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We will introduce Mironenko’s method to discuss the Poincaré center-focus problem, and compare the methods of Lyapunov and
Mironenko.We apply theMironenkomethod to discuss the qualitative behavior of solutions of some planar polynomial differential
systems and derive the sufficient conditions for a critical point to be a center.

1. Introduction

As we know [1, 2], for polynomial differential system
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(1)

where 𝑝
𝑖𝑗
and 𝑞

𝑖𝑗
are real constants, there has been a long-

standing problem, called the Poincaré center-focus problem;
for the system (1) find explicit conditions of 𝑝

𝑖𝑗
and 𝑞
𝑖𝑗
under

which (1) has a center at the origin (0, 0); that is, all the orbits
nearby are closed. The problem is equivalent to an analogue
for a corresponding periodic equation
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𝐵
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𝑟
2

= 𝑅 (𝜃, 𝑟) (2)

to have periodic solutions. To see this let us note that the
phase curves of (1) near the origin (0, 0) in polar coordinates
𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 are determined by (2), where 𝐴

𝑖
(𝜃)

and 𝐵
𝑖
(𝜃) are polynomials in cos 𝜃 and sin 𝜃.

Since the closed orbits of (1) correspond to 2𝜋-periodic
solutions of (2), the planar vector field (1) has a center at (0, 0)
if and only if (2) has a center at 𝑟 = 0; that is, all the solutions
nearby 𝑟 = 0 are periodic: 𝑟(0) = 𝑟(2𝜋) [1, 2].

To discuss the center-focus problem, there are Lyapunov’s
method and the others; see the works of Z. Zhang and so
forth [2–8]. One of the most commonly used methods is
Lyapunov’s method. However, sometimes, the use of this
method to calculate the focus quantities is very difficult and
the amount of calculation is very large.

In this paper, we apply the method of Mironenko [9]
(reflecting functionmethod) to study the qualitative behavior
of solutions of (2) and give the sufficient conditions for 𝑟 =
0 to be a center. We give a few examples to illustrate that,
sometimes, Mironenko’s method is better than Lyapunov’s
method.

In the present section, we introduce the concept of the
reflecting function, which will be used throughout the rest of
this paper.

Consider differential system

𝑥
󸀠

= 𝑋 (𝑡, 𝑥) , 𝑡 ∈ 𝑅, 𝑥 ∈ 𝑅
𝑛

, (3)

which has a continuously differentiable right-hand side and
with a general solution 𝜙(𝑡; 𝑡

0
, 𝑥
0
). For each such system,

the reflecting function is defined (see Mironenko’s [9]) as
𝐹(𝑡, 𝑥) := 𝜙(−𝑡, 𝑡, 𝑥). Therefore, for any solution 𝑥(𝑡) of (3),
we have 𝐹(𝑡, 𝑥(𝑡)) = 𝑥(−𝑡), 𝐹(0, 𝑥) = 𝑥.

If system (3) is 2𝜔-periodic with respect to 𝑡, and 𝐹(𝑡, 𝑥)
is its reflecting function, then𝑇(𝑥) := 𝐹(−𝜔, 𝑥) = 𝜙(𝜔; −𝜔, 𝑥)
is the Poincaré mapping of (3) over the period [−𝜔, 𝜔]. Thus,
the solution 𝑥 = 𝜙(𝑡; −𝜔, 𝑥

0
) of (3) defined on [−𝜔, 𝜔] is 2𝜔-

periodic if and only if 𝑥
0
is a fixed point of 𝑇(𝑥). The stability

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 926538, 5 pages
http://dx.doi.org/10.1155/2014/926538

http://dx.doi.org/10.1155/2014/926538


2 Abstract and Applied Analysis

of this periodic solution is equivalent to the stability of the
fixed point 𝑥

0
.

A differentiable function 𝐹(𝑡, 𝑥) is a reflecting function of
system (3) if and only if it is a solution of the Cauchy problem

𝐹
󸀠

𝑡
+ 𝐹
󸀠

𝑥
𝑋(𝑡, 𝑥) + 𝑋 (−𝑡, 𝐹) = 0, 𝐹 (0, 𝑥) = 𝑥. (4)

If 𝐹(𝑡, 𝑥) is a reflecting function of system (3), then it is
also reflecting function of the following systems:

𝑥
󸀠

= 𝑋 (𝑡, 𝑥) + (𝐹
󸀠

𝑥
)
−1

𝐺 (𝑡, 𝑥) − 𝐺 (−𝑡, 𝐹 (𝑡, 𝑥)) , (5)

where 𝐺(𝑡, 𝑥) is an arbitrary vector function. Thus, the shift
operators [9, 10] on interval [−𝜔, 𝜔] for such systems coin-
cide, and the qualitative behaviors of the periodic solutions
of these systems are the same. See papers [11–18] in which
reflecting functions are also applied to study the qualitative
behavior of solutions of some nonlinear and nonautonomous
differential systems.

In the following, we always assume that all equations in
this paper have a continuously differentiable right-hand side
and have a unique solution for their initial value problem.

2. Main Results

Now, let us consider differential equation (2).

Lemma 1 ([see [9]). Suppose that 𝐹(𝜃, 𝑟) is the reflecting
function of (2) and𝐹(𝜃+2𝜋, 𝑟) = 𝐹(𝜃, 𝑟).Then all the solutions
of (2) defined on [−𝜋, 𝜋] are 2𝜋-periodic; that is, 𝑟 = 0 is a
center.

Lemma 2 ([see [9]). If all the solutions of (2) are 2𝜋-periodic,
then its reflecting function is 2𝜋-periodic, too.

First, we introduce the Mironenko’s method. Suppose that

𝐹 = 𝑟 +

∞

∑

𝑖=1

𝑎
𝑖
(𝜃) 𝑟
𝑖 (6)

is the reflecting function of (2), where 𝑎
𝑖
(0) = 0 (𝑖 = 1, 2, . . .).

Substituting it into

𝜕𝐹
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+
𝜕𝐹

𝜕𝑟
𝑅 (𝜃, 𝑟) + 𝑅 (−𝜃, 𝐹 (𝜃, 𝑟)) = 0 (7)

and equating the coefficients of like powers of 𝑟, we get the
following infinite equations
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1
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0
(𝜃) + 𝐴

0
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𝑎
󸀠

2
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1
(𝜃) (𝐴

0
(𝜃) + 𝐴

0
(−𝜃)) + 𝐴

1
(𝜃)

+ 𝐴
1
(−𝜃) − 𝐴

0
(𝜃) 𝐵
1
(𝜃)

− 𝐴
0
(−𝜃) 𝐵

1
(−𝜃) = 0;

...

(8)

If 𝑎
𝑖
(𝜃 + 2𝜋) = 𝑎

𝑖
(𝜃) (𝑖 = 1, 2, . . .), then 𝐹(𝜃 + 2𝜋, 𝑟) = 𝐹(𝜃, 𝑟)

and 𝑟 = 0 is a center. If this is a 𝑎
𝑘
(𝜃 + 2𝜋) ̸= 𝑎

𝑘
(𝜃) and 𝑎

𝑖
(𝜃 +

2𝜋) = 𝑎
𝑖
(𝜃) (𝑖 = 1, 2, . . . , 𝑘−1), then 𝑎

𝑘
(𝜃) = 𝜑

𝑘
(𝜃)+ℎ

𝑘
, where

𝜑
𝑘
(𝜃 + 2𝜋) = 𝜑

𝑘
(𝜃), ℎ

𝑘
̸= 0 is a constant and when ℎ

𝑘
< 0,

(0, 0) is an unstable focus; when ℎ
𝑘
> 0, (0, 0) is a stable focus.

By the above description, it seems that Mironenko’s
method is similar to Lyapunov’s method, but do not forget
that reflecting function has some good symmetry properties,
which make our calculations greatly reduced. The following
example will illustrate this advantage.

Example 3. Consider system

𝑥̇ = −2𝑦 + 𝑥
2

− 𝑥𝑦 − 2𝑦
2

− 𝑥𝑦
2

− 𝑦
3

,

̇𝑦 = 2𝑥 + 3𝑥𝑦 − 𝑦
2

+ 𝑥𝑦
2

− 𝑦
3

.

(9)

Taking 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, it is transformed to equation

𝑑𝑟

𝑑𝜃
=
cos 𝜃 − sin 𝜃 (1 + 𝑟 sin 𝜃)

1 + (1 + 𝑟 sin 𝜃)2
𝑟
2

. (10)

Now, we use the method of Lyapunov to discuss is the 𝑟 =
0 a center or focus? Suppose that

𝑟 = 𝑐 +

∞

∑

𝑖=1

𝑏
𝑖
(𝜃) 𝑐
𝑖

, 𝑏
𝑖
(0) = 0, 𝑖 = 1, 2, . . . (11)

is a solution of (10). Substituting it into (10), we get

𝑏
󸀠

1
(𝜃) + 𝑏

󸀠

2
(𝜃) 𝑐 + 𝑏

󸀠

3
(𝜃) 𝑐
2

+ ⋅ ⋅ ⋅ + 𝑏
󸀠

𝑛
(𝜃) 𝑐
𝑛−1

+ ⋅ ⋅ ⋅

=
1

2
(cos 𝜃 − sin 𝜃) 𝜓2 − 𝑐

2
sin 𝜃 cos 𝜃𝜓3

+
𝑐
2

4
sin2𝜃 (cos 𝜃 + sin 𝜃) 𝜓4

−
𝑐
3

4
sin4𝜃𝜓5 − 𝑐

4

8
sin4𝜃 (cos 𝜃 + sin 𝜃) 𝜓6

+
𝑐
5

8
cos 𝜃sin5𝜃𝜓7 + ⋅ ⋅ ⋅ ,

(12)

where 𝜓 := 1 + 𝑏
1
(𝜃)𝑐 + 𝑏

2
(𝜃)𝑐
2

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
(𝜃)𝑐
𝑛

+ ⋅ ⋅ ⋅ .
Equating the coefficients of like powers of 𝑐 implies

𝑏
󸀠

1
(𝜃) =

1

2
(cos 𝜃 − sin 𝜃) . (13)

Solving it we get

𝑏
1
(𝜃) =

1

2
(sin 𝜃 + cos 𝜃 − 1) ,

𝑏
󸀠

2
(𝜃) =

1

2
(cos 2𝜃 − cos 𝜃 + sin 𝜃 − sin 𝜃 cos 𝜃) .

(14)
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It implies

𝑏
2
(𝜃) =

1

2
(sin 𝜃 cos 𝜃 − sin 𝜃 − cos 𝜃 + 1 − 1

2
sin2𝜃) ,

𝑏
󸀠

3
(𝜃) =

1

2
sin3𝜃 + 3

4
(cos 𝜃 − cos2𝜃 − sin 𝜃

−2sin2𝜃 cos 𝜃 + sin2𝜃 + sin 𝜃 cos 𝜃) ,

𝑏
3
(𝜃) =

1

4
(3 sin 𝜃 + cos 𝜃 − 3 sin 𝜃 cos 𝜃 − 2sin3𝜃

+
3

2
sin2𝜃 + 2

3
cos3𝜃 − 5

3
) ,

𝑏
󸀠

4
(𝜃) = − sin 𝜃 cos 𝜃 + 3

4
cos 2𝜃 + 1

4
sin 𝜃 cos2𝜃

+
5

8
cos 𝜃 sin3𝜃 + 11

4
sin2𝜃 cos 𝜃 + 3

8
sin4𝜃

+
1

6
cos4𝜃 − 2

3
cos 𝜃 + 2

3
sin 𝜃 − 13

8
sin2𝜃 cos2𝜃

+
1

12
sin 𝜃 cos3𝜃 − 1

4
cos3𝜃 − 3

4
sin3𝜃,

(15)
so

𝑏
4
= −

1

2
sin2𝜃 − 1

3
cos3𝜃 + 5

32
sin4𝜃

+ sin3𝜃 − 11

12
sin 𝜃 − 1

48
cos4𝜃 + 1

12
cos 𝜃

+
13

48
sin 𝜃 cos 2𝜃 + 31

48
sin 𝜃 cos 𝜃 + 13

48
.

(16)

From above, we see that the calculation of the expression
of 𝑏
𝑖
(𝜃) (𝑖 = 5, 6, 7, . . .) will become more difficult. Thus, it is

not easy to judge is 𝑟 = 0 a center?
Now, we try to use the method ofMironenko to discuss is

𝑟 = 0 a center? In (7) taking

𝑅 =
cos 𝜃 − sin 𝜃 (1 + 𝑟 sin 𝜃)

1 + (1 + 𝑟 sin 𝜃)2
𝑟
2

, (17)

we get

𝑎
󸀠

1
(𝜃) + 𝑎

󸀠

2
(𝜃) 𝑟 + ⋅ ⋅ ⋅ + 𝑎

󸀠

𝑛
(𝜃) 𝑟
𝑛−1

+ ⋅ ⋅ ⋅

+ (1 + 2𝑎
1
(𝜃) 𝑟 + 3𝑎

2
(𝜃) 𝑟
2

+ ⋅ ⋅ ⋅ + (𝑛 + 1) 𝑎
𝑛
(𝜃) 𝑟
𝑛

+ ⋅ ⋅ ⋅ )

× (
1

2
(cos 𝜃 − sin 𝜃) − 𝑟

2
sin 𝜃 cos 𝜃

+
𝑟
2

4
sin2𝜃 (cos 𝜃 + sin 𝜃) − 𝑟

3

4
sin4𝜃

−
𝑟
4

8
sin4𝜃 (cos 𝜃 − sin 𝜃) + 𝑟

5

8
cos 𝜃 sin4𝜃 + ⋅ ⋅ ⋅ )

+
1

2
(cos 𝜃 + sin 𝜃) 𝜑2 + 𝑟

2
cos 𝜃 sin 𝜃𝜑3

+
𝑟
2

4
sin2𝜃 (cos 𝜃 − sin 𝜃) 𝜑4

−
𝑟
3

4
sin4𝜃𝜑5 − 𝑟

4

8
sin4𝜃 (cos 𝜃 + sin 𝜃) 𝜑6

−
𝑟
5

8
cos 𝜃 sin5𝜃𝜑7 + ⋅ ⋅ ⋅ = 0.

(18)

Equating the coefficients of like powers of 𝑟 implies

𝑎
󸀠

1
(𝜃) = − cos 𝜃, 𝑎

1
(𝜃) = − sin 𝜃;

𝑎
󸀠

2
(𝜃) = 2 sin 𝜃 cos 𝜃, 𝑎

2
(𝜃) = sin2𝜃;

𝑎
󸀠

3
(𝜃) = −3sin2𝜃 cos 𝜃, 𝑎

3
(𝜃) = −sin3𝜃;

𝑎
󸀠

4
(𝜃) = 4sin3𝜃 cos 𝜃, 𝑎

4
(𝜃) = sin4𝜃;

(19)

and so forth. Now we can conjecture that 𝑎
𝑖
(𝜃) =

(− sin 𝜃)𝑖, 𝑖 = 1, 2, 3, . . .; that is, 𝐹(𝜃, 𝑟) = 𝑟/(1 + 𝑟 sin 𝜃).
It is not difficult to check that 𝐹(𝜃, 𝑟) = 𝑟/(1 + 𝑟 sin 𝜃) is
a solution of (7), so it is the reflecting function of (10). As
𝐹(𝜃 + 2𝜋, 𝑟) = 𝐹(𝜃, 𝑟), so the origin point (0, 0) of system (9)
is a center.

Such example shows us that, sometimes, the method
of Mironenko is better than Lyapunov’s method. Just this
advantage is not enough. By the equivalence, we know that
𝐹(𝜃, 𝑟) = 𝑟/(1 + 𝑟 sin 𝜃) also is the reflecting function of the
following equations:

𝑑𝑟

𝑑𝜃
=

cos 𝜃
1 + (1 + 𝑟 sin 𝜃)2

𝑟
2

+ (1 + 𝑟 sin 𝜃)2𝐺 (𝜃, 𝑟)

− 𝐺(−𝜃,
𝑟

1 + 𝑟 sin 𝜃
) ,

(20)

where 𝐺(𝜃, 𝑟) is an arbitrary function. If we take

𝐺 (𝜃, 𝑟) =
𝑟
2𝑘−1

(1 + 𝑟 sin 𝜃) (1 + (1 + 𝑟 sin 𝜃)2)
𝑘

, (21)

where 𝑘 is a positive integer, then (20) becomes

𝑑𝑟

𝑑𝜃
=
𝑟
2 cos 𝜃(1 + (1 + 𝑟 sin 𝜃)2)

𝑘−1

+ 𝑟
2𝑘−1

(1 + 𝑟 sin 𝜃 − 𝑟2)

(1 + (1 + 𝑟 sin 𝜃)2)
𝑘

.

(22)

Taking 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, then (22) is transformed to

𝑑𝑥

𝑑𝑡
= (𝑥
2

− 2𝑦 − 2𝑦
2

− 𝑦
3

) (2 + 2𝑦 + 𝑦
2

)
𝑘−1

+ 𝑥(𝑥
2

+ 𝑦
2

)
𝑘−1

(1 + 𝑦 − 𝑥
2

− 𝑦
2

) ,

𝑑𝑦

𝑑𝑡
= 𝑥 (2 + 3𝑦 + 𝑦

2

) (2 + 2𝑦 + 𝑦
2

)
𝑘−1

+ 𝑦(𝑥
2

+ 𝑦
2

)
𝑘−1

(1 + 𝑦 − 𝑥
2

− 𝑦
2

)

(23)

and its origin point (0, 0) is a center too.
Thus, by using the method of Mironenko we not only

solve a center-focus problem, but at the same time open a
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class of differential equationswith the same character of point
𝑟 = 0. Therefore, we can say, sometimes, the method of
Mironenko is more effective than Lyapunov’s method.

Theorem 4. If 𝐹(𝜃, 𝑟) is a solution of equation 𝑅(𝜃, 𝑟) =

𝑅(−𝜃, 𝐹) such that 𝐹(0, 𝑟) = 𝑟 and satisfies (7), then all the
solutions of (2) determined on [−𝜋, 𝜋] are 2𝜋-periodic; that is,
𝑟 = 0 is a center.

Proof. By the assumptions, we see that 𝐹(𝜃, 𝑟) is a reflecting
function of (2) and 2𝜋-periodic; thus by Lemma 1, the present
conclusion is correct.

Theorem 5. If there is a function (𝜃, 𝑟)(𝜕𝑢/𝜕𝑟 ̸= 0), 𝑢(𝜃 +

2𝜋, 𝑟) = 𝑢(𝜃, 𝑟) which satisfies

𝜕𝑢

𝜕𝜃
+
𝜕𝑢

𝜕𝑟
𝑅 (𝜃, 𝑟) = 𝑓 (𝜃, 𝑢) , (24)

where 𝑓(𝜃, 𝑢) + 𝑓(−𝜃, 𝑢) = 0. Then all the solutions of (2)
determined on [−𝜋, 𝜋] are 2𝜋-periodic; that is, 𝑟 = 0 is a center.

Proof. Let 𝐹(𝜃, 𝑟) be the reflecting function of (2). Now, we
prove that it satisfies 𝑢(𝜃, 𝑟) = 𝑢(−𝜃, 𝐹).

In fact, by relation (24), for any solution 𝑟(𝜃) of (2), we
have

𝑑𝑢 (𝜃, 𝑟 (𝜃))

𝑑𝜃
= 𝑓(𝜃, 𝑢 (𝜃, 𝑟 (𝜃)) . (25)

In view of 𝑓(𝜃, 𝑢) + 𝑓(−𝜃, 𝑢) = 0, we have [9, page 65]

𝑢 (𝜃, 𝑟 (𝜃)) = 𝑢 (−𝜃, 𝑟 (−𝜃)) ; (26)

that is,

𝑢 (𝜃, 𝑟) = 𝑢 (−𝜃, 𝐹) , (27)

which implies that 𝐹(𝜃, 𝑟) is a 2𝜋-periodic function with
respect to 𝜃. By Lemma 1, the proof of the present theorem
is finished.

Corollary 6. If there is a differentiable 2𝜋-periodic function
𝑎(𝜃) such that

𝛼
0
:= 𝑎
󸀠

(𝜃) +

𝑛

∑

𝑗=0

𝑏
𝑗
(𝜃) (−𝑎 (𝜃))

𝑗

,

𝛼
𝑘
:=

𝑛

∑

𝑗=𝑘

𝑏
𝑗
(𝜃) 𝐶
𝑘

𝑗
(−𝑎 (𝜃))

𝑘−𝑗

, (𝑘 = 1, 2, . . . , 𝑛)

(28)

(𝐶
𝑘

𝑛
= 𝑛!/𝑘!(𝑛 − 𝑘)!) are 2𝜋-periodic and odd functions, then

all the solutions defined on [−𝜋, 𝜋] of equation

𝑑𝑟

𝑑𝜃
=

𝑛

∑

𝑗=0

𝑏
𝑗
(𝜃) 𝑟
𝑗

:= 𝑌 (𝜃, 𝑟) (29)

are 2𝜋-periodic.
This result is implied by Theorem 5 if we take 𝑢 = 𝑎(𝜃) + 𝑟

and put

𝜕𝑢

𝜕𝜃
+
𝜕𝑢

𝜕𝑟
𝑌 (𝜃, 𝑟) =

𝑛

∑

𝑗=0

𝛼
𝑗
𝑢
𝑗

. (30)

Example 7. Taking 𝑎(𝜃) = sin 𝜃, we get that all the solutions
determined on [−𝜋, 𝜋] of the Riccati equation

𝑑𝑟

𝑑𝜃
= sin2𝜃 cos 𝜃 − cos 𝜃 + (sin 𝜃 cos 𝜃 + 2sin4𝜃) 𝑟

+sin3𝜃𝑟2
(31)

are 2𝜋-periodic.

Theorem 8. For (2), suppose that

𝑘

∑

𝑖=0

(𝐴
𝑖
(𝜃) 𝐵
𝑘−𝑖

(−𝜃) + 𝐴
𝑖
(−𝜃) 𝐵

𝑘−𝑖
(𝜃)) = 0,

𝑘 = 1, 2, . . . , 2𝑛 − 3,

(32)

𝐴
𝑖
(𝜃) = 0 (𝑖 > 𝑛 − 2), 𝐵

𝑗
(𝜃) = 0 (𝑗 > 𝑛 − 1), 𝐵

0
(𝜃) = 1. Then

𝑟 = 0 is a center.

Proof. By the assumptions, it is not difficult to check that
𝐹(𝜃, 𝑟) = 𝑟 is the reflecting function of (2), so 𝑟 = 0 is a
center.

Theorem 9. For (2), suppose that ∫𝜋
0

(𝐴
0
+ 𝐴
0
)𝑑𝜃 = 0 and

𝑘

∑

𝑗=0

(𝐵
𝑗
(𝐴
0
+ 𝐴
0
) − 𝐴

𝑗
)

𝑘−𝑗

∑

𝑖=0

𝐵
𝑖
𝐶
𝑘−𝑗−𝑖

𝑛−1−𝑖
𝛼
𝑘−𝑗−𝑖

=

𝑘

∑

𝑗=0

(𝐵
𝑗
+ 𝐵
𝑗−1
𝛼)

𝑘−𝑗

∑

𝑖=0

𝐴
𝑖
𝐶
𝑘−𝑗−𝑖

𝑛−2−𝑖
𝛼
𝑘−𝑗−𝑖

,

𝑘 = 1, 2, . . . , 2𝑛 − 2,

𝐵
0
= 1, 𝐴

𝑖
= 0, (𝑖 > 𝑛 − 2) ,

𝐵
𝑗
= 0, (𝑗 > 𝑛 − 1) ,

(33)

where 𝛼 = ∫
𝜃

0

(𝐴
0
+ 𝐴
0
)𝑑𝑠, 𝐴

𝑖
= 𝐴
𝑖
(−𝜃), 𝐵

𝑖
= 𝐵
𝑖
(−𝜃) (𝑖 =

0, 1, 2, . . . , 2𝑛−2).Then all the solutions of (2) and the following
equations

𝑑𝑟

𝑑𝜃
= 𝑅 (𝜃, 𝑟) + (1 + 𝑟𝛼)

2

𝐺 (𝜃, 𝑟) − 𝐺(−𝜃,
𝑟

1 + 𝑟𝛼
) (34)

determined on [−𝜋, 𝜋] are 2𝜋-periodic; that is, 𝑟 = 0 is
a center, where 𝐺(𝜃, 𝑟) is a continuously differentiable 2𝜋-
periodic function with respect to 𝜃 and 𝐺(𝜃, 0) = 𝐺(−𝜃, 0).

Proof. By condition (33), we can check that 𝐹 = 𝑟/(1 + 𝑟𝛼)

is the reflecting function of (2). As ∫𝜋
0

(𝐴
0
+ 𝐴
0
)𝑑𝜃 = 0, so 𝛼

and 𝐹 = 𝑟/(1 + 𝑟𝛼) are 2𝜋-periodic functions with respect to
𝜃. Then by Lemma 1, 𝑟 = 0 is a center.

Theorem 10. Suppose that for (2) 𝑟 = 0 is a center and
functions Δ

𝑘
(𝜃, 𝑟) are 2𝜋-periodic with respect to 𝜃 and satisfy

Δ
𝜃
+ Δ
𝑟
𝑅 (𝜃, 𝑟) = 𝑅

𝑟
(𝜃, 𝑟) Δ (𝜃, 𝑟) , Δ (𝜃, 0) = 0. (35)
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Then for the following equations

𝑑𝑟

𝑑𝜃
= 𝑅 (𝜃, 𝑟) +

∞

∑

𝑘=0

𝛼
𝑘
(𝜃) Δ
𝑘
(𝜃, 𝑟) , (36)

𝑟 = 0 is a center, too. Here 𝛼
𝑘
(𝜃)(𝑘 = 0, 1, 2, . . .) are arbitrary

continuously differentiable 2𝜋-periodic odd functions.

Proof. By the assumptions and [9, 14], we know that the
reflecting functions of (2) and (36) coincide and all the
solutions of (2) determined on [−𝜋, 𝜋] are 2𝜋-periodic. By
Lemma 2, we know that the common reflecting function is
2𝜋-periodic; thus all the solutions of (36) determined on
[−𝜋, 𝜋] are 2𝜋-periodic; that is, 𝑟 = 0 is a center, too.

Remark 11. Theorem 10 shows us that if the center-focus
problem for (2) is already solved, then the same problem for
(36) is solved, too.
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