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We propose a new definition of fractional derivatives based on truncated left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1
and median correction. Analyzing the difficulties to choose the fractional orders and unsatisfied processing results in signal
processing using fractional-order partial differential equations and related methods; we think that the nonzero values of the
truncated fractional order derivatives in the smooth regions are major causes for these situations. In order to resolve the problem,
the absolute values of truncated parts of the G-L formula are estimated by the median of signal values of the remainder parts, and
then the truncated G-L formula is modified by replacing each of the original signal value to the differences of the signal value and
the median. Since the sum of the coefficients of the G-L formula is zero, the median correction can reduce the truncated errors
greatly to proximate G-L formula better. We also present some simulation results and experiments to support our theory analysis.

1. Introduction

Partial differential equations (PDEs) and related methods are
very important tools for signal processing [1–13]. Especially,
in recent years progress was achieved in the theory of
fractional calculus as a useful tool to handle applications in
the area of physics, chemistry, and engineering sciences [6–
20].

However, unlike integer-order derivatives with zeros or
small values in the smooth regions and with big values near
singularities, the values of truncated fractional derivatives are
with very large absolute values. The direct result is that the
derivative values cannot be used to measure the degrees of
singularities. That is, small derivative values perhaps relate to
singularity regions and big derivative values perhaps relate to
smooth regions.Therefore, some integer-order PDEmethods
cannot be modified to their fractional-order counterparts
directly. Hu noticed the problem in 2013 and proposed a new
fractional-order PDE with different orders of different parts
for fractional-order PM method [13]. However, he did not
give the analysis in theory.

In this paper, we study behaviors of fractional-order
derivatives of truncated left-handed Grünwald-Letnikov for-
mula with 0 < 𝛼 < 1. Based on the analysis, a new
fractional derivative formula is proposed based on truncated
left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 and
median correction. The median correction is used to reduce
the truncated errors of G-L formula.

The rest of this paper is as follows. Section 2 introduces
some basic theory backgrounds in fractional derivatives;
we also deduce some useful results based on these theory
backgrounds. In Section 3 we introduce the truncated G-L
formula and its numerical approximation. Section 4 presents
the new fractional derivative formula and gives properties
and numerical methods for the new fractional definition.The
simulation results and experiments are presented in Section 5.
We also give conclusions and acknowledgments finally.

2. Fractional Derivatives

In this section, we will introduce some preparations for the
new method, that is, Grünwald-Letnikov formula and its
matrix approximation.
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2.1. Grünwald-Letnikov Formula. Fractional-order deriva-
tives are defined as operators whose orders have been
extended to noninteger numbers. There are a number of
definitions of fractional derivatives. One usual way of repre-
senting the discrete fractional derivatives is by the Grünwald-
Letnikov (G-L) formula [21, 22], which is

𝐷
𝛼

GL𝑢 (𝑥) = lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥) , (1)

where 𝑥 ∈ [𝑎, 𝑏], Δ𝑥 denotes the uniform space step, and
𝜔
(𝛼)

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) represents the normalized G-L weights

which are given by

𝜔
(𝛼)

0
= 1,

𝜔
(𝛼)

𝑘
= (−1)

𝑘
𝛼 (𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑘 + 1)

𝑘!
=
Γ (𝑘 − 𝛼)

Γ (−𝛼) Γ (𝑘 + 1)
,

for 𝑘 = 1, 2, 3, . . .
(2)

For 𝛼 = 1, (1) becomes the classical 1st derivative, and for
any 𝛼 = 𝑛, 𝑛 ∈ ℵ is a positive integer; they are classical 𝑛th
derivatives of 𝑢(𝑥). Note that for when 𝛼 is a positive integer,
equations are with limit support whose support lengths are
𝛼 + 1. However, for when 𝛼 is not an integer, fractional
derivatives are nonlocal operators. That is, the value of the
fractional derivative at a point 𝑥 depends on the function
values at all the points to the left of the point 𝑥.

Therefore, in order to handle fractional derivative numer-
ically, it is necessary to compute the coefficients 𝜔(𝛼)

𝑘
, where

𝛼 is the order of the fractional derivative. For that we can use
the recurrence relationships:

𝜔
0
(𝛼) = 1;

𝜔
(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
, 𝑘 = 1, 2, 3, . . . .

(3)

Some useful properties for left-handed G-L formula are
presented as follows.

Lemma 1. The nonlocal operator defined in (1) is a linear
operator.

Proof. 𝑢(𝑥) and V(𝑥) are two functions, and 𝑥 ∈ [𝑎, 𝑏]; 𝜆 is a
real number. We have

(1) 𝐷
𝛼

GL [𝑢 (𝑥) + V (𝑥)]

= lim
Δ𝑥→0

1

Δ𝑥𝛼

×

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
[𝑢 (𝑥 − 𝑘Δ𝑥) + V (𝑥 − 𝑘Δ𝑥)]

= lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥)

+ lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
V (𝑥 − 𝑘Δ𝑥)

= 𝐷
𝛼

GL𝑢 (𝑥) + 𝐷
𝛼

GLV (𝑥)

(2) 𝐷
𝛼

GL [𝜆𝑢 (𝑥)] = lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
[𝜆𝑢 (𝑥)]

= 𝜆 lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥)

= 𝜆𝐷
𝛼

GL𝑢 (𝑥) .

(4)

Lemma 2. ∑∞
𝑘=0
𝜔
(𝛼)

𝑘
= 0.

Proof. Since (1 − 𝑧)𝛼 = ∑∞
𝑘=0
𝜔
(𝛼)

𝑘
𝑧
𝑘, let 𝑘 = 1; we have

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
= (1 − 1)

𝛼

= 0. (5)

Lemma 3. For 0 < 𝛼 < 1,𝑚 is a positive integer; one has

𝜔
(𝛼)

𝑘
< 0, 𝑘 = 1, 2, 3, . . . ,

∞

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
< 0.

(6)

Proof. For 𝑘 = 1, 𝜔(𝛼)
1
= −𝛼 < 0.

Assume that 𝜔(𝛼)
𝑘
< 0.

According to (3), we have 𝜔(𝛼)
𝑘+1
= (1− (𝛼+1)/(𝑘+1))𝜔

(𝛼)

𝑘
.

Since 0 < 𝛼 < 1 and 𝑘 + 1 ≥ 2, (1 − (𝛼 + 1)/(𝑘 + 1)) > 0. Thus,
sgn(𝜔(𝛼)

𝑘+1
) = sgn(𝜔(𝛼)

𝑘
) < 0. Here

sgn (𝑥) = {
1, 𝑥 ≥ 0,

−1, 𝑥 < 0.
(7)

Then, we have 𝜔(𝛼)
𝑘+1
< 0. Thus, ∑∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
< 0.
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Lemma 4. For 0 < 𝛼 < 1,𝑚 ≥ 0 is an integer. One has
∞

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0. (8)

Proof. FromLemma3, for 0 < 𝛼 < 1, 𝜔(𝛼)
𝑘
< 0, 𝑘 = 1, 2, 3, . . ..

Thus, 𝜔(𝛼)
𝑘
(−𝑘) > 0 for 𝑘 = 1, 2, 3, . . .. We have

∑
∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0,𝑚 ≥ 1.

Since 𝜔(𝛼)
0
(−0) = 0, we have ∑∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 0.

2.2. Numerical Method of G-L Formula. For G-L formula
in (1) in signal processing, the uniform space step is set to
Δ𝑥 = 1 for easy description; 𝑥 is the variant whose support is
[𝑎, 𝑏]. That is, the signal 𝑢(𝑥) is compact support. Therefore,
equations can be specified as

𝐷
𝛼

GL =
[𝑥−𝑎]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) . (9)

The coefficients can also be obtained recursively from (3).
We can discretize (1) into a finite difference on a grid on the 𝑥
axis, where the 0th lattice is 𝑎; 𝑗th lattice is 𝑥

𝑗
, 𝑗 = 1, 2, . . . , 𝑛−

1; and the 𝑛th lattice is 𝑏. That is, 𝑛 is the length of the signal.
Therefore, using thematrix approximatemethod, we have

𝐷
𝛼

GLS = 𝑀
(𝛼)S, (10)

where TGL represents truncated G-L formula, S = [𝑠(𝑥
0
),

𝑠(𝑥
1
), . . . , 𝑠(𝑥

𝑛
)]
𝑇, 𝑇 represents the transposed vector, and

𝑀
(𝛼) is an 𝑛 × 𝑛 lower triangular strip matrix defined as

𝑀
(𝛼)

=(

𝜔
(𝛼)

0
0 . . . 0

𝜔
(𝛼)

1
𝜔
(𝛼)

0
. . .

...
...

... d 0

𝜔
(𝛼)

𝑛
𝜔
(𝛼)

𝑛−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0

). (11)

3. Truncated Grünwald-Letnikov Formula

Fractional integration and fractional differentiation are gen-
eralizations of notions of integer-order integration and dif-
ferentiation and include 𝑛th derivatives (𝑛 denotes an integer
number) as particular cases. One usual way of represent-
ing the discrete fractional derivatives is by the Grünwald-
Letnikov (G-L) formula introduced in Section 2 (see (1)).

However, for digital signals, we have to discuss truncated
G-L formula rather than the G-L formula itself because of
the limited supports of digital signals. In this section, the
definition of truncated G-L formula and its properties are
discussed firstly and then we will give its numerical scheme.

3.1. Truncated Grünwald-Letnikov Formula. The truncated
G-L formula is

𝐷
𝛼

TGL𝑠 (𝑥) =
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) , (12)

where 𝑥 ∈ [𝑎, 𝑏], the uniform space step is set to 1, 𝑡 is
the length of the support, 𝜔(𝛼)

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) represents the

normalized G-L weights, and their recurrence relationship is
given by (3).

Just as above sections, we will discuss some properties of
truncated G-L formula.
Lemma 2. For 0 < 𝛼 < 1, 𝑡 ≥ 0 is an integer. One has

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
> 0. (13)

Proof. According to Lemma 2, we have

0 =

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
. (14)

According to Lemma 3, ∑∞
𝑘=𝑡+1
𝜔
(𝛼)

𝑘
< 0. Therefore,

∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0.

Lemma 3. For 0 < 𝛼 < 1, 𝑚 is a positive integer, 𝑡 ≥ 𝑚. One
has

𝑡

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
< 0. (15)

Proof. For 𝑘 = 1, 𝜔(𝛼)
1
= −𝛼 < 0.

Assume that 𝜔(𝛼)
𝑘
< 0.

According to Lemma 1, we have 𝜔(𝛼)
𝑘+1
= (1 − (𝛼 + 1)/(𝑘 +

1))𝜔
(𝛼)

𝑘
. Since 0 < 𝛼 < 1 and 𝑘+1 ≥ 2, (1−(𝛼+1)/(𝑘+1)) > 0.

Thus, sgn(𝜔(𝛼)
𝑘+1
) = sgn(𝜔(𝛼)

𝑘
) < 0. Here

sgn (𝑥) = {
1, 𝑥 ≥ 0,

−1, 𝑥 < 0.
(16)

Then, we have 𝜔(𝛼)
𝑘+1
< 0. Thus, ∑𝑡

𝑘=𝑚
𝜔
(𝛼)

𝑘
< 0.

Lemma 4. For 0 < 𝛼 < 1, 𝑚 ≥ 0 is an integer and 𝑡 is a
positive integer. One has

𝑡

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0. (17)

Proof. From Lemma 3, for 0 < 𝛼 < 1, 𝜔(𝛼)
𝑘
< 0, 𝑘 =

1, 2, 3, . . ..
Thus, 𝜔(𝛼)

𝑘
(−𝑘) > 0 for 𝑘 = 1, 2, 3, . . . , 𝑡. We have

∑
𝑡

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 0, 𝑡 ≥ 1.

3.2. Numerical Method of Truncated G-L Formula. We can
discretize (12) into a finite difference on a grid on the 𝑥 axis,
where the 0th lattice is 𝑎; 𝑗th lattice is 𝑥

𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1;

and the 𝑛th lattice is 𝑏. That is, 𝑛 is length of signals.
Therefore, using thematrix approximatemethod, we have

𝐷
𝛼

GLS ≈ 𝐷
𝛼

TGLS = 𝑀
(𝛼)

𝑇
S, (18)
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where S = [𝑠(𝑥
0
), 𝑠(𝑥
1
), . . . , 𝑠(𝑥

𝑛
)]
𝑇, 𝑇 represents the trans-

posed vector, and𝑀(𝛼)
𝑇

is an 𝑛 × 𝑛matrix defined as

𝑀
(𝛼)

𝑇
=

(
(
(
(
(
(
(
(
(
(
(

(

𝜔
(𝛼)

0
0 . . . 0 0 ⋅ ⋅ ⋅ 0

𝜔
(𝛼)

1
𝜔
(𝛼)

0
. . .

... 0 ⋅ ⋅ ⋅ 0

...
... d 0

...
...

𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
0 ⋅ ⋅ ⋅ 0

0 𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
⋅ ⋅ ⋅ 0

...
... d d d

...

0 ⋅ ⋅ ⋅ 0 𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0

)
)
)
)
)
)
)
)
)
)
)

)

. (19)

Notice that 𝑛 is the length of the signal and 𝑡 is the length
of the support. That is, 𝑛 ≥ 𝑡. Since𝑀(𝛼)

𝑇
is sparser than𝑀(𝛼)

for 𝑛 > 𝑡, the computation cost of the truncated G-L formula
is lower than that of the G-L formula.

4. New Truncated Grünwald-Letnikov Formula

Although Lemma 2 tells us the values of fractional derivatives
for a constant function 𝑠(𝑥) = 1 defined byG-L formula equal
to zeros, for truncated G-L formula, Lemma 2 shows that it
is not true.

The main awkwardness for this situation comparing with
integer-order derivatives is that the fractional derivatives
cannot be used to measure the strength of singularities.
Therefore, estimation methods based on the strength of
singularities measured by the modula of 1-order deriva-
tives cannot be generalized to their fractional counterparts
directly. These estimation methods include many popular
and state-of-art frameworks, such as anisotropic diffusion,
nonlocal means, and bilateral filtering.

Therefore, in order to generalize fractional derivatives
to these frameworks, the truncated G-L formula should be
modified as follows: for 𝑠(𝑥) = 𝑐, 𝑐 ̸= 0,𝐷𝛼𝑠(𝑥) = 0.

We start from the requirement to obtain the definition
and properties of the new truncated G-L formula, and
then the numerical method of the new model by matrix is
presented.

4.1. Motivations and Definitions. The discussion is from the
error of truncated G-L formula.

Definition 5. The error of the truncated G-L formula is

ErrTGL (𝑠 (𝑥)) =
∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) −

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘)

=

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) ,

(20)

where TGL represents truncatedG-L formula, 𝑡 is the support
length, and 𝑠(⋅) is the signal, 0 < 𝛼 < 1.

Especially, for 𝑠(𝑥) = 1, we have

ErrTGL (𝑠 (𝑥)) =
∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
, (21)

that is, the sum of all terms after 𝑡. From Lemma 2, we have
∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0, for 𝑡 ≥ 0, 0 < 𝛼 < 1 and from Lemma 3, we

have 𝜔(𝛼)
𝑘
< 0, for 𝑘 = 1, 2, . . . , 0 < 𝛼 < 1, which implies that

the error will become smaller as 𝑡 becomes bigger.

Moreover, from Lemma 2, we have ∑∞
𝑘=0
𝜔
(𝛼)

𝑘
= 0; thus,

the truncated error can be changed as follows.

Proposition 6. The truncated error of 𝑠(𝑥) = 1 is

ErrTGL (𝑠 (𝑥)) = −
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (22)

Proof. From Lemma 2 and the above equation,

0 =

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘

=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+ ErrTGL (𝑠 (𝑥)) .

(23)

Thus,

ErrTGL (𝑠 (𝑥)) = −
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (24)

For 𝑠(𝑥) = 𝑐, 𝑐 is a constant real number; we can get similar
results.

Proposition 7. The truncated error of 𝑠(𝑥) = 𝑐 ̸= 0 is

ErrTGL (𝑠 (𝑥)) = −𝑐
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (25)

Similarly, for 𝑠(𝑥) ̸= constant, values from 𝑡 + 1 to∞ are
not known and we only know the samples from 0 to 𝑡. Thus,
we should estimate errors defined in (20) by the values from
0 to 𝑡. For 𝑠(𝑥) = constant, estimate errors defined in (20)
by the values from 0 to 𝑡 have been accomplished through
Proposition 7, which reminds us that the problem can be
solved by assuming 𝑠(𝑥) a constant. Thus, times the constant
and the sum of𝜔(𝛼)

𝑘
, 𝑘 = 0, 1, . . . , 𝑘 can approximate the error

well.This constant also should be estimated from values from
0 to 𝑡.

One alternative scheme is that the median of values from
0 to 𝑡 is used as the estimate value for the constant since
median is an estimate with good performance in flexibility
and reliability.

Definition 8. The new truncated G-L formula is

𝐷
𝛼

NTGL𝑠 (𝑥) =
𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑠 (𝑥 − 𝑘) −median (S)

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
, (26)
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where NTGL represents the new truncated G-L formula,
median(S) is the median of the vector S = [𝑠(𝑥), 𝑠(𝑥 −
1), . . . , 𝑠(𝑥 − 𝑡)]

𝑇, the uniform space step is set to 1, 𝑡 is the
length of the support, and 𝜔(𝛼)

𝑘
= (−1)

𝑘

(
𝛼

𝑘
) represents the

normalized G-L weights.

4.2. Numerical Method of New Truncated G-L Formula. We
can discretize (26) into a finite difference on a grid on the 𝑥
axis, where the 0th lattice is 𝑎; 𝑗th lattice is 𝑥

𝑗
, 𝑗 = 1, 2, . . . , 𝑛−

1; and the 𝑛th lattice is 𝑏. That is, 𝑛 is length of signals.
Therefore, using thematrix approximatemethod, we have

𝐷
𝛼

GLS ≈ 𝐷
𝛼

NTGLSc = 𝑀𝑇Sc, (27)

where NTGL represents new truncated G-L formula, S =
[𝑠(𝑥
0
), 𝑠(𝑥
1
), . . . , 𝑠(𝑥

𝑛
)]
𝑇, and 𝑇 represents the transposed

vector. Sc = [𝑠(𝑥0)−median(S), 𝑠(𝑥
1
)−median(S), . . . , 𝑠(𝑥

𝑛
)−

median(S)]𝑇 is the corrected vector of S by the median of S,
and𝑀

𝑇
is an 𝑛 × 𝑛matrix defined as

𝑀
𝑇
=

(
(
(
(
(
(
(
(
(

(

𝜔
(𝛼)

0
0 . . . 0 0 ⋅ ⋅ ⋅ 0

𝜔
(𝛼)

1
𝜔
(𝛼)

0
. . .

... 0 ⋅ ⋅ ⋅ 0

...
... d 0

...
...

𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
0 ⋅ ⋅ ⋅ 0

0 𝜔
(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0
⋅ ⋅ ⋅ 0

...
... d d d

...
0 ⋅ ⋅ ⋅ 0 𝜔

(𝛼)

𝑡
𝜔
(𝛼)

𝑡−1
⋅ ⋅ ⋅ 𝜔

(𝛼)

0

)
)
)
)
)
)
)
)
)

)

(28)

Notice that 𝑛 is the length of the signal and 𝑡 is the length
of the support. That is, 𝑛 ≥ 𝑡. Since𝑀

𝑇
is sparser than𝑀 for

𝑛 > 𝑡, the computation cost of the truncated G-L formula is
lower than the G-L formula’s.

4.3. Properties of the New Truncated G-L Formula. In this
subsection, wewill give some important properties of the new
truncated G-L formula.

Theorem 9. The nonlocal operator defined in (27) is a linear
operator.

Proof. 𝑢(𝑥) and V(𝑥) are two functions, and 𝑥 ∈ [𝑎, 𝑏]; 𝜆 is a
real number. We have

(1) 𝐷
𝛼

NTGL [𝑢 (𝑥) + V (𝑥)] = 𝐷
𝛼

NTGL [U + V]
= 𝑀
𝑇
[Uc + Vc]

= 𝑀
𝑇
Uc +𝑀𝑇Vc

= 𝐷
𝛼

NTGL𝑢 (𝑥) + 𝐷
𝛼

NTGLV (𝑥) ,

(2) 𝐷
𝛼

NTGL [𝜆𝑢 (𝑥)] = 𝐷
𝛼

NTGL [𝜆U]
= 𝜆𝑀

𝑇
Uc

= 𝜆𝐷
𝛼

NTGL𝑢 (𝑥) .

(29)

Here, Uc,Vc are corrected vectors of U, V, which are
defined as the corrected vector in (27).

Theorem 10. 𝑀(𝛼)
𝑇

and𝑀(𝛽)
𝑇

are two matrixes defined in (27),
that is, the approximation matrixes of truncated G-L formula
with fractional orders 𝛼 and 𝛽, respectively. Thus,

𝑀
(𝛼)

𝑇
𝑀
(𝛽)

𝑇

= 𝑀
(𝛽)

𝑇
𝑀
(𝛼)

𝑇

(
(
(
(
(
(

(

𝛾
0
0 . . . 0 0 ⋅ ⋅ ⋅ 0

𝛾
1
𝛾
0
. . .

... 0 ⋅ ⋅ ⋅ 0
...

... d 0
...

...
𝛾
𝑡
𝛾
𝑡−1
⋅ ⋅ ⋅ 𝛾

0
0 ⋅ ⋅ ⋅ 0

0 𝛾
𝑡
𝛾
𝑡−1
⋅ ⋅ ⋅ 𝛾

0
⋅ ⋅ ⋅ 0

...
... d d d

...
0 ⋅ ⋅ ⋅ 0 𝛾

𝑡
𝛾
𝑡−1
⋅ ⋅ ⋅ 𝛾
0

)
)
)
)
)
)

)

,

(30)

where 𝛾
𝑖
= ∑
𝑖

𝑘=0
𝜔
(𝛼)

𝑘
𝜔
(𝛽)

𝑖−𝑘
, 𝑖 = 0, 1, . . . , 𝑡.

Lemma 12 can be proved easily by times two matrixes.
That is, two operators of the truncated G-L formula with
different fractional orders are commutative.

We guess the following equations in Guess 1 are correct.
However, we cannot prove it.
Guess 1.We have

𝐷
𝛼

NTGL𝐷
𝛽

NTGL𝑠 (𝑥) = 𝐷
𝛽

NTGL𝐷
𝛼

NTGL𝑠 (𝑥) = 𝐷
𝛼+𝛽

NTGL𝑠 (𝑥) .

(31)

5. Numerical Simulations

For the numerical approximation, although longer memory
is more precise computation for the fractional derivatives,
a fixed number for 𝑡 is adopted for reducing computation
complexity, for example, 𝑡 = 100 or 𝑡 = 1000 and so forth. But
these truncated forms will lead to some unsatisfied results.
In this section, we will give error analysis of truncated G-
L formulas firstly and then present experiments using test
signals.
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5.1. Error Analysis of Truncated G-L Formula. The error
analysis of truncated G-L formula is very important in the
applications of fractional derivatives. Some efforts discuss the
problem in theory [23]. In this subsection we will discuss the
truncated errors by considering the signal 𝑠(𝑥) = 1 since
the most serious effect of truncated errors is that the values
of fractional derivatives are not equal to zeros when 𝑠(𝑥) =
constant.

According to Lemma 2, the values of untruncated G-L
formula for 𝑠(𝑥) = 1 are equal to zeros, which are coincident
to the 1-order derivatives. For the truncated G-L formula
when fractional order 𝛼 satisfies 0 < 𝛼 < 1, according to
Lemma 2, the remainder part of 𝑠(𝑥) = 1 is more than
zero. Thus, the truncated part is less than zero. That is, it
is a negative number. The truncated errors of truncated G-
L formula for 𝑠(𝑥) = 1 with different support lengths and
different fractional-orders 𝛼, 0 < 𝛼 < 1, are shown in Table 1,
which demonstrate the above conclusions.

Moreover, we will compare the changes of absolute values
of truncated errors with different 𝛼 and different support
lengths.

Lemma 11. The absolute values of truncated errors | −
∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
|, where 𝑡 is the support length, for 𝑠(𝑥) = 1, become

smaller as the support lengths become larger.

Proof. According to Lemma 3, 𝜔(𝛼)
𝑘
< 0, 0 < 𝛼 < 1, for 𝑘 ≤ 1

is an integer.
According to Lemma 2, ∑𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0, for 𝑡 ≥ 0 is an

integer and 0 < 𝛼 < 1.
Here, 𝑡 can be considered as the support length of the

truncated G-L formula. When 𝑡
1
> 𝑡
2
, where 𝑡

1
and 𝑡
2
are

two support lengths and 𝑡
1
≥ 0 and 𝑡

2
≥ 0, we have

𝑡
1

∑

𝑘=0

𝜔
(𝛼)

𝑘
<

𝑡
2

∑

𝑘=0

𝜔
(𝛼)

𝑘
. (32)

Lemma12. Theabsolute values of truncated errors for 𝑠(𝑥) = 1
become smaller as the fractional orders 0 < 𝛼 < 1 become
larger.

Proof. Since 𝜔(𝛼)
0
= 1 and 𝜔(𝛼)

1
= −𝛼, for 𝛼

1
> 𝛼
2
, 0 < 𝛼

1
< 1,

and 0 < 𝛼
2
< 1, where 𝛼

1
and 𝛼
2
are two fractional orders, we

have

1 − 𝛼
1
> 0, 1 − 𝛼

2
> 0, 1 − 𝛼

1
< 1 − 𝛼

2
. (33)

According to Lemma 2, then 𝜔(𝛼)
𝑘
= (1 − (𝛼 + 1)/𝑘)𝜔

(𝛼)

𝑘−1
.

For 0 < 𝛼 < 1 and 𝑘 ≥ 2, we have 0 < (1 − (𝛼 + 1)/𝑘) < 1.
Thus,

𝜔
(𝛼)

𝑘
< 0,


𝜔
(𝛼)

𝑘


<

𝜔
(𝛼)

𝑘−1


, 𝜔

(𝛼)

𝑘
> 𝜔
(𝛼)

𝑘−1
, (34)

where | ⋅ | represents the absolute value. Thus, for 𝛼
1
> 𝛼
2
,

0 < 𝛼
1
< 1, and 0 < 𝛼

2
< 1, we have

0 < (1 −
𝛼
1
+ 1

𝑘
) < (1 −

𝛼
2
+ 1

𝑘
) < 1. (35)
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Figure 1: Truncated errors of truncated G-L formula with support
lengths 10, 50, 100, and 500 and fractional orders 𝛼 from 0.1 to 0.9.

If 0 > 𝜔(𝛼1)
𝑘
> 𝜔
(𝛼
2
)

𝑘
, for 𝑘 ≥ 1, 𝛼

1
> 𝛼
2
, 0 < 𝛼

1
< 1, and

0 < 𝛼
2
< 1.

Thus, we can assume that 𝛼
1
= 𝛼
2
+ 𝑐
1
, 1 > 𝑐

1
> 0, and

𝜔
(𝛼
1
)

𝑘
= 𝜔
(𝛼
2
)

𝑘
+ 𝑐
2
, 𝑐
2
> 0. We have

𝜔
(𝛼
1
)

𝑘+1
= 𝜔
(𝛼
1
)

𝑘
(1 −
𝛼
1
+ 1

𝑘
)

= (𝜔
(𝛼
2
)

𝑘
+ 𝑐
2
) (1 −
𝛼
2
+ 1 + 𝑐

1

𝑘
)

= 𝜔
(𝛼
2
)

𝑘
(1 −
𝛼
2
+ 1

𝑘
) + 𝜔
(𝛼
2
)

𝑘
(−
𝑐
1

𝑘
)

+ 𝑐
2
(1 −
𝛼
2
+ 1 + 𝑐

1

𝑘
)

= 𝜔
(𝛼
2
)

𝑘+1
+ 𝜔
(𝛼
2
)

𝑘
(−
𝑐
1

𝑘
) + 𝑐
2
(1 −
𝛼
2
+ 1 + 𝑐

1

𝑘
)

(36)

Since 𝜔(𝛼2)
𝑘
(−𝑐
1
/𝑘) > 0 and 𝑐

2
(1− (𝛼

2
+1+ 𝑐

1
)/𝑘) > 0, we have

𝜔
(𝛼
1
)

𝑘+1
> 𝜔
(𝛼
2
)

𝑘+1
. (37)

Thus, ∑𝑡
𝑘=1
𝜔
(𝛼
2
)

𝑘
< ∑

𝑡

𝑘=1
𝜔
(𝛼
1
)

𝑘
< 0 and ∑𝑡

𝑘=0
𝜔
(𝛼
2
)

𝑘
>

∑
𝑡

𝑘=0
𝜔
(𝛼
1
)

𝑘
> 0.

Summary of above two lemmas: we have that the long
support and large fractional orders of truncatedG-L formulas
will have small absolute values of truncated errors. Exper-
iments shown in Table 1 and Figure 1 also support these
theory analysis results. Note that the truncated errors are
negative numbers.Therefore, discussing their absolute values
can show the differences between zeros and errors.

5.2. Experiments. In order to test if the new truncated
method can reduce the truncated errors in real signals, two
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Table 1: Truncated errors of truncated left-handed G-L formula for 𝑠(𝑥) = 1with support lengths from 10 to 500 (rows) and fractional-orders
𝛼 from 0.1 to 0.9 (columns).

Length of
support 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9

10 −0.7475 −0.5487 −0.3939 −0.2752 −0.1855 −0.1190 −0.0710 −0.0372 −0.0145
30 −0.6672 −0.4368 −0.2795 −0.1739 −0.1043 −0.0595 −0.0315 −0.0147 −0.0051
50 −0.6335 −0.3937 −0.2392 −0.1412 −0.0804 −0.0435 −0.0219 −0.0097 −0.0032
100 −0.5908 −0.3432 −0.1939 −0.1067 −0.0566 −0.0286 −0.0134 −0.0055 −0.0017
200 −0.5510 −0.2979 −0.1573 −0.0808 −0.0400 −0.0188 −0.0082 −0.0032 −0.0009
500 −0.5027 −0.2479 −0.1194 −0.0559 −0.0253 −0.0108 −0.0043 −0.0015 −0.0004
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Figure 2:The original signal (blocks with 1024 samples, blue lines), its fractional derivatives of truncated G-L with different fractional orders
((a) and (c)), and its fractional derivatives of the new method with different fractional orders ((b) and (d)), where the support length of (a)
and (b) is 30 and the support length of (c) and (d) is 500.

test signals, blocks, and bumps, with 1024 samples, are used
for analysis of the performance of our new framework (see
Figures 2 and 3).

From Figure 2, we can see both integer-order derivatives
(green lines) and fractional derivatives (𝛼 = 0.1 are
represented by red lines and 𝛼 = 0.5 are represented by black
lines) have the properties that the singularities are related
to the local extrema. Just as discussed above, the values of
truncated G-L formula are not zeros in smooth regions (see
Figures 2(a) and 2(c)). Moreover, coinciding Lemma 11, the
signals with longer truncated length will be nearer to zeros

in the smooth segments than the shorter length signals. The
bigger fractional orders will also have better performance in
sharper impulses in singularities and much more near zeros
in the smooth segments than the smaller fractional orders,
which coincides Lemma 12 (see Figures 2(a) and 2(c)).

When truncated length 𝑡 = 30 for the new definition
of fractional derivatives (see Figure 2(b)), the values of new
definition at singularities have very high impulses comparing
to the corresponding truncated G-L formula (Figure 2(a)),
which is a very impressive nature to detect, locate, and
preserve singularities.Moreover, near singularities, the values
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Figure 3:The original signal (bumps with 1024 samples, blue line), its fractional derivatives of truncated G-L with different fractional orders
((a) and (c)), and its fractional derivatives of the new method with different fractional orders ((b) and (d)), where the support length of (a)
and (b) is 30 and the support length of (c) and (d) is 500.

are decreased/increased gradually to zeros and the values of
the smooth segments are zeros. These characters together
ensure that the new fractional derivatives can obtain good
results in signal processing.

Observing Figure 3, we can find that 1-order derivatives
cannot locate “bump like” singularities: (1) there are two
extremums of 1-order derivatives even for a very narrow
bump, for example, the first bump; (2) some weak singulari-
ties cannot be detected, for example, the left singularity of the
fifth bump.

Fortunately, all fractional derivatives have better perfor-
mance in above two sides. That is, each narrow bump only
has one extremum of the fractional derivatives.

The best performance of the new definition for block
signal is the derivative with truncated length 𝑡 = 30 and
fractional order 𝛼 = 0.1, which also has the best natures
for the bump signal. That is, it has very high impulses in
singularities and equals to zeros in smooth segments. Weak
singularity in the left of the fifth bumphas a very obvious high
impulse, which can be detected and located easily. It is very
interesting thing that the weak impulses in two signals using
truncated G-L formula are enhanced by new definitions of

fractional derivativeswith small𝛼 and 𝑡by comparing Figures
2(a) and 2(b) and Figures 3(a) and 3(b).

In summary, from the simulation results of two test
signals, we can conclude that the new definition of fractional
derivatives has the best performance in three type derivatives
including 1-order derivatives, truncated G-L formula and
themselves.

6. Conclusions

In this paper, we study errors of truncated Grünwald-
Letnikov formula with 0 < 𝛼 < 1 and then the errors are
corrected by themedians of remainder parts of signals, which
has some very impressive natures in signal processing. That
is, it has very high impulses in singularities, which can detect
and locate singularities easily; the values of the new definition
are equal to zeros in smooth segments, which can be used
efficiently in signal smoothing and filtering. Moreover, it
also has good performance in weak singularity detection and
location.
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