
Research Article
Traveling Wave Solutions of the Benjamin-Bona-Mahony
Water Wave Equations

A. R. Seadawy1,2 and A. Sayed2

1 Mathematics Department, Faculty of Science, Taibah University, Al-Ula 41921-259, Saudi Arabia
2Mathematics Department, Faculty of Science, Beni-Suef University, Egypt

Correspondence should be addressed to A. R. Seadawy; aly742001@yahoo.com

Received 5 August 2014; Revised 1 September 2014; Accepted 4 September 2014; Published 15 October 2014

Academic Editor: Santanu Saha Ray

Copyright © 2014 A. R. Seadawy and A. Sayed.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The modeling of unidirectional propagation of long water waves in dispersive media is presented. The Korteweg-de Vries (KdV)
and Benjamin-Bona-Mahony (BBM) equations are derived from water waves models. New traveling solutions of the KdV and
BBM equations are obtained by implementing the extended direct algebraic and extended sech-tanh methods. The stability of the
obtained traveling solutions is analyzed and discussed.

1. Introduction

Many nonlinear evolution equations are playing important
role in the analysis of some phenomena and including ion
acoustic waves in plasmas, dust acoustic solitary structures
in magnetized dusty plasmas, and electromagnetic waves
in size-quantized films [1–4]. To obtain the traveling wave
solutions to these nonlinear evolution equations, many
methods were attempted, such as the inverse scattering
method [5], Hirotas bilinear transformation [6], the tanh-
sech method, extended tanh method, sine-cosine method
[7], homogeneous balancemethod, Bäcklund transformation
[8], the theory of Weierstrass elliptic function method [9],
the factorization technique [10, 11], the Wadati trace method,
pseudospectral method, Exp-function method, and the Ric-
cati equation expansion method were used to investigate
these types of equations [12, 13]. The above methods derived
many types of solutions from most nonlinear evolution
equations [14].

The Benjamin-Bona-Mahony (BBM) equation is well
known in physical applications [15]; it describes the model
for propagation of long waves which incorporates nonlinear
and dissipative effects; it is used in the analysis of the
surface waves of long wavelength in liquids, hydromagnetic
waves in cold plasma, acoustic-gravity waves in compressible

fluids, and acoustic waves in harmonic crystals [15]. Many
mathematicians paid their attention to the dynamics of the
BBM equation [16].

The BBM equation has been investigated as a regularized
version of the KdV equation for shallow water waves [17]. In
certain theoretical investigations the equation is superior as a
model for long waves; from the standpoint of existence and
stability, the equation offers considerable technical advan-
tages over the KdV equation [18]. In addition to shallow
water waves, the equation is applicable to the study of drift
waves in plasma or the Rossby waves in rotating fluids.
Under certain conditions, it also provides a model of one-
dimensional transmitted waves.

The main mathematical difference between KdV and
BBM models can be most readily appreciated by comparing
the dispersion relation for the respective linearized equations.
It can be easily seen that these relations are comparable
only for small wave numbers and they generate drastically
different responses to short waves. This is one of the reasons
why, whereas existence and regularity theory for the KdV
equation is difficult, the theory of the BBM equation is
comparatively simple [19], where the BBM equation does
not take into account dissipation and is nonintegrable [20–
22]. The KdV equation describes long nonlinear waves of
small amplitude on the surface of inviscid ideal fluid [22].
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The KdV equation is integrable by the inverse scattering
transform. Solitons exist due to the balance between the weak
nonlinearity and dispersion of the KdV equation. Soliton is
a localized wave that has an infinite support or a localized
wave with exponential wings. The solutions of the BBM
equation and the KdV equation have been of considerable
concern. Zabusky and Kruskal investigated the interaction of
solitary waves and the recurrence of initial states [23]. The
term soliton is coined to reflect the particle like behavior of
the solitary waves under interaction. The interaction of two
solitons emphasized the reality of the preservation of shapes
and speeds and of the steady pulse like character of solitons
[24–27].

This paper is organized as follows: an introduction is in
Section 1. In Section 2, the problem formulations to derive
the nonlinear BBM and KdV equations are formulated.
The extended direct algebraic and sech-tanh methods are
analyzed in Section 3. In Section 4, the traveling solutions of
the BBM and KdV equations are obtained.

2. Problem Formulation

In water wave equations, a two-dimensional inviscid, incom-
pressible fluid with constant gravitational field is considered.
The physical parameters are scaled into the definition of
space, (𝑥, 𝑦), time 𝑡 and the gravitational acceleration 𝑔 is
in the negative 𝑦 direction. Let ℎ

0
be the undisturbed depth

of the fluid and let 𝑦 = 𝜂(𝑥, 𝑡) represent the free surface
of the fluid. We also assume that the motion is irrotational
and let 𝜙(𝑥, 𝑦, 𝑡) denote the velocity potential (𝑢 = ∇𝜙).
The divergence-free condition on the velocity field implies
that the velocity potential 𝜙 satisfies the Laplaces equation
[28, 29]:

𝜕
2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 0, at − ℎ

0
< 𝑦 < 𝜂 (𝑥, 𝑡) . (1)

On a solid fixed boundary, the normal velocity of the fluid
must vanish. For a horizontal flat bottom, we have

𝜕𝜙

𝜕𝑦
= 0 at 𝑦 = −ℎ

0
. (2)

The boundary conditions at the free surface 𝑦 = 𝜂(𝑥, 𝑡) are
given by

𝜕𝜙

𝜕𝑦
−
𝜕𝜂

𝜕𝑡
−
𝜕𝜙

𝜕𝑥

𝜕𝜂

𝜕𝑥
= 0, (3)

𝜕𝜙

𝜕𝑡
+
1

2
((
𝜕𝜙

𝜕𝑥
)

2

+ (
𝜕𝜙

𝜕𝑦
)

2

) + 𝑔𝜂 = 0. (4)

Equation (3) is a kinematic boundary condition, while (4)
represents the continuity of pressure at the free surface,
as derived from Bernoullis equation. The Laplace equation
(1) and the boundary conditions (2) on the bottom are
already linear and are independent of 𝜂. Moreover, 𝜂 can be

eliminated from the linear versions of (3) and (4). The first
order equations for 𝜙 in the form

𝜕
2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 0, at − ℎ

0
< 𝑦 < 0, (5)

𝜕𝜙

𝜕𝑦
= 0, at 𝑦 = −ℎ

0
, (6)

𝜕2𝜙

𝜕𝑡2
+ 𝑔
𝜕𝜙

𝜕𝑦
= 0, at 𝑦 = 0. (7)

The progressive wave solution of the first order system is

𝜙 (𝑥, 𝑦, 𝑡) = 𝜑 (𝑦) 𝑒
𝑖(𝑘𝑥−𝑤𝑡)

. (8)

Then, (5) has the solution

𝜑 (𝑦) = 𝐴 cosh 𝑘 (𝑦 + ℎ
0
) + 𝐵 sinh 𝑘 (𝑦 + ℎ

0
) , (9)

where 𝐴 and 𝐵 are arbitrary constants. The boundary con-
dition (6) implies 𝐵 = 0, while the remaining condition (7)
gives the dispersion relation

𝑤
2
= 𝑔𝑘 tanh 𝑘ℎ

0
. (10)

The dispersive effects can be combined with nonlinear effects
to give

𝑢
𝑡
+
3

2

𝑐
0

ℎ
0

𝑢𝑢
𝑥
+ ∫
∞

−∞

𝐾 (𝑥 − 𝜉) 𝑢𝜉 (𝜉, 𝑡) 𝑑𝜉 = 0, (11)

where 𝑢(𝑥, 𝑡) is the water wave velocity and ℎ
0
is the depth of

the fluid and 𝑐
0
= √𝑔ℎ

0
, with a kernel,𝐾(𝑥), that is given by

𝐾 (𝑥) =
1

2𝜋
∫
∞

−∞

𝑐 (𝑘) 𝑒
𝑖𝑘𝑥
𝑑𝑥. (12)

From Taylor expansion, the partial deferential equation (11)
reduces to the KdV equation:

𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+
3

2

𝑐
0

ℎ
0

𝑢𝑢
𝑥
+
1

6
𝑐
0
ℎ
2

0
𝑢
𝑥𝑥𝑥
= 0. (13)

The BBM model was introduced in [18] as an alternative
to the KdV equation. The main argument is that the phase
velocity 𝜔/𝑘 and the group velocity 𝑑𝜔/𝑑𝑘 in the KdVmodel
are not bounded from below. In contrast, the BBM equation
has a phase velocity and a group velocity both of which are
bounded for all 𝑘. They also approach zero as 𝑘 → ∞.

The derivation of the KdV equation in [18] uses a scaling
of the variables 𝑢, 𝑥, and 𝑡, and a perturbation expansion
argument in such a way that the dispersive and the nonlinear
effects become small. The main argument that was used in
[18] to derive the BBM equation is that, to the first order in 𝜖,
the scaled KdV equation is equivalent to

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
− 𝑎
2
𝑢
𝑥𝑥𝑥
− 𝑏
2
𝑢
𝑥𝑥𝑡
= 0. (14)

While the derivation presented in [18] is formally valid, it
is important to note that the particular choice of the mixed
derivative −𝑢

𝑥𝑥𝑡
as a replacement of 𝑢

𝑥𝑥𝑥
may seem arbitrary

from the point of view of asymptotic expansions. Indeed,
any admissible combination of these two terms could be
valid based on the zero-order correspondence between the
derivatives in space and time (𝑢

𝑡
= −𝑢
𝑥
).



Abstract and Applied Analysis 3

3. An Analysis of the Methods

The following is given nonlinear partial differential equations
(BBM and KdV equations) with two variables 𝑥 and 𝑡 as

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑥𝑥
) = 0 (15)

can be converted to ordinary deferential equations:

𝐹 (𝑢, 𝑢

, 𝑢

, 𝑢

) = 0, (16)

by using a wave variable 𝜉 = 𝑥−𝑐𝑡. The equation is integrated
as all terms contain derivatives where integration constants
are considered zeros.

3.1. Extended Direct Algebraic Methods. We introduce an
independent variable, where 𝑢 = 𝜙(𝜉) is a solution of the
following third-order ODE:

𝜙
2
= ±𝛼𝜙

2
(𝜉) ± 𝛽𝜙

4
(𝜉) , (17)

where 𝛼, 𝛽 are constants. We expand the solution of (16) as
the following series:

𝑢 (𝜉) =

𝑚

∑
𝑘=0

𝑎
𝑘
𝜙
𝑘
+

𝑚

∑
𝑘=1

𝑏
𝑘
𝜙
−𝑘
, (18)

where𝑚 is a positive integer, in most cases, that will be deter-
mined. The parameter 𝑚 is usually obtained by balancing
the linear terms of highest order in the resulting equation
with the highest order nonlinear terms. Substituting from (18)
into the ODE (16) results in an algebraic system of equations
in powers of 𝜙 that will lead to the determination of the
parameters 𝑎

𝑘
, (𝑘 = 0, 1, . . . , 𝑚) and 𝑐 by using Mathematica.

3.2. The Sech-Tanh Method. We suppose that 𝑢(𝑥, 𝑡) = 𝑢(𝜉),
where 𝜉 = 𝑥 − 𝑐𝑡 and 𝑢(𝜉) has the following formal travelling
wave solution:

𝑢 (𝜉) =

𝑛

∑
𝑖=1

sech𝑖−1𝜉 (𝐴
𝑖
sech𝜉 + 𝐵

𝑖
tanh 𝜉) , (19)

where 𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑛
and 𝐵

1
, . . . , 𝐵

𝑛
are constants to be

determined.

Step 1. Equating the highest-order nonlinear term and
highest-order linear partial derivative in (16) yields the value
of 𝑛.

Step 2. Setting the coefficients of (sech𝑗 tanh𝑖) for 𝑖 = 0, 1
and 𝑗 = 1, 2, . . . to zero, we have the following set of
overdetermined equations in the unknowns 𝐴

0
, 𝐴
𝑖
, 𝐵
𝑖
, and

𝑐 for 𝑖 = 1, 2, . . . , 𝑛.

Step 3. Using Mathematica and Wu ̀s elimination methods,
the algebraic equations in Step 2 can be solved.

4. Application of the Methods

4.1. Exact Solutions for KdV Equation. We will employ the
proposed methods to solve the KdV equation:

𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+
3

2

𝑐
0

ℎ
0

𝑢𝑢
𝑥
+
1

6
𝑐
0
ℎ
2

0
𝑢
𝑥𝑥𝑥
= 0. (20)

By assuming travelling wave solutions of the form 𝑢(𝑥, 𝑡) =
𝑢(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, (20) is equivalent to

(𝑐
0
− 𝑐) 𝑢


+
3

2

𝑐
0

ℎ
0

𝑢𝑢

+
1

6
𝑐
0
ℎ
2

0
𝑢

= 0. (21)

Balancing 𝑢 with 𝑢𝑢 in (21) gives𝑚 = 2; then

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝜙 + 𝑎
2
𝜙
2
+
𝑏
1

𝜙
+
𝑏
2

𝜙2
. (22)

Substituting into (21) and collecting the coefficient of 𝜙, we
obtain a system of algebraic equations for 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
, and

𝑐. Solving this system gives the following real exact solutions.

Case I. Suppose that

𝜙
2
= −𝛼𝜙

2
(𝜉) + 𝛽𝜙

4
(𝜉) , (23)

by comparing them with the coefficients of 𝜙𝑖 (𝑖 =

−5, −4, −3, −2, −1, 0, 1, 2, 3) where 𝛼 > 0:

𝜙 (𝜉) = √
𝛼

𝛽
sec (√𝛼𝜉 + 𝜉

0
) , (24)

where 𝜉
0
is constant of integration; then we have

𝑎
0
=
2

9𝑐
0

(3𝑐ℎ
0
− 3𝑐
0
ℎ
0
+ 2𝛼𝑐
0
ℎ
3

0
) ,

𝑎
2
= −
4

3
𝛽ℎ
3

0
, 𝑎

1
= 𝑏
1
= 𝑏
2
= 0.

(25)

In this case, the generalized soliton solution can be written as

𝑢
1 (𝑥, 𝑡) =

2

9
ℎ
0

× (−3+3
𝑐

𝑐
0

+2𝛼ℎ
2

0
(1−3sec2 (√𝛼 (𝑥 − 𝑐𝑡) + 𝜉

0
))) .

(26)

Figure 1 shows the travelling wave solutions with (𝛼 =
0.16, 𝛽 = 0.25, 𝑘 = 0.5, ℎ

0
= 0.25, 𝑐

0
= 2) in the interval

[−10, 10] and time in the interval [0, 0.1].

Case II. Suppose that

𝜙
2
= 𝛼𝜙
2
(𝜉) − 𝛽𝜙

4
(𝜉) , (27)

by comparing them with the coefficients of 𝜙𝑖 and 𝛼 > 0
under condition 𝜙(0) = √𝛼/𝛽, so

𝜙 (𝜉) = √
𝛼

𝛽
sech (√𝛼𝜉) ; (28)
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Figure 1: Travelling waves solutions (26) are plotted: periodic
solitary waves.
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Figure 2: Travelling waves solutions (30) are plotted: bright solitary
waves.

then we have

𝑎
0
=
2

9𝑐
0

(−3𝑐
0
ℎ
0
+ 3𝑐ℎ
0
− 2𝛼𝑐
0
ℎ
3

0
) ,

𝑎
2
= −
4

3
𝛽ℎ
3

0
, 𝑎

1
= 𝑏
1
= 𝑏
2
= 0.

(29)

In this case, the generalized soliton solution can be written as

𝑢
2
(𝑥, 𝑡)=

2

9
ℎ
0
(−3+3

𝑐

𝑐
0

− 2𝛼ℎ
2

0
(1+3sech2 (√𝛼 (𝑥−𝑐𝑡)))) .

(30)

Figure 2 shows the travelling wave solutions with (𝛼 =
0.16, 𝑘 = 0.25, ℎ

0
= 0.5, 𝑐

0
= 0.9) in the interval [−5, 5] and

time in the interval [0, 3].
The stability of soliton solution is stable at 𝑡 = 0, 𝛼 = 0.16

if

𝑘 > 𝑐
0
[1 − 0.048ℎ

2

0
] . (31)
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Figure 3: Travelling waves solutions (35) are plotted: dark solitary
waves.

Case III. Suppose that

𝜙
2
= 𝛼𝜙
2
(𝜉) + 𝛽𝜙

4
(𝜉) , (32)

by comparing them with the coefficients of 𝜙𝑖 and 𝛼 > 0
under condition 𝛽 = 1/4 so

𝜙 (𝜉) = 2√𝛼csch (√𝛼𝜉) (33)

and we have

𝑎
0
=
2

9𝑐
0

(−3𝑐
0
ℎ
0
+ 3𝑐ℎ
0
− 2𝛼𝑐
0
ℎ
3

0
) ,

𝑎
2
= −
ℎ3
0

3
, 𝑎

1
= 𝑏
1
= 𝑏
2
= 0.

(34)

In this case, the generalized soliton solution can be written as

𝑢
3
(𝑥, 𝑡)=

2

9
ℎ
0
(−3+3

𝑐

𝑐
0

−2𝛼ℎ
2

0
(1+3csch2 [√𝛼 (𝑥 − 𝑐𝑡)])) .

(35)

Figure 3 shows the travelling wave solutions with (𝛼 =
0.25, 𝑘 = 0.16, ℎ

0
= 0.5, 𝑐

0
= 0.9) in the interval [−5, 5] and

time in the interval [0, 5].

Using Sech-Tanh Method. Consider

𝑢 (𝜉) = 𝐴0 + 𝐴1sech𝜉 + 𝐵1 tanh 𝜉 + 𝐴2sech𝜉
2

+𝐵
2
tanh 𝜉sech𝜉.

(36)

Substituting from (36) into (21), setting the coefficients of
(sech𝑗 tanh𝑖) for 𝑖 = 0, 1 and 𝑗 = 1, 2, 3, 4 to zero, we
have the following set of overdetermined equations in the
unknowns𝐴

0
,𝐴
1
,𝐴
2
,𝐵
1
,𝐵
2
, and 𝑐. Solve the set of equations
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Figure 4: Travelling waves solutions (40) are plotted: bright solitary waves.

of coefficients of (sech𝑗 tanh𝑖), by using Mathematica and
Wu ̀s elimination method; we obtain the following solutions:

(i) 𝐴
0
= −
ℎ
0
(−6𝑘 + 6𝑐

0
+ 𝑐
0
ℎ2
0
)

9𝑐
0

𝐴
2
=
2ℎ3
0

3
, 𝐵

2
= ∓
2

3
𝑖ℎ
3

0
, 𝐴

1
= 𝐵
1
= 0,

(37)

and then the solution of KdV equation as

𝑢
4 (𝑥, 𝑡) =

ℎ
0

9𝑐
0

(6𝑘 + 𝑐
0

× (−6 + ℎ
2

0
(−1 + 6sech [𝑥 − 𝑘𝑡]

× (sech [𝑥 − 𝑘𝑡]

±𝑖 tanh [𝑥 − 𝑘𝑡])) )) .

(38)

This soliton solution is stable if

𝑘 > 𝑐
0
(1 +

(4 + 𝑒20) ℎ2
0

15 (1 + 𝑒20)
)

(ii) 𝐴
0
=
2

9
(−3ℎ
0
+
3𝑘ℎ
0

𝑐
0

− 2ℎ
3

0
) ,

𝐴
2
=
4ℎ3
0

3
, 𝐴

1
= 𝐵
1
= 𝐵
2
= 0,

(39)

and the solution of KdV equation is

𝑢
5 (𝑥, 𝑡) =

2

9
ℎ
0
(−3 +

3𝑘

𝑐
0

+ (−2 + 6sech2 [𝑥 − 𝑘𝑡]) ℎ2
0
) .

(40)

Figure 4(a) shows the travelling wave solutions with (𝑘 =
0.1, ℎ
0
= 0.5, 𝑐

0
= 0.25) in the interval [−10, 10] and time in

the interval [0, 5].

Figure 4(b) shows the travelling wave solutions with (𝑘 =
0.16, ℎ

0
= 0.5, 𝑐

0
= 0.9) in the interval [−1, 2] and time in the

interval [0, 3].
This soliton solution is stable if

𝑘 > 𝑐
0
(1 +

(13 + 7𝑒20) ℎ2
0

15 (1 + 𝑒20)
) . (41)

4.2. Solutions for Benjamin-Bona-Mahony Equation. The
Benjamin-Bona-Mahony equation (14) can be transformed to
ODE as

(𝑘 − 𝑐) 𝑢

+ 𝑘𝑢𝑢


+ (𝑏
2
𝑘
2
𝑐 − 𝑎
2
𝑘
3
) 𝑢

= 0. (42)

Balancing 𝑢 with 𝑢𝑢 in (21) gives𝑚 = 2.

First Case. Let finite expansion

𝑢 (𝜉) = 𝐴0 + 𝐴1sech𝜉 + 𝐴2sech
2
𝜉 + 𝐵
1
cosh 𝜉 + 𝐵

2
cosh2𝜉.

(43)

Substituting from (43) into (42) and setting the coefficients of
(sech𝑗 cosh𝑖) for 𝑖, 𝑗 = 1, 2, 3, 4 to zero, we have the following
set of overdetermined equations in the unknowns 𝐴

0
, 𝐴
1
,

𝐵
1
, and 𝐵

2
. By solving the set of equations of coefficients of

(sech𝑗 cosh𝑖) by using Mathematica method, we obtain the
following solution:

𝐴
1
= 𝐵
1
= 𝐵
2
= 0, 𝐴

0
=
𝑐 − 𝑘 − 4𝑏2𝑘2𝑐 + 4𝑎2𝑘3

𝑘
,

𝐴
2
= 12 (𝑏

2
𝑐𝑘 − 𝑎

2
𝑘
2
) .

(44)

The exact soliton solution of Benjamin-Bona-Mahony equa-
tion is

𝑢 (𝑥, 𝑡) = (
𝑐 − 𝑘 − 4𝑏2𝑘2𝑐 + 4𝑎2𝑘3

𝑘
)

+12 (𝑏
2𝑐𝑘 − 𝑎2𝑘2) sech2 (𝑘𝑥 − 𝑐𝑡) .

(45)
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Figure 5: Travelling waves solutions (45) are plotted: dark solitary
waves.

Figure 5 shows the travelling wave solutions with (𝑘 =
0.6, 𝑐 = 0.4, 𝑎2 = 9/10, 𝑏2 = 19/10) in the interval [−10, 10]
and time in the interval [0, 5].

Second Case. Let finite expansion

𝑢 (𝜉) = 𝐴0 + 𝐴1 coth 𝜉 + 𝐴2coth
2
𝜉 + 𝐵
1
tanh 𝜉 + 𝐵

2
tanh2𝜉.

(46)

Then, we obtain the following solutions:

𝐴
1
= 𝐵
1
= 0, 𝐴

0
=
𝑐 − 𝑘 + 8𝑏2𝑘2𝑐 − 8𝑎2𝑘3

𝑘
,

𝐴
2
= 𝐵
2
= −12 (𝑏

2
𝑐𝑘 − 𝑎

2
𝑘
2
)

(47)

so that the exact soliton solution be

𝑢 (𝑥, 𝑡) = (
𝑐 − 𝑘 + 8𝑏2𝑘2𝑐 − 8𝑎2𝑘3

𝑘
) − 12 (𝑏

2
𝑐𝑘 − 𝑎

2
𝑘
2
)

× (tanh2 (𝑘𝑥 − 𝑐𝑡) + coth2 (𝑘𝑥 − 𝑐𝑡)) .
(48)

Figure 6 shows the travelling wave solutions with (𝑘 =
0.6, 𝑐 = 0.4, 𝑎

2
= 9/10, 𝑏

2
= 19/10) in the interval [−10, 10]

and time in the interval [0, 5].

5. Conclusion

By implementing the extended direct algebraic and modi-
fied sech-tanh methods, we presented new traveling wave
solutions of the KdV and BBM equations. We obtained the
water wave velocity potential of KdV equation in periodic
form and bright and dark solitary wave solutions by using the
extended direct algebraic method. Using the modified sech-
tanh method, the water wave velocity of KdV equation in
form of bright and dark solitary wave solutions. The water
wave velocity potentials of BBM equation are deduced in
form of dark solitary wave solutions. The structures of the
obtained solutions are distinct and stable.
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Figure 6: Travelling waves solutions (48) are plotted: dark solitary
waves.
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