude
and long capillary-gravity waves on the surface of shallow
water for bond number (surface tension parameter) less than
but very close to 1/3. On the basis of far-field analysis and

heuristic arguments, Daripa and Dash [3] proved that the
traveling wave solutions of (2) are weakly nonlocal solitary
waves characterized by small amplitude fast oscillations in the
far-field and obtainedweakly nonlocal solitarywave solutions
of (2). Feng [4] investigated the generalized Boussinesq equa-
tion including the singularly perturbed Boussinesq equation

𝑢
𝑡𝑡
= [𝑄 (𝑢)]

𝑥𝑥
+

𝑛

∑

𝑖=1

𝑏
𝑖
𝑢
(2𝑖+2)𝑥

, (3)

where 𝑄(𝑢) = 𝑢 + 𝑏
0
𝑢
𝑟, 𝑢
(2𝑖+2)𝑥

= (𝜕
2𝑖+2

𝑢)/(𝜕𝑥
2𝑖+2

), 𝑟
and 𝑏

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are all real constants. It is easily

seen that the choices 𝑏
0
= 1, 𝑟 = 2, 𝑛 = 2, 𝑏

1
= 1,

and 𝑏
2
= 𝛿 lead (3) to the singularly perturbed Boussinesq

equation (2). By the means of two proper ansatzs, the author
obtained explicit traveling solitary wave solutions of the
generalized Boussinesq equation (3). To the best of our
knowledge, however, there have not been any discussions on
global solutions of the initial boundary value problem for
(2) in the literature; recently, Song et al. [5] discussed the
initial boundary value problem for the singularly perturbed
Boussinesq-type equation

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ 𝜎(𝑢)

𝑥𝑥
+ 𝛼𝑢
𝑥
4 + 𝛽𝑢

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0, (4)
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with the initial boundary value conditions

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) = 𝑢

𝑥
3 (0, 𝑡) = 𝑢

𝑥
3 (1, 𝑡) = 𝑢

𝑥
5 (0, 𝑡)

= 𝑢
𝑥
5 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(5)

or with

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑢
𝑥𝑥
(0, 𝑡) = 𝑢

𝑥𝑥
(1, 𝑡) = 𝑢

𝑥
4 (0, 𝑡)

= 𝑢
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(6)

where, and in the sequel 𝑢
𝑥
𝑖 = 𝜕

𝑖
𝑢/𝜕𝑥
𝑖, 𝜎(𝑠) is a given

nonlinear function, 𝛼 > 0 and 𝛽 > 0 are real numbers, 𝑢
0
(𝑥)

and 𝑢
1
(𝑥) are given initial value functions, and Ω = (0, 1).

By virtue of the Galerkin method and prior estimates, under
the assumption “𝜎(𝑠) is bounded below and 𝜎(𝑠) satisfies
some smooth condition,” the existence and uniqueness of the
global generalized solution and the global classical solution
of the initial boundary value problem (4), (5) and (4), (6)
are proved, respectively. But if 𝜎(𝑠) is not bounded below,
does the above-mentioned problem have any global solution?
In this paper, we employ the energy method and the Jensen
inequality to prove that the global solutions of the initial
boundary value problem (4), (5) and (4), (6) cease to exist
in a finite time, respectively. At last, we show that the global
solution of the initial boundary value problem (2), (6) blows
up in a finite time.

The paper is organized as follows. In Section 2, the main
results are stated. The nonexistence of global solution of
problem (4), (5) and (4), (6) is discussed in Section 3. In
Section 4, we study the initial boundary problem (2), (6) and
give two examples satisfying the theorems (Theorems 1–6).

2. Main Theorems

Throughout this paper, we use the abbreviations ‖ ⋅ ‖ =

‖ ⋅ ‖
𝐿
2
(Ω)

. In the following we state the main results of this
paper, where the existence of Theorems 1–4 has been proved
in [5].

Theorem 1 (see [5]). Assume that 𝑢
0
∈ 𝐻
6
(Ω), 𝑢

1
∈ 𝐻
3
(Ω),

∫

1

0
𝑢
0
(𝑥)𝑑𝑥 = ∫

1

0
𝑢
1
(𝑥)𝑑𝑥 = 0, 𝑢

0𝑥
2𝑘+1(0, 𝑡) = 𝑢

0𝑥
2𝑘+1(1, 𝑡) =

𝑢
1𝑥
2𝑘+1(0, 𝑡) = 𝑢

1𝑥
2𝑘+1(1, 𝑡) = 0 (𝑘 = 0, 1, 2), 𝜎 ∈ 𝐶

5
(R), and

𝜎

(𝑠) is bounded below; namely, there exists a constant 𝐶

0
such

that 𝜎(𝑠) ≥ 𝐶
0
, for any 𝑠 ∈ R. Then, for any 𝑇 > 0, the

initial boundary value problem (4), (5) admits a unique global
generalized solution 𝑢(𝑥, 𝑡) with

𝑢 ∈ 𝐶 ([0, 𝑇] ;𝐻
6
(Ω)) ∩ 𝐶

1
([0, 𝑇] ;𝐻

3
(Ω))

∩ 𝐶
2
([0, 𝑇] ; 𝐿

2
(Ω)) .

(7)

Theorem 2 (see [5]). Assume that the assumptions of
Theorem 1 hold, 𝑢

0
∈ 𝐻
10
(Ω), 𝑢

1
∈ 𝐻
7
(Ω), and 𝜎 ∈ 𝐶

9
(R).

Then, the initial boundary value problem (4), (5) admits a
unique global classical solution 𝑢(𝑥, 𝑡).

Theorem 3 (see [5]). Assume that 𝑢
0
∈ 𝐻
6
(Ω), 𝑢

1
∈ 𝐻
3
(Ω),

𝑢
0𝑥
2𝑘(0, 𝑡) = 𝑢

0𝑥
2𝑘(1, 𝑡) = 𝑢

1𝑥
2𝑘(0, 𝑡) = 𝑢

1𝑥
2𝑘(1, 𝑡) = 0 (𝑘 =

0, 1, 2), 𝜎 ∈ 𝐶5(R), 𝜎(2𝑖)(0) = 0 (𝑖 = 1, 2), and 𝜎(𝑠) is bounded
below.Then, for any 𝑇 > 0, the initial boundary value problem
(4), (6) admits a unique global generalized solution 𝑢(𝑥, 𝑡)with

𝑢 ∈ 𝐶 ([0, 𝑇] ;𝐻
6
(Ω)) ∩ 𝐶

1
([0, 𝑇] ;𝐻

3
(Ω))

∩ 𝐶
2
([0, 𝑇] ; 𝐿

2
(Ω)) .

(8)

Theorem 4 (see [5]). Assume that the assumptions of
Theorem 3 hold, 𝑢

0
∈ 𝐻
10
(Ω), 𝑢

1
∈ 𝐻
7
(Ω), 𝜎 ∈ 𝐶

9
(R), and

𝜎
(2𝑖)
(0) = 0 (𝑖 = 3, 4).Then, the initial boundary value problem

(4), (6) admits a unique global classical solution 𝑢(𝑥, 𝑡).

Theorem 5. Assume that (1) 𝜎(𝑠)𝑠 ≤ 𝜇Γ(𝑠), Γ(𝑠) ≤ −𝛾|𝑠|
𝑚+1,

where Γ(𝑠) = ∫𝑠
0
𝜎(𝜏)𝑑𝜏, 𝜇 > 2, 𝛾 > 0, and𝑚 > 1 are constants,

and (2) 𝑢
0
∈ 𝐻
2, 𝑢
1
∈ 𝐿
2, ∫1
0
𝑢
0
(𝑥)𝑑𝑥 = ∫

1

0
𝑢
1
(𝑥)𝑑𝑥 = 0, and

𝐸
0
= ∫

1

0

(∫

𝑥

0

𝑢
1
(𝜉) 𝑑𝜉)

2

𝑑𝑥 +




𝑢
0






2

− 𝛼






𝑢


0







2

+ 𝛽






𝑢


0







2

+ 2∫

1

0

∫

𝑢
0

0

𝜎 (𝑠) 𝑑𝑠 𝑑𝑥 ≤ −[

2

𝐷(1 − 𝑒
(1−𝑚)/4

)
2
]

2/(𝑚−1)

,

(9)

where𝐷 = 𝛾(𝜇−2)/[2
(𝑚−7)/2

(𝑚+3)].Then the solution 𝑢(𝑥, 𝑡)
of initial boundary value problem (4), (5) blows up in a finite
time 𝑇

0
; namely,

‖𝑢(𝑡)‖
2

𝐿
1
(Ω)

+ ∫

𝑡

0

‖𝑢(𝜏)‖
2
𝑑𝜏 → +∞ as 𝑡 → 𝑇

−

0
, (10)

where 𝑇
0
is defined in the proof.

Theorem 6. Assume that (1) 𝜎 ∈ 𝐶
2
(R), 𝜎(0) = 0, and

one of the following conditions holds: (i) 𝜎(𝑠) is a convex
and even function, 𝜎(𝑠) ≥ 𝑎𝑠

𝑚, where 𝑎 > 0 and 𝑚 >

1 are real numbers, (ii) 𝜎(𝑠) is a convex function, 𝜎(𝑠) ≥

𝑎𝑠
𝑚, where 𝑎 > 0 is a real number and 𝑚 ≥ 2 is an

even number, and (2) −(𝜋/2) ∫1
0
𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥 > max{0,

((𝛽𝜋
4
− 𝛼𝜋
2
+ 1)/𝑎)

1/(𝑚−1)

}, −(𝜋/2) ∫1
0
𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 > 0.

Then the solution 𝑢(𝑥, 𝑡) of the initial boundary value problem
(4), (6) blows up in a finite time 𝑇

1
; namely,

‖𝑢 (𝑡)‖ → +∞, as 𝑡 → 𝑇
−

1
, (11)

where 𝑇
1
is defined in the proof.

3. Nonexistence of Global Solutions of
Problem (4), (5) and (4), (6)

We first quote the following lemmas.
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Lemma 7 (see Li [6]). Assume that �̇� = 𝐺(𝑡, 𝑢), V̇ ≥ 𝐺(𝑡, V),
𝐺 ∈ 𝐶([0, +∞) × R), 𝑡

0
≤ 𝑡 < +∞, and 𝑢(𝑡

0
) = V(𝑡

0
). Then

𝑢(𝑡) ≥ V(𝑡) as 𝑡 ≥ 𝑡
0
.

Lemma 8 (Jensen inequality [7]). Assume that 𝜑(𝑢) : 𝑢 ∈

[𝛼, 𝛽] → R is a convex function,𝑓 : 𝑥 ∈ Ω → [𝛼, 𝛽], and 𝑃(𝑥)
is a continuous function, 𝑃(𝑥) ≥ 0, 𝑃(𝑥) ̸≡ 0. Then

𝜑(

∫
Ω
𝑓 (𝑥) 𝑃 (𝑥) 𝑑𝑥

∫
Ω
𝑃 (𝑥) 𝑑𝑥

) ≤

∫
Ω
𝜑 (𝑓 (𝑥)) 𝑃 (𝑥) 𝑑𝑥

∫
Ω
𝑃 (𝑥) 𝑑𝑥

. (12)

Integrating both sides of (4) over (0, 1) and using (5) and
the assumption ofTheorem 1, we obtain∫1

0
𝑢(𝑥, 𝑡)𝑑𝑥 = 0, 𝑡 ≥ 0.

Let V(𝑥, 𝑡) = ∫𝑥
0
𝑢(𝜉, 𝑡)𝑑𝜉; then 𝑢 = V

𝑥
and V satisfies

V
𝑡𝑡
= V
𝑥𝑥
+ 𝜎(V
𝑥
)
𝑥
+ 𝛼V
𝑥
4 + 𝛽V

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0, (13)

V (0, 𝑡) = V (1, 𝑡) = V
𝑥𝑥
(0, 𝑡) = V

𝑥𝑥
(1, 𝑡) = V

𝑥
4 (0, 𝑡)

= V
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

(14)

V (𝑥, 0) = V
0
(𝑥) , V

𝑡
(𝑥, 0) = V

1
(𝑥) , 𝑥 ∈ Ω, (15)

where V
0
(𝑥) = ∫

𝑥

0
𝑢
0
(𝜉)𝑑𝜉 and V

1
(𝑥) = ∫

𝑥

0
𝑢
1
(𝜉)𝑑𝜉.

Proof of Theorem 5. Multiplying both sides of (13) by 2V
𝑡
,

integrating by parts, and using condition (2) of Theorem 5,
we have

�̇� (𝑡) = 0, 𝐸 (𝑡) = 𝐸 (0) = 𝐸
0
< 0, 𝑡 > 0, (16)

where

𝐸 (𝑡) =




V
𝑡
(𝑡)





2

+




V
𝑥
(𝑡)





2

− 𝛼




V
𝑥𝑥
(𝑡)





2

+ 𝛽




V
𝑥
3(𝑡)






2

+ 2∫

1

0

Γ (V
𝑥
(𝑥, 𝑡)) 𝑑𝑥.

(17)

Let

𝐹 (𝑡) = ‖V (𝑡)‖2 + ∫
𝑡

0

∫

𝜏

0





V
𝑥
(𝑠)





2

𝑑𝑠 𝑑𝜏. (18)

By virtue of condition (1) of Theorem 5 and noting that

𝜇∫

1

0

Γ (V
𝑥
(𝑥, 𝑡)) 𝑑𝑥 = 𝐸

0
−




V
𝑡
(𝑡)





2

−




V
𝑥
(𝑡)





2

+ 𝛼




V
𝑥𝑥
(𝑡)





2

− 𝛽




V
𝑥
3(𝑡)






2

+ (𝜇 − 2)∫

1

0

Γ (V
𝑥
) 𝑑𝑥,

(19)

we obtain

�̈� (𝑡) = 2∫

1

0

VV
𝑡𝑡
𝑑𝑥 + 2





V
𝑡
(𝑡)





2

+




V
𝑥
(𝑡)





2

= −2∫

1

0

(V2
𝑥
− 𝛼V2
𝑥𝑥
+ 𝛽V2
𝑥
3 + 𝜎 (V𝑥) V𝑥) 𝑑𝑥

+ 2




V
𝑡
(𝑡)





2

+




V
𝑥
(𝑡)





2

≥ −2𝐸
0
+




V
𝑥
(𝑡)





2

+ 4




V
𝑡
(𝑡)





2

− 2 (𝜇 − 2)∫

1

0

Γ (V
𝑥
) 𝑑𝑥

≥ −2𝐸
0
+ 2𝛾 (𝜇 − 2) ∫

1

0





V
𝑥






𝑚+1

𝑑𝑥.

(20)

It follows from (20) that

�̇� (𝑡) ≥ −2𝐸
0
𝑡 + 2𝛾 (𝜇 − 2)∫

𝑡

0

∫

1

0





V
𝑥
(𝑥, 𝜏)






𝑚+1

𝑑𝑥 𝑑𝜏 + �̇� (0) ,

(21)

𝐹 (𝑡) ≥ −𝐸
0
𝑡
2
+ 2𝛾 (𝜇 − 2)∫

𝑡

0

∫

𝜏

0

∫

1

0





V
𝑥
(𝑥, 𝑠)






𝑚+1

𝑑𝑥 𝑑𝑠 𝑑𝜏

+ �̇� (0) 𝑡 + 𝐹 (0) ,

(22)

where �̇�(0) = 2 ∫

1

0
(∫

𝑥

0
𝑢
0
(𝜉)𝑑𝜉 ∫

𝑥

0
𝑢
1
(𝜉)𝑑𝜉)𝑑𝑥 and 𝐹(0) =

‖ ∫

𝑥

0
𝑢
0
(𝜉)𝑑𝜉‖

2

. Combining (20) with (22) leads to

�̈� (𝑡) + 𝐹 (𝑡)

≥ −𝐸
0
𝑡
2
+ �̇� (0) 𝑡 + 𝐹 (0) − 2𝐸

0

+ 2𝛾 (𝜇 − 2) (∫

1

0





V
𝑥






𝑚+1

𝑑𝑥

+∫

𝑡

0

∫

𝜏

0

∫

1

0





V
𝑥
(𝑥, 𝑠)






𝑚+1

𝑑𝑥 𝑑𝑠 𝑑𝜏) .

(23)

Making use of the Hölder inequality, we get

∫

1

0





V
𝑥






𝑚+1

𝑑𝑥 ≥




V
𝑥
(𝑡)





𝑚+1

,

∫

𝑡

0

∫

𝜏

0

∫

1

0





V
𝑥
(𝑥, 𝑠)






𝑚+1

𝑑𝑥 𝑑𝑠 𝑑𝜏

≥ (

𝑡
2

2

)

(1−𝑚)/2

(∫

𝑡

0

∫

𝜏

0

∫

1

0





V
𝑥
(𝑥, 𝑠)






2

𝑑𝑥 𝑑𝑠 𝑑𝜏)

(1+𝑚)/2

.

(24)
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Substituting (24) into (23) and using the Poincaré inequality
(‖V
𝑥
(𝑡)‖ ≥ ‖V(𝑡)‖) and the inequality 𝑎𝑛 + 𝑏𝑛 ≥ 2

1−𝑛
(𝑎 + 𝑏)

𝑛

(𝑎, 𝑏 ≥ 0, 𝑛 ≥ 1), we conclude that when 𝑡 ≥ 1,

�̈� (𝑡) + 𝐹 (𝑡)

≥ 2𝛾 (𝜇 − 2) 𝑡
1−𝑚

× [(




V
𝑥
(𝑡)





2

)

(𝑚+1)/2

+ (∫

𝑡

0

∫

𝜏

0

∫

1

0





V
𝑥
(𝑥, 𝑠)






2

𝑑𝑥 𝑑𝑠 𝑑𝜏)

(𝑚+1)/2

]

− 𝐸
0
𝑡
2
+ �̇� (0) 𝑡 + 𝐹 (0) − 2𝐸

0

≥ 2
(3−𝑚)/2

𝛾 (𝜇 − 2) 𝑡
1−𝑚

𝐹
(1+𝑚)/2

(𝑡)

− 𝐸
0
𝑡
2
+ �̇� (0) 𝑡 + 𝐹 (0) − 2𝐸

0
.

(25)

Choose 𝑡
0
≥ 1 such that

−2𝐸
0
𝑡
0
+ �̇� (0) ≥ 0, −𝐸

0
𝑡
2

0
+ �̇� (0) 𝑡

0
+ 𝐹 (0) − 2𝐸

0
≥ 0,

(26)

and thus (21) and (22) imply that �̇�(𝑡) ≥ 0 and 𝐹(𝑡) ≥ 0, as
𝑡 ≥ 𝑡
0
. Multiplying both sides of (25) by 2�̇�(𝑡), we have

𝑑

𝑑𝑡

[�̇�
2
(𝑡) + 𝐹

2
(𝑡)] ≥ 𝐷𝑡

1−𝑚 𝑑

𝑑𝑡

𝐹
(𝑚+3)/2

(𝑡) + 𝐻 (𝑡) , 𝑡 ≥ 𝑡
0
,

(27)

where

𝐷 =

𝛾 (𝜇 − 2)

2
(𝑚−7)/2

(𝑚 + 3)

,

𝐻 (𝑡) = 2�̇� (𝑡) (−𝐸
0
𝑡
2
+ �̇� (0) 𝑡 + 𝐹 (0) − 2𝐸

0
) .

(28)

Equation (27) implies that
𝑑

𝑑𝑡

[𝑡
𝑚−1

(�̇�
2
(𝑡) + 𝐹

2
(𝑡)) − 𝐷𝐹

(𝑚+3)/2
(𝑡)] ≥ 𝑡

𝑚−1
𝐻(𝑡) ,

𝑡 ≥ 𝑡
0
.

(29)

Since

∫

𝑡

𝑡
0

𝜏
𝑚−1

𝐻(𝜏) 𝑑𝜏

≥ ∫

𝑡

𝑡
0

2 (−2𝐸
0
𝜏 + �̇� (0)) (−𝐸

0
𝜏
2
+ �̇� (0) 𝜏 + 𝐹 (0)

−2𝐸
0
) 𝑑𝜏 → +∞, 𝑡 → +∞,

(30)

there exists a 𝑡
1
> 𝑡
0
such that

∫

𝑡

𝑡
0

𝜏
𝑚−1

𝐻(𝜏) 𝑑𝜏 + 𝑡
𝑚−1

0
(�̇�
2
(𝑡
0
) + 𝐹
2
(𝑡
0
))

− 𝐷𝐹
(𝑚+3)/2

(𝑡
0
) ≥ 0, 𝑡 > 𝑡

1
.

(31)

By (31), integrating both sides of (29) over (𝑡
0
, 𝑡), we obtain

𝑡
𝑚−1

[�̇�
2
(𝑡) + 𝐹

2
(𝑡)] ≥ 𝐷𝐹

(𝑚+3)/2
(𝑡) , 𝑡 ≥ 𝑡

1
. (32)

Namely,

�̇� (𝑡) + 𝐹 (𝑡) ≥ √2𝐷𝑡
(1−𝑚)/2

𝐹
(𝑚+3)/4

(𝑡) , 𝑡 ≥ 𝑡
1
. (33)

In order to use Lemma 7, we consider the following initial
value problem of the Bernoulli equation:

�̇� + 𝑋 = √2𝐷𝑡
(1−𝑚)/2

𝑋
(𝑚+3)/4

, 𝑡 > 𝑡
1
,

𝑋 (𝑡
1
) = 𝐹 (𝑡

1
) .

(34)

We can obtain the solution of the initial value problem (34)
as follows:

𝑋 (𝑡) = 𝑒
−(𝑡−𝑡
1
)
[𝐹
(1−𝑚)/4

(𝑡
1
) −

𝑚 − 1

4

√2𝐷

× ∫

𝑡

𝑡
1

𝜏
(1−𝑚)/2

𝑒
((1−𝑚)/4)(𝜏−𝑡

1
)
𝑑𝜏]

4/(1−𝑚)

= 𝑒
−(𝑡−𝑡
1
)
𝐹 (𝑡
1
) 𝐼
4/(1−𝑚)

(𝑡) , 𝑡 ≥ 𝑡
1
,

(35)

where

𝐼 (𝑡) = 1 −

𝑚 − 1

4

√2𝐷𝐹
(𝑚−1)/4

(𝑡
1
)

× ∫

𝑡

𝑡
1

𝜏
(1−𝑚)/2

𝑒
((1−𝑚)/4)(𝜏−𝑡

1
)
𝑑𝜏.

(36)

By (36), we know that 𝐼(𝑡
1
) = 1 > 0 and

𝐽 (𝑡) =

𝑚 − 1

4

√2𝐷𝐹
(𝑚−1)/4

(𝑡
1
) ∫

𝑡

𝑡
1

𝜏
(1−𝑚)/2

𝑒
((1−𝑚)/4)(𝜏−𝑡

1
)
𝑑𝜏

≥

𝑚 − 1

4

√2𝐷𝐹
(𝑚−1)/4

(𝑡
1
) (1 + 𝑡

1
)
(1−𝑚)/2

× ∫

𝑡
1
+1

𝑡
1

𝑒
((1−𝑚)/4)(𝜏−𝑡

1
)
𝑑𝜏

= √2𝐷𝐹
(𝑚−1)/4

(𝑡
1
) (1 + 𝑡

1
)
(1−𝑚)/2

× (1 − 𝑒
−(𝑚−1)/4

) , 𝑡 ≥ 𝑡
1
+ 1.

(37)

It follows from (22) that

𝐹
(𝑚−1)/4

(𝑡) (1 + 𝑡)
(1−𝑚)/2

≥ [

−𝐸
0
𝑡
2
+ �̇� (0) 𝑡 + 𝐹 (0)

(𝑡 + 1)
2

]

(𝑚−1)/4

→ (−𝐸
0
)
(𝑚−1)/4

,

𝑡 → +∞.

(38)
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Choose 𝑡
1

sufficiently large such that 𝐹
(𝑚−1)/4

(𝑡
1
)(1 +

𝑡
1
)
(1−𝑚)/2

≥ (−𝐸
0
)
(𝑚−1)/4

/2. Combining (37) with (9), we
obtain

𝐽 (𝑡) ≥

1

2

√2𝐷(−𝐸
0
)
(𝑚−1)/4

(1 − 𝑒
(1−𝑚)/4

) ≥ 1,

𝑡 ≥ 𝑡
1
+ 1.

(39)

Hence

𝐼 (𝑡) = 1 − 𝐽 (𝑡) ≤ 0, 𝑡 ≥ 𝑡
1
+ 1. (40)

By using the continuity of 𝐼(𝑡), there exists a finite time 𝑇
0
,

𝑡
1
< 𝑇
0
≤ 𝑡
1
+ 1 such that 𝐼(𝑇

0
) = 0. Therefore, 𝑋(𝑡) → +∞

as 𝑡 → 𝑇
−

0
. By virtue of Lemma 7, we deduce that 𝐹(𝑡) ≥

𝑋(𝑡), 𝑡 ≥ 𝑡
1
. Hence

𝐹 (𝑡) = ∫

1

0

(∫

𝑥

0

𝑢 (𝜉, 𝑡) 𝑑𝜉)

2

𝑑𝑥

+ ∫

𝑡

0

∫

𝜏

0

∫

1

0

𝑢
2
(𝜉, 𝑠) 𝑑𝜉 𝑑𝑠 𝑑𝜏 → +∞

(41)

as 𝑡 → 𝑇
−

0
. It follows from (41) that

𝐹 (𝑡) ≤ (∫

1

0





𝑢 (𝜉, 𝑡)





𝑑𝜉)

2

+ 𝑡∫

𝑡

0

‖𝑢(𝜏)‖
2
𝑑𝜏. (42)

Therefore,

‖𝑢(𝑡)‖
2

𝐿
1
(Ω)

+ ∫

𝑡

0

‖𝑢(𝜏)‖
2
𝑑𝜏 → +∞ as 𝑡 → 𝑇

−

0
. (43)

Theorem 5 is proved.

Proof of Theorem 6. Let

𝑦 (𝑡) = −

𝜋

2

∫

1

0

𝑢 (𝑥, 𝑡) sin𝜋𝑥𝑑𝑥. (44)

Multiplying both sides of (4) by (𝜋/2) sin𝜋𝑥, integrating by
parts over [0, 1], and making use of the Jensen inequality and
condition (1) of Theorem 6, we have

̈𝑦 + (𝜋
2
− 𝛼𝜋
4
+ 𝛽𝜋
6
) 𝑦 =

𝜋
3

2

∫

1

0

𝜎 (𝑢) sin𝜋𝑥𝑑𝑥

≥ 𝜋
2
𝜎(

𝜋

2

∫

1

0

𝑢 (𝑥, 𝑡) sin𝜋𝑥𝑑𝑥)

≥ 𝑎𝜋
2
𝑦
𝑚
, 𝑡 > 0,

(45)

and, from (6) and condition (2) of Theorem 6, we get

𝑦 (0) = −

𝜋

2

∫

1

0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥 = 𝑦

0
> 0,

̇𝑦 (0) = −

𝜋

2

∫

1

0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 = 𝑦

1
> 0.

(46)

Thus, we claim that

𝑦 (𝑡) > 0, ̇𝑦 (𝑡) > 0, 𝑡 > 0. (47)

In fact, if it is not true, then there exists a 𝑡∗ such that
̇𝑦(𝑡) > 0, 𝑡 ∈ [0, 𝑡∗) and ̇𝑦(𝑡

∗
) = 0.Then 𝑦(𝑡) is monotonically

increasing on [0, 𝑡∗]; that is, 𝑦(𝑡) ≥ 𝑦
0
, 𝑡 ∈ [0, 𝑡

∗
]. By using

(45) and condition (2) of Theorem 6, we obtain

̈𝑦 (𝑡) ≥ 𝜋
2
𝑦 (𝑎𝑦
𝑚−1

− 𝛽𝜋
4
+ 𝛼𝜋
2
− 1)

> 𝜋
2
𝑦
0
(𝑎𝑦
𝑚−1

0
− 𝛽𝜋
4
+ 𝛼𝜋
2
− 1) > 0, (0, 𝑡

∗
] ,

(48)

and hence ̇𝑦(𝑡) is monotonically increasing on [0, 𝑡∗], which
contradicts the assumption 𝑦(𝑡∗) = 0. So claim (47) is valid.

Multiplying both sides of (45) by 2 ̇𝑦 and integrating the
product over [0, 𝑡] lead to

̇𝑦
2
≥

2𝑎𝜋
2

𝑚 + 1

(𝑦
𝑚+1

− 𝑦
𝑚+1

0
)

− (𝜋
2
− 𝛼𝜋
4
+ 𝛽𝜋
6
) (𝑦
2
− 𝑦
2

0
) + 𝑦
2

1
= 𝐺 (𝑦) .

(49)

Since 𝐺(𝑦
0
) = 𝑦
2

1
> 0 and

𝐺

(𝑦) = 2𝜋

2
𝑦 [𝑎𝑦
𝑚−1

− (1 − 𝛼𝜋
2
+ 𝛽𝜋
4
)]

≥ 2𝜋
2
𝑦
0
[𝑎𝑦
𝑚−1

0
− (1 − 𝛼𝜋

2
+ 𝛽𝜋
4
)] ≥ 0,

(50)

𝐺(𝑦) > 𝐺(𝑦
0
) > 0, 𝑡 > 0. It follows from (49) that

̇𝑦 ≥ [

2𝑎𝜋
2

𝑚 + 1

(𝑦
𝑚+1

− 𝑦
𝑚+1

0
)

− (𝜋
2
− 𝛼𝜋
4
+ 𝛽𝜋
6
) (𝑦
2
− 𝑦
2

0
) + 𝑦
2

1
]

1/2

, 𝑡 > 0,

(51)

and (51) implies that the interval [0, 𝑇
1
) of the existence of

𝑦(𝑡) is finite; namely,

𝑇
1
≤ ∫

+∞

𝑦
0

[

2𝑎𝜋
2

𝑚 + 1

(𝑦
𝑚+1

− 𝑦
𝑚+1

0
)

− (𝜋
2
− 𝛼𝜋
4
+ 𝛽𝜋
6
) (𝑦
2
− 𝑦
2

0
) + 𝑦
2

1
]

−1/2

𝑑𝑦

< +∞,

(52)

and 𝑦(𝑡) → +∞ as 𝑡 → 𝑇
−

1
; that is, ∫1

0
𝑢(𝑥, 𝑡) sin𝜋𝑥𝑑𝑥 →

−∞ as 𝑡 → 𝑇
−

1
. By the Hölder inequality, we have ‖𝑢(𝑡)‖ →

+∞, as 𝑡 → 𝑇
−

1
. Theorem 6 is proved.

4. Initial Boundary Value Problem (2), (6) and
Some Examples

By virtue of the Galerkin method [8] we can prove that
initial boundary value problem (2), (6) admits a unique local
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generalized solution and a unique local classical solution.
Moreover, by using Theorem 6, we obtain the following
theorem.

Theorem 9. Assume that 𝑢(𝑥, 𝑡) is the generalized solution
of initial boundary value problem (2), (6) and the following
condition holds:

𝑦
0
= −

𝜋

2

∫

1

0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥 > max {0, (𝛿𝜋4 − 𝜋2 + 1)} ,

𝑦
1
= −

𝜋

2

∫

1

0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 > 0.

(53)

Then

‖𝑢 (𝑡)‖ → +∞, as 𝑡 → 𝑇
−

2
, (54)

where

𝑇
2
≤ ∫

+∞

𝑦
0

[

2𝜋
2

3

(𝑦
3
− 𝑦
3

0
)

−(𝜋
2
− 𝜋
4
+ 𝛿𝜋
6
)(𝑦
2
− 𝑦
2

0
) + 𝑦
2

1
]

−1/2

𝑑𝑦 < +∞.

(55)

Proof. A simple verification shows that all conditions of
Theorem 6 are satisfied and thusTheorem 9 is proved imme-
diately.

Example 1. We consider the following equation:

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ 𝑎(|𝑢|

𝑚−1
𝑢)
𝑥𝑥
+ 𝛼𝑢
𝑥
4 + 𝛽𝑢

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0,

(56)

with the initial boundary value conditions

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) = 𝑢

𝑥
3 (0, 𝑡) = 𝑢

𝑥
3 (1, 𝑡) = 𝑢

𝑥
5 (0, 𝑡)

= 𝑢
𝑥
5 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(57)

or with

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑢
𝑥𝑥
(0, 𝑡) = 𝑢

𝑥𝑥
(1, 𝑡) = 𝑢

𝑥
4 (0, 𝑡)

= 𝑢
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(58)

where 𝑎 ̸= 0 and 𝑚 > 1 are all real numbers, 𝑢
0
(𝑥) = 𝑢

1
(𝑥) =

𝐾
0
cos𝜋𝑥, and𝐾

0
> 0 is a constant.

(1) If 𝑎 > 0 and 𝑚 ≥ 9, a simple calculation shows that
𝜎(= 𝑎|𝑠|

𝑚−1
𝑠) ∈ 𝐶

9
(R), 𝜎(2𝑖)(0) = 0 (𝑖 = 1, 2, 3, 4), and 𝜎(𝑠) =

𝑎𝑚|𝑠|
𝑚−1

≥ 0; that is, 𝜎(𝑠) is bounded below. And 𝑢
0
(𝑥) and

𝑢
1
(𝑥) satisfy the conditions ofTheorems 2 and 4, respectively;

then byTheorems 2 and 4 we know that the initial boundary

value problem (56), (57) and (56), (58) admits a unique global
classical solution, respectively.

(2) If 𝑎 < 0 and 𝑚 > 1, we have 𝜎(𝑠)𝑠 = 𝑎|𝑠|
𝑚−1, Γ(𝑠) =

𝑎|𝑠|
𝑚−1

/(𝑚+1); taking 𝜇 = 𝑚+1 > 2 and 𝛾 = −𝑎/(𝑚+1), then
𝜎(𝑠)𝑠 = 𝜇Γ(𝑠), Γ(𝑠) = −𝛾|𝑠|

𝑚−1; obviously, 𝑢
0
∈ 𝐻
2, 𝑢
1
∈ 𝐿
2,

∫

1

0
𝑢
0
(𝑥)𝑑𝑥 = ∫

1

0
𝑢
1
(𝑥)𝑑𝑥 = 0, and

𝐸
0
= ∫

1

0

(∫

𝑥

0

𝑢
1
(𝜉) 𝑑𝜉)

2

𝑑𝑥 +




𝑢
0






2

− 𝛼






𝑢


0







2

+ 𝛽






𝑢


0







2

+

2𝑎

𝑚 + 1





𝑢
0






𝑚+1

𝐿
𝑚+1
(Ω)

= (

1

𝜋
2
+ 1 − 𝛼𝜋

2
+ 𝛽𝜋
4
)

𝐾
2

0

2

+

2𝑎𝐾
𝑚+1

0

𝑚 + 1

∫

1

0

|cos𝜋𝑥|𝑚+1𝑑𝑥.

(59)

We can take𝐾
0
suitable large such that

𝐸
0
≤ −[

2

𝐷(1 − 𝑒
(1−𝑚)/4

)
2
]

2/(𝑚−1)

, (60)

where 𝐷 = −𝑎(𝑚 − 1)/[2
(𝑚−7)/2

(𝑚 + 1)(𝑚 + 3)]. Thus, all
assumptions ofTheorem 5 are satisfied; then byTheorem 5we
conclude that the solution of initial boundary value problem
(56), (57) must blow up in a finite time 𝑇

0
; namely,

‖𝑢(𝑡)‖
𝐿
1
(Ω)

+ ∫

𝑡

0

‖𝑢(𝜏)‖
2
𝑑𝜏 → +∞ as 𝑡 → 𝑇

−

0
. (61)

Example 2. We consider the following equation:

𝑢
𝑡𝑡
= 𝑢
𝑥𝑥
+ 𝑎 (𝑢

𝑚
)
𝑥𝑥
+ 𝛼𝑢
𝑥
4 + 𝛽𝑢

𝑥
6 , 𝑥 ∈ Ω, 𝑡 > 0,

(62)

with the initial boundary value conditions

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(1, 𝑡) = 𝑢

𝑥
3 (0, 𝑡) = 𝑢

𝑥
3 (1, 𝑡) = 𝑢

𝑥
5 (0, 𝑡)

= 𝑢
𝑥
5 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(63)

or with

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑢
𝑥𝑥
(0, 𝑡) = 𝑢

𝑥𝑥
(1, 𝑡) = 𝑢

𝑥
4 (0, 𝑡)

= 𝑢
𝑥
4 (1, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(64)

where 𝑎 > 0 is a real number and 𝑚 > 1 is a positive integer,
𝑢
0
(𝑥) = 𝑢

1
(𝑥) = −𝐾

1
, and𝐾

1
> 0 is a constant.

(1) If 𝑎 > 0 and𝑚 is an odd number, a simple verification
shows that all conditions of Theorems 2 and 4 are satisfied;
then byTheorems 2 and 4 we know that the initial boundary
value problem (62), (63) and (62), (64) admits a unique global
classical solution, respectively.
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(2) If 𝑎 > 0 and𝑚 is an even number, then 𝜎(𝑠) (= 𝑎𝑠𝑚) is
a convex and even function, and we can take𝐾

1
suitable large

such that

−

𝜋

2

∫

1

0

𝑢
0
(𝑥) sin𝜋𝑥𝑑𝑥

= 𝐾
1
> max{0, (

𝛽𝜋
4
− 𝛼𝜋
2
+ 1

𝑎

)

1/(𝑚−1)

} ,

−

𝜋

2

∫

1

0

𝑢
1
(𝑥) sin𝜋𝑥𝑑𝑥 = 𝐾

1
> 0.

(65)

Thus, by Theorem 6, we deduce that the solution of initial
boundary value problem (62), (64) must blow up in a finite
time 𝑇

1
; namely,

‖𝑢 (𝑡)‖ → +∞, as 𝑡 → 𝑇
−

1
. (66)
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