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In this paper, we consider topology and shape optimization problem related to the nonstationary Navier-Stokes system. The
minimization of dissipated energy in the fluid flow domain is discussed. The proposed approach is based on a sensitivity analysis
of a design function with respect to the insertion of a small obstacle in the fluid flow domain. Some numerical results show the
efficiency and accurate of the proposed approach.

1. Introduction

Topological shape optimization in fluid mechanics has wide
and valuable applications in hydrodynamic and aerodynamic
problems such as the design of car hoods, airplane wings, and
inlet shapes for jet engines. Various optimization methods
are introduced to determine the optimal design of minimum
drag bodies [1–3], diffusers [4], valves [5], and airfoils [6].
The majority of methods dealing with optimal design of flow
domains fall into the category of shape optimization and
are limited to determine the optimal shape of an existing
boundary.

It is only recently that topological optimization has been
introduced and used in fluid shape optimization problems. It
can be used to design features within the domain allowing
new boundaries to be introduced into the design. In this
context, one of the first approaches is proposed by Borrvall
and Petersson in [7]. They implemented the relaxed material
distribution approach to minimize the power dissipated
in Stokes flow. Later, this approach has been generalized
by Guest and Prévost in [8]. They treated the material
phase as porous medium where fluid flow is governed by
Darcy’s law. In [9], we have proposed a new topological
optimization approach, for the Stokes system, based on the
topological sensitivity analysis [10–17]. The optimal domain
is constructed through the insertion of some obstacles in the

initial one. The problem leads to optimizing the obstacles
location.The topological sensitivity analysis method consists
in studying the variation of the cost function 𝑗 with respect
to the insertion of a small obstacle O

𝑧,𝜀
at the point 𝑧 ∈ Ω. It

leads to an asymptotic expansion of 𝑗 in the following form:

𝑗 (Ω \ O
𝑧,𝜀
) = 𝑗 (Ω) + 𝑓 (𝜀) 𝑔 (𝑧) + 𝑜 (𝑓 (𝜀)) , (1)

where 𝑓(𝜀) is a scalar positive function going to zero with 𝜀.
This expression is called the topological asymptotic expan-
sion and 𝑔 is called the topological gradient.

In order to minimize 𝑗, the best location to insert the
obstacleO

𝑧,𝜀
in the fluid flow domainΩ is where 𝑔 is themost

negative. In fact if 𝑔(𝑧) < 0, we have 𝑗(Ω \ O
𝑧,𝜀
) < 𝑗(Ω).

Starting with this observation, topological optimiza-
tion algorithm can be constructed. The optimal domain is
obtained using an iterative process building a sequence of
geometries {Ω

𝑘
}
𝑘≥0

with Ω
0

= Ω. At the 𝑘th iteration,
the topological gradient 𝑔

𝑘
is computed in Ω

𝑘
and the new

geometry Ω
𝑘+1

is obtained by inserting an obstacle O
𝑘
in the

domain Ω
𝑘
; Ω
𝑘+1

= Ω
𝑘
\ O
𝑘
. The obstacle O

𝑘
is defined by a

level set curve of 𝑔
𝑘

O
𝑘
= {𝑥 ∈ Ω

𝑘
, such that 𝑔

𝑘
(𝑥) ≤ 𝑐

𝑘
} , (2)

where 𝑐
𝑘
is chosen in such a way that the cost function 𝑗

decreases as most as possible.
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To our knowledge, the topological sensitivity analysis
for the nonstationary Navier-Stokes equations has not been
studied so far. The most contributions have been focused on
the stationary regime.

The aim of this work is to extend the topological gradient
method for the nonlinear unsteady flow environment. The
main difficulty comes from the nonlinearity of the operator
and the treatment of the associated adjoint problem. To
overcome such a difficulty, we have used the discrete adjoint
approach.This alternative takes a discretization of theNavier-
Stokes equations, linearizes the discrete equations, and then
uses the transpose of the linear operator to form the adjoint
problem. The discrete adjoint approach has been developed
by Elliott and Peraire [18], Mohammadi and Pironneau [19],
and Nielsen and Anderson [20].

The rest of this paper is organized as follows. In
Section 2, we present the topological optimization problem.
In Section 3, we derive the topological asymptotic expan-
sion for the discretized Navier-Stokes equations. The pro-
posed numerical algorithm and some numerical results are
described in Section 4. The paper ends by some concluding
remarks.

2. Problem Statement

We consider a viscous and incompressible fluid flow in a
bounded domain Ω of R3. The fluid flow is described by
the nonstationary Navier-Stokes equations [21]. For given
boundaries data (𝑢

𝑑
, 𝑔) and a source term 𝐺 (gravitational

force), the velocity 𝑢
Ω
and the pressure 𝑝

Ω
satisfy the system

𝜕𝑢
Ω

𝜕𝑡
+ (𝑢
Ω
⋅ ∇) 𝑢
Ω
− ]Δ𝑢

Ω
+ ∇𝑝
Ω
= 𝐺 in Ω × (0, 𝑇) ,

∇ ⋅ 𝑢
Ω
= 0 in Ω × (0, 𝑇) ,

𝑢
Ω
= 𝑢
𝑑

on Γ
𝑑
× (0, 𝑇) ,

𝜎 (𝑢
Ω
, 𝑝
Ω
) ⋅ 𝑛 = 𝑔 on Γ

𝑛
× (0, 𝑇) ,

𝑢
Ω
(⋅, 0) = 𝑢

0 in Ω,

(3)
where ] is the kinematic viscosity of the fluid, 𝑇 is the
computational time, and 𝑢0 is an initial condition verifying
∇ ⋅ 𝑢0 = 0. Here Γ

𝑑
and Γ

𝑛
are two parts of the boundary

𝜕Ω such that Γ
𝑑
∪ Γ
𝑛
= 𝜕Ω and Γ

𝑑
∩ Γ
𝑛
= 0. The stress

distribution on Γ
𝑛
is defined by 𝜎(𝑢, 𝑝) ⋅ 𝑛 = 𝑔 with 𝜎(𝑢, 𝑝) =

](∇𝑢 + ∇𝑢𝑇) − 𝑝𝐼 and 𝑛 is the unit outward normal vector.

2.1. Shape Optimization Problem. We assume that the fluid
flow domain Ω is a cavity having one inlet Γin and some
outlets Γ𝑖out (see Figure 1).The aim is to determine the optimal
geometry Ω

𝑝
of the pipe bend domain minimizing the

dissipated energy by the fluid flow. The considered problem
can be formulated as follows:

(𝑂){
Find Ω

𝑝
solution to

min
𝐷∈D
𝑎𝑑

𝑗 (𝐷) , (4)

Ω

Γin Ωp

Γ
1

out

Γ
2

out

Γ
3

out

Obstacles Ok

Cavity Ω

Figure 1: Cavity\Omega.

where 𝑗 is the cost function defined by

𝑗 (𝐷) = ∫
𝑇

0

∫
Ω

]∇𝑢𝐷

2

𝑑𝑥 𝑑𝑡, (5)

with 𝑢
𝐷
is the velocity field solution to the Navier-Stokes

system (3) in the domain𝐷.
HereD

𝑎𝑑
is the set of admissible domains defined by

D
𝑎𝑑
= {𝐷 ⊂ Ω suchthat Γin ⊂ 𝜕Ω ∩ 𝜕𝐷, Γ

𝑖

out ⊂ 𝜕Ω ∩ 𝜕𝐷

and |𝐷| ≤ 𝑉desired} ,

(6)

where |𝐷| is the Lebesgue measure of 𝐷 and 𝑉desired denotes
the target volume (weight).

To solve the considered topology optimization problem
(𝑂), we propose an optimization approach based on the
topological sensitivity analysis method. The optimal domain
is constructed using an iterative process building a sequence
of geometries {𝐷

𝑘
}
𝑘≥0

with 𝐷
0
= Ω. At the 𝑘th iteration, the

new geometry𝐷
𝑘+1

is obtained by inserting an obstacleO
𝑘
in

the domain 𝐷
𝑘
; 𝐷
𝑘+1

= 𝐷
𝑘
\ O
𝑘
. The obstacle O

𝑘
is defined

by a level set curve of a scalar function 𝑔
𝑘

O
𝑘
= {𝑥 ∈ 𝐷

𝑘
, such that 𝑔

𝑘
(𝑥) ≤ 𝑐

𝑘
} , (7)

where 𝑐
𝑘
is chosen in such a way that the cost function

𝑗 decreases as most as possible. The function 𝑔
𝑘
is called

the topological gradient. It is computed using a topological
sensitivity analysis for the function 𝑗 with respect to the
creation of small geometry perturbation of the domain.

2.2. Optimal Location of a Small Obstacle. Let O
𝑧,𝜀

be a small
obstacle inserted in the fluid flow Ω. We assume that the
obstacle has the formO

𝑧,𝜀
= 𝑧+𝜀O, where 𝑧 ∈ Ω, 𝜀 > 0, andO

is a given, fixed, and bounded domain of R3, containing the
origin, whose boundary 𝜕O is of C1. In the presence of the
obstacle, the function 𝑗 is defined by

𝑗 (Ω \ O
𝑧,𝜀
) = ∫

𝑇

0

∫
Ω\O
𝑧,𝜀

]∇𝑢𝜀

2

𝑑𝑥 𝑑𝑡, (8)
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where 𝑢
𝜀
is the velocity field solution to the Navier-Stokes

system (9) in the perturbed domainΩ
𝑧,𝜀
= Ω \ O

𝑧,𝜀
:

𝜕𝑢
𝜀

𝜕𝑡
+ (𝑢
𝜀
⋅ ∇) 𝑢
𝜀
− ]Δ𝑢

𝜀
+ ∇𝑝
𝜀
= G in Ω

𝑧,𝜀
× (0, 𝑇) ,

∇ ⋅ 𝑢
𝜀
= 0 in Ω

𝑧,𝜀
× (0, 𝑇) ,

𝑢
𝜀
= 𝑢
𝑑

on Γ
𝑑
× (0, 𝑇) ,

𝜎 (𝑢
𝜀
, 𝑝
𝜀
) ⋅ 𝑛 = 𝑔 on Γ

𝑛
× (0, 𝑇) ,

𝑢
𝜀
= 0 on 𝜕O

𝑧,𝜀
× (0, 𝑇) ,

𝑢
𝜀
(⋅, 0) = 𝑢

0 in Ω
𝑧,𝜀
.

(9)

Our aim is to determine the optimal location of the
obstacle O

𝑧,𝜀
in the fluid flow domain Ω minimizing the

function 𝑗:

min
O
𝑧,𝜀
⊂Ω

𝑗 (Ω \ O
𝑧,𝜀
) . (10)

To solve this minimization problem, the topological sensi-
tivity analysis method consists in studying the variation of
the function 𝑗 with respect to 𝜀. It leads to an asymptotic
expansion in the following form:

𝑗 (Ω \ O
𝑧,𝜀
) = 𝑗 (Ω) + 𝑓 (𝜀) 𝑔 (𝑧) + 𝑜 (𝑓 (𝜀)) , (11)

where 𝑓(𝜀) is a positive scalar function going to zero with 𝜀.
This expression is called the topological asymptotic expan-
sion and 𝑔 is called the topological gradient.

From the asymptotic (11), one can observe that the best
location of the obstacle O

𝑧,𝜀
in Ω minimizing 𝑗 (solution to

(10)) is given by

O
𝑧
⋆
,𝜀
= 𝑧
⋆

+ 𝜀O, (12)

where 𝑧⋆ is the location where 𝑔 is the most negative. In fact
if 𝑔(𝑧⋆) < 0 and 𝑔(𝑧⋆) ≤ 𝑔(𝑧), for all 𝑧 ∈ Ω, we have 𝑗(Ω \

O
𝑧
⋆
,𝜀
) < 𝑗(Ω) and 𝑗(Ω \ O

𝑧
⋆
,𝜀
) ≤ 𝑗(Ω \ O

𝑧,𝜀
), for all 𝑧 ∈ Ω.

Starting with this observation, the topological gradient 𝑔
will be computed during the optimization process. It will be
used to determine the location of the obstacle to be inserted
at each iteration.

To this end, we will derive a topological sensitivity
analysis for the Navier-Stokes equations in the next section.
The obtained results are valid for a large class of cost functions
𝑗.

3. Topological Sensitivity Analysis

We start our analysis by the time discretization of the Navier-
Stokes problem. It leads to solving steady state generalized
Stokes equations at each time step. The topological sensi-
tivity analysis for the Navier-Stokes equations is derived in
Section 3.3.

3.1. The Time Discretization. We remark that the convective
term in the first equation of system (9) coincideswith the total
derivative,

𝑑𝑢
𝜀

𝑑𝑡
=
𝜕𝑢
𝜀

𝜕𝑡
+ (𝑢
𝜀
⋅ ∇) 𝑢
𝜀
. (13)

Then, ifΔ𝑡 is the time step and 𝑢𝑛
𝜀
is the approximated velocity

at time 𝑡𝑛 = 𝑛Δ𝑡, using the characteristics method [22], we
have the following approximation:

𝑑𝑢
𝜀

𝑑𝑡
(𝑥, 𝑡
𝑛+1

) =
𝑢𝑛+1
𝜀

(𝑥) − 𝑢𝑛
𝜀
∘ 𝜒𝑛 (𝑥)

Δ𝑡
, (14)

where 𝜒𝑛(𝑥) = 𝑋𝑛(𝑡𝑛+1; 𝑥) describes the position at time
𝑡𝑛+1 = (𝑛 + 1)Δ𝑡 of the particle of fluid which is at point 𝑥
at time 𝑡𝑛. It is the solution of

𝑑𝑋𝑛

𝑑𝜏
(𝜏; 𝑥) = 𝑢

𝑛

𝜀
(𝑋
𝑛

(𝜏; 𝑥) , 𝜏) , 𝑡
𝑛

< 𝜏 < 𝑡
𝑛+1

𝑋(𝑡
𝑛

; 𝑥) = 𝑥.

(15)

Using (15), the time discretization of (9) reads

𝑐𝑢
𝑛+1

𝜀
− ]Δ𝑢𝑛+1

𝜀
+ ∇𝑝
𝑛+1

𝜀
= 𝐹
𝑛+1 in Ω

𝑧,𝜀
,

∇ ⋅ 𝑢
𝑛+1

𝜀
= 0 in Ω

𝑧,𝜀
,

𝑢
𝑛+1

𝜀
= 𝑢
𝑑

on Γ
𝑑
,

𝜎 (𝑢
𝑛+1

𝜀
, 𝑝
𝑛+1

𝜀
) ⋅ 𝑛 = 𝑔 on Γ

𝑛
,

𝑢
𝑛+1

𝜀
= 0 on 𝜕O

𝑧,𝜀
,

(16)

where 𝑐 = 1/Δ𝑡, 𝐹𝑛+1 = (1/Δ𝑡)𝑢𝑛
𝜀
𝑜𝜒𝑛 + G𝑛+1, 𝑢𝑛+1

𝜀
, and 𝑝𝑛+1

𝜀

are the approximations of 𝑢
𝜀
and 𝑝

𝜀
on time 𝑡𝑛+1.

Then, at each time step, we have to solve a steady state
generalized Stokes problem having the following generic
form:

𝑐𝑢
𝜀
− ]Δ𝑢

𝜀
+ ∇𝑝
𝜀
= 𝐹 in Ω

𝑧,𝜀
,

∇ ⋅ 𝑢
𝜀
= 0 in Ω

𝑧,𝜀
,

𝑢
𝜀
= 𝑢
𝑑

on Γ
𝑑
,

𝜎 (𝑢
𝜀
, 𝑝
𝜀
) ⋅ 𝑛 = 𝑔 on Γ

𝑛
,

𝑢
𝜀
= 0 on 𝜕O

𝑧,𝜀
.

(17)

For 𝑢
𝜀
∈ {V ∈ 𝐻1(Ω

𝑧,𝜀
), ∇ ⋅ V = 0 in Ω

𝑧,𝜀
)}, we show in [10]

that problem (17) has a unique solution.

3.2. Topological Sensitivity Analysis for the Generalized Stokes
Equations. In this section, we give the topological sensitivity
analysis for the generalized Stokes equations when creating
a small hole O

𝑧,𝜀
inside the domain with a homogeneous

Dirichlet condition on the boundary 𝜕O
𝜀
. We recall here the

main results of this case. For more details, one can consult
[10] or [15]. The presented results are valid for all functional
𝐽
𝜀
: 𝐻1(Ω

𝑧,𝜀
)
3

→ R satisfying the following assumptions.

Hypothesis 1.

(i) The function 𝐽
0
is differentiable with respect to 𝑢, and

we denote by𝐷𝐽
0
(𝑢) its derivative.

(ii) There exists a real number 𝛿𝐽 such that for all 𝜀 ≥ 0

𝐽
𝜀
(𝑢
𝜀
) − 𝐽
0
(𝑢
0
) = 𝐷𝐽

0
(𝑢
0
) (𝑢
𝜀
− 𝑢
0
) + 𝜀𝛿𝐽 + 𝑜 (𝜀) . (18)
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Theorem 1 (see [10, 15]). Under the assumptions of
Hypothsis 1, the function 𝐽

𝜀
has the asymptotic expansion

𝐽
𝜀
(𝑢
𝜀
) = 𝐽
0
(𝑢
0
)

+ 𝜀 [(−∫
𝜕O

𝜂 (𝑦) 𝑑𝑠 (𝑦)) ⋅ V
0
(𝑧) + 𝛿𝐽 (𝑧)] + 𝑜 (𝜀) .

(19)

The function V
0
is the solution to the adjoint problem

𝑐V
0
− ]ΔV

0
+ ∇𝑞
0
= − 𝐷𝐽

0
(𝑢
0
) in Ω,

∇ ⋅ V
0
= 0 in Ω,

V
0
= 0 𝑜𝑛 Γ

𝑑
,

𝜎 (V
0
, 𝑞
0
) ⋅ 𝑛 = 0 𝑜𝑛 Γ

𝑛
.

(20)

The function 𝜂 ∈ 𝐻−1/2(𝜕O)
3 is solution to the following

boundary integral equation (for more details, one can see
[15, 23]):

∫
𝜕O

𝐸 (𝑥 − 𝑦) 𝜂 (𝑦) 𝑑𝑠 (𝑦) = −𝑢
0
(𝑧) , ∀𝑥 ∈ 𝜕O, (21)

where (𝐸,𝑃) is the fundamental solution to the Stokes equations
in R3

𝐸 (𝑦) = (
1

8𝜋]𝑟
) (𝐼 + 𝑒

𝑟
𝑒
𝑇

𝑟
) , 𝑃 (𝑦) =

𝑦

4𝜋𝑟3
, (22)

where 𝑟 = ‖𝑦‖, 𝑒
𝑟
= 𝑦/𝑟, and 𝑒𝑇

𝑟
is the transposed vector of 𝑒

𝑟
.

In the particular case where O is the unit ball 𝐵(0, 1), we
have

∫
𝜕𝜔

𝐸 (𝑥 − 𝑦) 𝑑𝑠 (𝑦) =
2

3]
𝐼, ∀𝑥 ∈ 𝜕O. (23)

Hence, the density 𝜂 is given explicitly 𝜂(𝑦) = −(3]/2)𝑢
0
(𝑧),

∀𝑦 ∈ 𝜕O.

Corollary 2. Let 𝑧 ∈ Ω andO = 𝐵(0, 1). Under the hypotheses
of Theorem 1, one has

𝐽
𝜀
(𝑢
𝜀
) = 𝐽
0
(𝑢
0
) + 𝜀 [6𝜋]𝑢

0
(𝑧) ⋅ V

0
(𝑧) + 𝛿𝐽 (𝑧)] + 𝑜 (𝜀) .

(24)

The expression of the term 𝛿𝐽 depends on the considered
cost function 𝐽

𝜀
. In the following proposition, we consider the

seminorm and we calculate its variation 𝛿𝐽.

Proposition 3 (see [10]). Let 𝑤
𝑑
∈ 𝐻2(Ω) be a given wanted

velocity field.
The cost function 𝐽

𝜀
(𝑢) = ]∫

Ω\O
𝑧,𝜀

|∇𝑢 − ∇𝑤
𝑑
|
2

𝑑𝑥 satisfies
the assumptions of 1 with

𝐷𝐽
0
(𝑤) = 2 ∫

Ω

∇ (𝑢
0
− 𝑤
𝑑
) ∇𝑤𝑑𝑥 and 𝛿𝐽 (𝑧)

= (−∫
𝜕O

𝜂 (𝑦) 𝑑𝑠 (𝑦)) ⋅ V
0
(𝑧) .

(25)

If O is the unit ball 𝐵(0, 1), we have 𝛿𝐽(𝑧) = 6𝜋]|𝑢
0
(𝑧)|
2, for

all 𝑧 ∈ Ω.

3.3. Topological Sensitivity Analysis for the Discretized Navier-
Stokes Equations. Consider a shape function 𝑗 of the form

𝑗 (Ω \ O
𝑧,𝜀
) = J

𝜀
(𝑢
𝜀
) , (26)

with J
𝜀
(𝑢
𝜀
) = ∫

𝑇

0
𝐽
𝜀
(𝑢
𝜀
) 𝑑𝑡 for all 𝜀 ≥ 0, where 𝑢

𝜀
∈

𝐿2(0, 𝑇;𝐻1(Ω
𝑧,𝜀
)
3

) is the solution to (9) and the functional
𝐽
𝜀
: 𝐻1(Ω

𝑧,𝜀
)
3

→ R satisfies the following assumptions.

Hypothesis 2.

(i) 𝐽
0

is differentiable with respect to 𝑢, with
𝐷𝐽
0
(𝑢
0
(⋅, 𝑡)) ∈ 𝐻−1(Ω)

3 for almost all 𝑡 ∈ (0, 𝑇).
(ii) For all 𝜀 ≥ 0, 𝐽

𝜀
(𝑢) ∈ 𝐿1(0, 𝑇), for all 𝑢 ∈ 𝐻1(Ω

𝑧,𝜀
)
3.

(iii) There exist a real number 𝛿𝐽, independent of 𝜀, such
that for all 𝜀 ≥ 0

J
𝜀
(𝑢
𝜀
) −J
0
(𝑢
0
)

= ∫
𝑇

0

⟨𝐷𝐽
0
(𝑢
0
) , 𝑢
𝜀
− 𝑢
0
⟩
𝐻
−1
(Ω)×𝐻

1

0
(Ω)
𝑑𝑡 + 𝜀𝛿𝐽 + 𝑜 (𝜀) .

(27)

In this section we consider the nonstationary Navier-
Stokes equations and we compute the variation of the cost
function 𝑗 with respect to the insertion of a small obstacle in
the fluid flow domain. The basic idea is to use the discretized
formulation (16) and apply the established results for the
generalized Stokes system. We have

𝑗 (Ω \ O
𝑧,𝜀
) − 𝑗 (Ω) = ∫

𝑇

0

𝐽
𝜀
(𝑢
𝜀
) 𝑑𝑡 − ∫

𝑇

0

𝐽
0
(𝑢
0
) 𝑑𝑡

=
𝑁𝑇

∑
𝑛=1

∫
𝑡
𝑛

𝑡
𝑛−1

(𝐽
𝜀
(𝑢
𝜀
) − 𝐽
0
(𝑢
0
)) 𝑑𝑡,

(28)

where 𝑁𝑇 ∈ N∗ and 𝑡𝑛 = 𝑛Δ𝑡, with Δ𝑡 = 𝑇/𝑁𝑇 being the
time step. From the discrete formulation of the Navier-Stokes
equations (16), we obtain the following approximation:

𝑗 (Ω \ O
𝑧,𝜀
) − 𝑗 (Ω) = Δ𝑡

𝑁𝑇

∑
𝑛=1

[𝐽
𝜀
(𝑢
𝑛

𝜀
) − 𝐽
0
(𝑢
𝑛

0
)] . (29)

Using the sensitivity analysis for the generalized Stokes
equations, presented in the last section, we deduce

𝐽
𝜀
(𝑢
𝑛

𝜀
) − 𝐽
0
(𝑢
𝑛

0
) = 𝑓 (𝜀) Δ𝑡𝛿𝑗

𝑛

(𝑧) + 𝑜 (𝑓 (𝜀)) , (30)

with

𝛿𝑗
𝑛

(𝑧) = (−∫
𝜕O

𝜂
𝑛

(𝑦) 𝑑𝑠 (𝑦)) ⋅ V𝑛
0
(𝑧) + 𝛿𝐽

𝑛

(𝑧) ∀𝑧 ∈ Ω,

(31)

where 𝑢𝑛
0
is the solution to the discretized Navier-Stokes

equations at time 𝑡𝑛 = 𝑛Δ𝑡

𝑐 𝑢
𝑛

0
− ]Δ𝑢𝑛

0
+ ∇𝑝
𝑛

0
= 𝐹
𝑛 in Ω,

∇ ⋅ 𝑢
𝑛

0
= 0 in Ω,

𝑢
𝑛

0
= 𝑢
𝑑

on Γ
𝑑
,

𝜎 (𝑢
0
, 𝑝
0
) ⋅ 𝑛 = 𝑔 on Γ

𝑛
.

(32)
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The field V𝑛
0
is the solution to the associated adjoint problem.

It is computed in reverse time from the final flow solution

𝑐V𝑛
0
− ]ΔV𝑛

0
+ ∇𝑞
𝑛

0
= − 𝐷𝐽

0
(𝑢
𝑁𝑇−𝑛

0
) in Ω,

∇ ⋅ V𝑛
0
= 0 in Ω,

V𝑛
0
= 0 on Γ

𝑑
,

𝜎 (V
0
, 𝑞
0
) ⋅ 𝑛 = 0 on Γ

𝑛
,

(33)

where𝑢𝑁𝑇−𝑛
0

is the approximation of the velocity field𝑢
0
(⋅, 𝑇−

𝑡) at time 𝑇 − 𝑡𝑛.
The function 𝜂𝑛 ∈ 𝐻−1/2(𝜕O)𝑑 is solution to the boundary

integral equation

∫
𝜕O

𝐸 (𝑥 − 𝑦) 𝜂
𝑛

(𝑦) 𝑑𝑠 (𝑦) = −𝑢
𝑛

0
(𝑧) , ∀𝑥 ∈ 𝜕O. (34)

Then, we derive the following results for the Navier-Stokes
equation.

Theorem 4. If 𝐽
𝜀
satisfies the assumptions of Hypothsis 2, the

function 𝑗 admits the following asymptotic expansion:

𝑗 (Ω \ O
𝑧,𝜀
) − 𝑗 (Ω) = 𝑓 (𝜀) Δ𝑡𝑔 (𝑧) + 𝑜 (𝑓 (𝜀)) , (35)

where 𝑔 is the topological gradient given by

𝑔 (𝑧) =
𝑁𝑇

∑
𝑛=1

𝛿𝑗
𝑛

(𝑧) , ∀𝑧 ∈ Ω. (36)

IfO is the unit ball 𝐵(0, 1), we have 𝛿𝑗𝑛(𝑧) = 6𝜋]𝑢𝑛
0
(𝑧) ⋅V𝑛
0
(𝑧)+

𝛿𝐽𝑛(𝑧).
Then, we deduce the following corollary.

Corollary 5. Let 𝑧 ∈ Ω andO = 𝐵(0, 1). Under the hypotheses
of Theorem 4, one has

𝑗 (Ω \ O
𝑧,𝜀
) − 𝑗 (Ω)

= 𝜀Δ𝑡
𝑁𝑇

∑
𝑛=1

[6𝜋]𝑢𝑛
0
(𝑧) ⋅ V𝑛

0
(𝑧) + 𝛿𝐽

𝑛

(𝑧)] + 𝑜 (𝜀) .
(37)

4. Algorithm and Numerical Results

This section is devoted to some numerical investigations
for our shape optimization problem (𝑂) (see Section 2).
The optimization algorithm is based on the topological
sensitivity analysis obtained in Section 3. From Corollary 5
and Proposition 3, we deduce that the function 𝑗(𝐷) =

∫
𝑇

0
∫
Ω
|∇𝑢|
2

𝑑𝑥 𝑑𝑡 admits the following asymptotic expansion:

𝑗 (𝐷 \ O
𝑧,𝜀
) − 𝑗 (𝐷) = 𝜀Δ𝑡𝑔 (𝑧) + 𝑜 (𝜀) , (38)

where the topological gradient 𝑔 is given by

𝑔 (𝑧) = 6𝜋]
𝑁𝑇

∑
𝑛=1

(𝑢
𝑛

0
(𝑧) ⋅ V𝑛

0
(𝑧) +

𝑢
𝑛

0
(𝑧)


2

) , ∀𝑧 ∈ Ω. (39)

The expression of 𝑔 is deduced from Corollary 5 and
Proposition 3.

4.1.TheTopologicalOptimizationAlgorithm. As alreadymen-
tioned, the optimal domain is obtained using an iterative
process building a sequence of geometries (Ω

𝑘
)
𝑘≥0

withΩ
0
=

Ω. At the 𝑘th, iteration the topological gradient is denoted
by 𝑔
𝑘
and the new geometryΩ

𝑘+1
is obtained by inserting an

obstacle O
𝑘
in the domain Ω

𝑘
; Ω
𝑘+1

= Ω
𝑘
\ O
𝑘
. The obstacle

O
𝑘
is defined by a level set curve of the topological gradient

𝑔
𝑘
.

The Algorithm. Topology optimization with volume con-
straint.

(i) Initialization: chooseΩ
0
= Ω, and set 𝑘 = 0.

(ii) Repeat until |Ω
𝑘
| ≤ 𝑉desired:

(a) compute 𝑢
𝑘
= (𝑢𝑛
𝑘
)
1≤𝑛≤𝑁𝑇

the solution to the
Navier-Stokes equations (32) inΩ

𝑘
,

(b) compute V
𝑘
= (V𝑛
𝑘
)
1≤𝑛≤𝑁𝑇

the solution to the
associated adjoint problem (33) in Ω

𝑘
,

(c) compute the topological gradient 𝑔
𝑘
(𝑧), ∀𝑧 ∈

Ω
𝑘
,

(d) determine the obstacle O
𝑘
= {𝑥 ∈ Ω

𝑘
, such

that 𝑔
𝑘
(𝑥) ≤ 𝑐

𝑘
< 0},

(e) get the new domainΩ
𝑘+1

= Ω
𝑘
\ O
𝑘

(f) 𝑘 ← 𝑘 + 1.

The function 𝑔
𝑘
is computed piecewise constant over ele-

ments.The constant 𝑐
𝑘
determines the volume of the obstacle

O
𝑘
to be inserted. In practice, 𝑐

𝑘
is chosen in such a way

that the obstacle volume |O
𝑘
| is less or equal to 10% of the

current domain volume |Ω
𝑘
|; that is, |O

𝑘
|/|Ω
𝑘
| ≤ 0.1. More

precisely,O
𝑘
is inserted in the zoneΩ−

𝑘
= {𝑥 ∈ Ω

𝑘
, 𝑔
𝑘
(𝑥) < 0}

where 𝑔
𝑘
is negative. The parameter 𝑐

𝑘
is chosen such that

|O
𝑘
| = min{|Ω−

𝑘
|, 0.1|Ω

𝑘
|}. The condition O

𝑘
⊂ Ω−
𝑘
ensured

the decrease of the design function 𝑗(Ω
𝑘+1

) < 𝑗(Ω
𝑘
).

4.1.1. A Cavity with One Inlet and Two Outlets. We consider a
cavity with one inlet and two outlets having the same section
(see Figure 2(a)) where Γin is a disc of center 𝑧in = (0, 0.5, 0.5)
and radius 𝑟in = 0.1, Γ

1

out is a disc of center 𝑧
1

out = (0.75, 0.5, 0)

and radius 𝑟out = 0.05, and Γ2out is a disc of center 𝑧2out =
(0.75, 0.5, 1) and radius 𝑟out = 0.05.The results of this case are
given in Figures 3 and 4.Theoptimal geometry is presented in
Figure 3(a). It is obtained for𝑉desired = 0.15|Ω|. A vertical cut
of the obtained velocity is shown in Figure 3(b).The variation
ofJ is illustrated in Figure 3(c). We present in Figure 4 some
geometries obtained during the optimization process.

4.1.2. A Cavity with One Inlet and Three Outlets. In this case,
we use a cavity with one inlet Γin and three outlets Γ1out, Γ

2

out,
and Γ3out (see Figure 5(a)).The inlet and the outlets are defined
as

(i) Γin is a disc of center (0,0.5,0.2) and diameter equal to
0.2;

(ii) Γ1out is a disc of center (1,0.5,0.4) and diameter equal to
0.066;
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Γ
2

out

Γ
1

out

Γin

(a) The initial domain (b) The initial velocity field

Figure 2: The initial domain and Figureelocity field.

(a) The optimal design (b) The obtained velocity field
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(c) Variation of the functionJ

Figure 3: First case: cavity with one inlet and two outlets.
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(a) Iteration 2 (b) Iteration 3 (c) Iteration 6

(d) Iteration 8 (e) Iteration 13 (f) Iteration 19

Figure 4: The obtained geometries during the optimization process.

Γ
2

out

Γ
3

out

Γ
1

out

Γin

Γ1

Γ1

Γ2

Γ2

(a) The initial domain (b) The initial velocity field

Figure 5: The initial domain and velocity field.

(iii) Γ2out is a disc of center (1,0.5,0.6) and diameter equal to
0.066;

(iv) Γ3out is a disc of center (1,0.5,0.8) and diameter equal to
0.066.

The initial domain and the initial velocity field are given in
Figure 5. The results of this example are illustrated in Figures
6 and 7.Theoptimal domain is computed for𝑉desired = 0.2|Ω|.
It is presented in Figure 6(a). A vertical cut (at 𝑦 = 0.5)

of the velocity is shown in Figure 6(b). Figure 7 shows some
geometries obtained during the optimization process.

5. Conclusion

In this work, we have extended the topological gradient
method for the nonstationary case. The discrete adjoint
approach is introduced to overcome the difficulty coming
from the nonlinearity of the operator. The proposed algo-
rithm is applied to determine the optimal shape of tubes in a
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(a) The optimal shape design (b) The obtained velocity field

Figure 6: Second case: a cavity with one inlet and three outlets.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 5

(d) Iteration 8 (e) Iteration 11 (f) Iteration 17

Figure 7: The obtained geometries during the optimization process.

cavity.The optimal domain is obtained iteratively by inserting
some obstacles in the initial one. The location and size of the
obstacles are described by the topological gradient.

The proposed approach has two main features. The
first one concerns the adaptation for other nonstationary
problems. The derived analysis is general and can be adapted
for various operators like elasticity, Helmholtz, Maxwell, and
so forth

The second interesting feature concerns the efficiency and
the simplicity of the numerical algorithm. It is easy to be

implemented and can be used for many applications. Only
a few iterations are needed to construct the final domain. At
each iteration, we only need to solve the direct and the adjoint
problems on a fixed grid.
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