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A class of third-order nonlinear delay dynamic equations on time scales is studied. By using the generalized Riccati transformation
and the inequality technique, four new sufficient conditions which ensure that every solution is oscillatory or converges to zero are
established. The results obtained essentially improve earlier ones. Some examples are considered to illustrate the main results.

1. Introduction

In recent years, there has been much research activity
concerning the oscillation and nonoscillation of solutions of
various equations on time scales, and we refer the reader to
the studies by Bohner and Saker [1] and Erbe et al. [2, 3]. And
there are some results dealing with oscillatory behavior of
second-order delay dynamic equations on time scales [4–10].
However, there are few results dealing with the oscillation of
the solutions of third-order delay dynamic equations on time
scales, we refer the reader to the papers [11–14].

In this paper, we consider new oscillatory behavior of
all solutions of the third-order nonlinear delay dynamic
equation

(𝑟
2
(𝑡)[(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼)

Δ

+ 𝑞 (𝑡) 𝑓 (𝑥 [𝜏 (𝑡)]) = 0,

𝑡 ∈ T , 𝑡 ≥ 𝑡
0
,

(1)

where 𝛼 ≥ 1 is the ratio of two positive odd integers.
Throughout this paper, we will assume the following

hypotheses.

(H
1
) T is a time scale (i.e., a nonempty closed subset of the
real numbersR) which is unbounded above, and 𝑡

0
∈

T with 𝑡
0
> 0, we define the time scale interval of the

form [𝑡
0
,∞)T by [𝑡

0
,∞)T = [𝑡

0
,∞) ∩ T .

(H
2
) 𝑟
1
(𝑡), 𝑟
2
(𝑡), 𝑞(𝑡) are positive and real-valued rd-

continuous functions defined on T , and 𝑟
1
(𝑡), 𝑟
2
(𝑡)

satisfy

∫
∞

𝑡0

1
𝑟
1
(𝑠)Δ𝑠 = ∞, ∫

∞

𝑡0

( 1
𝑟
2
(𝑠))
1/𝛼

Δ𝑠 = ∞. (2)

(H
3
) 𝜏 : T → T is a strictly increasing and differentiable
function, such that

𝜏 (𝑡) ≤ 𝑡, lim
𝑡→∞

𝜏 (𝑡) = ∞, 𝜏 (T) = T . (3)

(H
4
) 𝑓 : R → R is a continuous function and there exists
some positive constant 𝐿 such that 𝑓(𝑥)/𝑥𝛼 ≥ 𝐿 for
all 𝑥 ̸= 0.

By a solution of (1), we mean a nontrivial func-
tion 𝑥(𝑡) satisfying (1) which has the properties 𝑥(𝑡) ∈
𝐶1
𝑟𝑑
([𝑇
𝑥
,∞)T ,R) for 𝑇𝑥 ≥ 𝑡

0
, and 𝑟

2
(𝑡)[(𝑟
1
(𝑡)𝑥Δ(𝑡))Δ]𝛼 ∈

𝐶1
𝑟𝑑
([𝑇
𝑥
,∞)T ,R). Our attention is restricted to those solu-

tions of (1) which satisfy sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all𝑇 ≥ 𝑇
𝑥
,

where𝐶
𝑟𝑑
is the space of 𝑟𝑑-continuous functions. A solution

𝑥(𝑡) of (1) is said to be oscillatory on [𝑇
𝑥
,∞)T if it is neither

eventually positive nor eventually negative. Otherwise it is
called nonoscillatory. The equation itself is called oscillatory
if all its solutions are oscillatory.
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If 𝛼 = 1, 𝜏(𝑡) = 𝑡, then (1) simplifies to the third-order
nonlinear dynamic equation

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ])Δ + 𝑞 (𝑡) 𝑓 (𝑥 (𝑡)) = 0,

𝑡 ∈ T , 𝑡 ≥ 𝑡
0
.

(4)

If, furthermore, 𝑟
1
(𝑡) = 𝑟

2
(𝑡) = 1, 𝑓(𝑥) = 𝑥, 𝜏(𝑡) = 𝑡, then

(1) reduces to the third-order linear dynamic equation

𝑥ΔΔΔ (𝑡) + 𝑞 (𝑡) 𝑥 (𝑡) = 0, 𝑡 ∈ T , 𝑡 ≥ 𝑡
0
. (5)

If, in addition, 𝛼 = 1, then (1) reduces to the nonlinear
delay dynamic equation

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ])Δ + 𝑞 (𝑡) 𝑓 (𝑥 [𝜏 (𝑡)]) = 0,

𝑡 ∈ T , 𝑡 ≥ 𝑡
0
.

(6)

In 2005, Erbe et al. [11] considered the general third-
order nonlinear dynamic equation (4). By employing the gen-
eralized Riccati transformation techniques, they established
some sufficient conditions which ensure that every solution
of (4) is oscillatory or converges to zero. In 2007, Erbe et
al. [12] studied the third-order linear dynamic equation (5),
and they obtained Hille and Nehari type oscillation criteria
for (5). In 2011, Han et al. [13] extended and improved the
results of [12], meanwhile obtaining some oscillatory criteria
for (6). In 2014, Gao et al. [14] extended some results of
[12, 13] to (1). On this basis, we continue to discuss the
oscillation of solutions of (1). By using the generalized Riccati
transformation and the inequality technique, we obtain some
new sufficient conditions which guarantee that every solution
of (1) is oscillatory or converges to zero. Our results will
improve some results that have been established in [11–14].

Throughout this paper, we will make use of the following
product and quotient rules:

(𝑓𝑔)Δ (𝑡) = 𝑓Δ (𝑡) 𝑔 (𝑡) + 𝑓 (𝜎 (𝑡)) 𝑔Δ (𝑡)
= 𝑓 (𝑡) 𝑔Δ (𝑡) + 𝑓Δ (𝑡) 𝑔 (𝜎 (𝑡)) ,

(7)

(𝑓𝑔)
Δ

(𝑡) = 𝑓Δ (𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔Δ (𝑡)
𝑔 (𝑡) 𝑔 (𝜎 (𝑡)) if 𝑔𝑔𝜎 ̸= 0. (8)

For 𝑏, 𝑐 ∈ T and a differentiable function 𝑓, the Cauchy
integral of 𝑓Δ is defined by

∫
𝑐

𝑏

𝑓Δ (𝑡) Δ𝑡 = 𝑓 (𝑐) − 𝑓 (𝑏) . (9)

The integration by parts formula reads

∫
𝑐

𝑏

𝑓Δ (𝑡) 𝑔 (𝑡) Δ𝑡 = 𝑓 (𝑐) 𝑔 (𝑐) − 𝑓 (𝑏) 𝑔 (𝑏)

− ∫
𝑐

𝑏

𝑓𝜎 (𝑡) 𝑔Δ (𝑡) Δ𝑡,
(10)

and improper integrals are defined in the usual way by

∫
∞

𝑏

𝑓 (𝑠) Δ𝑠 = lim
𝑡→∞

∫
𝑡

𝑏

𝑓 (𝑠) Δ𝑠. (11)

For more details, see [15, 16].

2. Several Lemmas

In this section we present several lemmas that will be needed
in the proofs of our results in Section 3.

Lemma 1. Assume that 𝑥(𝑡) is an eventually positive solution
of (1), then there exists 𝑇 ∈ [𝑡

0
,∞)T such that either

(I) 𝑥 (𝑡) > 0, 𝑥Δ (𝑡) > 0, (𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ > 0,

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼)

Δ

< 0, 𝑡 ∈ [𝑇,∞)T ,
(12)

or

(II) 𝑥 (𝑡) > 0, 𝑥Δ (𝑡) < 0, (𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ > 0,

(𝑟
2
(𝑡)[(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼)

Δ

< 0, 𝑡 ∈ [𝑇,∞)T .
(13)

Proof. Assume that 𝑥(𝑡) is an eventually positive solution of
(1), then there exists 𝑇 ∈ [𝑡

0
,∞)T such that 𝑥(𝑡) > 0 and

𝑥(𝜏(𝑡)) > 0 for all 𝑡 ∈ [𝑇,∞)T . From (1); we obtain

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼)

Δ

= − 𝑞 (𝑡) 𝑓 (𝑥 (𝜏 (𝑡)))
≤ − 𝐿𝑞 (𝑡) 𝑥𝛼 [𝜏 (𝑡)] < 0.

(14)

Hence, 𝑟
2
(𝑡)[(𝑟
1
(𝑡)𝑥Δ(𝑡))Δ]𝛼 is decreasing and therefore even-

tually of one sign, so (𝑟
1
(𝑡)𝑥Δ(𝑡))Δ is either eventually positive

or eventually negative. We assert that (𝑟
1
(𝑡)𝑥Δ(𝑡))Δ > 0 for all

𝑡 ∈ [𝑇,∞)T .
If there exists 𝑡

1
∈ [𝑇,∞)T such that (𝑟

1
(𝑡
1
)𝑥Δ(𝑡
1
))Δ < 0,

we get

𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼 ≤ 𝑟

2
(𝑡
1
) [(𝑟
1
(𝑡
1
) 𝑥Δ (𝑡

1
))Δ]𝛼 < 0,

𝑡 ∈ [𝑡
1
,∞)

T
.

(15)

Let𝑀 = −𝑟
2
(𝑡
1
)[(𝑟
1
(𝑡
1
)𝑥Δ(𝑡
1
))Δ]𝛼 > 0, then

(𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ ≤ −𝑀1/𝛼 1

(𝑟
2
(𝑡))1/𝛼

. (16)

Integrating (16) from 𝑡
1
to 𝑡 (𝑡 ∈ [𝑡

1
,∞)T ) provides

𝑟
1
(𝑡) 𝑥Δ (𝑡) ≤ 𝑟

1
(𝑡
1
) 𝑥Δ (𝑡

1
) − 𝑀1/𝛼

× ∫
𝑡

𝑡1

1
(𝑟
2
(𝑠))1/𝛼

Δ𝑠 󳨀→ −∞, 𝑡 󳨀→ +∞.
(17)

Then there exists 𝑡
2

∈ [𝑡
1
,∞)T such that 𝑟

1
(𝑡)𝑥Δ(𝑡) ≤

𝑟
1
(𝑡
2
)𝑥Δ(𝑡
2
) < 0. Similarly, 𝑡 ∈ [𝑡

2
,∞)T , we obtain

𝑥 (𝑡) ≤ 𝑥 (𝑡
2
) + 𝑟
1
(𝑡
2
) 𝑥Δ (𝑡

2
) ∫
𝑡

𝑡2

1
𝑟
1
(𝑠)Δ𝑠 󳨀→ −∞,

𝑡 󳨀→ +∞,
(18)
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which contradicts with 𝑥(𝑡) > 0. So (𝑟
1
(𝑡)𝑥Δ(𝑡))Δ > 0; this

implies that 𝑥Δ(𝑡) > 0 or 𝑥Δ(𝑡) < 0 for all 𝑡 ∈ [𝑇,∞)T . This
completes the proof.

Lemma 2 (see [17]). Assume that (H
3
) and the following

conditions hold:

(I) 𝑢(𝑡) ∈ 𝐶2
𝑟𝑑
(𝐼,R), where 𝐼 = [𝑡∗, +∞)T for some 𝑡∗ >

0;
(II) 𝑢(𝑡) > 0, 𝑢Δ(𝑡) > 0, 𝑢ΔΔ(𝑡) ≤ 0 for 𝑡 ≥ 𝑡∗.
Then, for each 𝑘 ∈ (0, 1), there exists a constant 𝑡

𝑘
∈ T , 𝑡

𝑘
≥

𝑡∗ such that
𝑢 (𝜎 (𝑡)) ≤ 𝜎 (𝑡) 𝑢 (𝜏 (𝑡))

𝑘𝜏 (𝑡) for 𝑡 ≥ 𝑡
𝑘
. (19)

Lemma 3 (see [15]). If 𝑥 is differentiable, then

(𝑥𝛾)Δ = 𝛾𝑥Δ ∫
1

0

[ℎ𝑥𝜎 + (1 − ℎ) 𝑥]𝛾−1𝑑ℎ. (20)

Lemma 4 (see [12]). Assume that 𝑢 satisfies

𝑢 (𝑡) > 0, 𝑢Δ (𝑡) > 0, 𝑢ΔΔ (𝑡) > 0,
𝑢ΔΔΔ (𝑡) ≤ 0, 𝑡 ∈ [𝑇,∞)T .

(21)

Then

lim inf
𝑡→∞

𝑡𝑢 (𝑡)
ℎ
2
(𝑡, 𝑡
0
) 𝑢Δ (𝑡) ≥ 1, (22)

where the Taylor monomials ℎ
𝑛
(𝑡, 𝑠)+∞
𝑛=0

are defined recursively
by

ℎ
0
(𝑡, 𝑠) = 1, ℎ

𝑛+1
(𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ
𝑛
(𝜏, 𝑠) Δ𝜏,

𝑡, 𝑠 ∈ T , 𝑛 ≥ 1.
(23)

Lemma 5 (see [18]). Assume that 𝑋 and 𝑌 are nonnegative
real numbers. Then

𝜆𝑋𝑌𝜆−1 − 𝑋𝜆 ≤ (𝜆 − 1) 𝑌𝜆, ∀𝜆 > 1, (24)

where the equality holds if and only if𝑋 = 𝑌.
Lemma 6. Assume that 𝑥(𝑡) is an eventually positive solution
of (1) which satisfies case (II) in Lemma 1, if either

∫
∞

𝑡0

𝑞 (𝑠) Δ𝑠 = ∞ (25)

or

∫
∞

𝑡0

𝑞 (𝑠) Δ𝑠 < ∞,

∫
∞

𝑡0

1
𝑟
1
(𝑡) ∫
∞

𝑡

[ 1
𝑟
2
(𝑠) ∫
∞

𝑠

𝑞(𝑢)Δ𝑢]
1/𝛼

Δ𝑠Δ𝑡 = ∞.
(26)

Then lim
𝑡→∞

𝑥(𝑡) = 0.

Proof. Assume that 𝑥(𝑡) is an eventually positive solution
of (1) which satisfies case (II) in Lemma 1. Then 𝑥(𝑡) is
decreasing and lim

𝑡→∞
𝑥(𝑡) = 𝑙 ≥ 0. If 𝑙 > 0; it is easy to see

that there exists 𝑡
1
∈ [𝑡
0
,∞)T such that 𝑥[𝜏(𝑡)] ≥ 𝑥(𝑡) ≥ 𝑙 > 0

for all 𝑡 ∈ [𝑡
1
,∞)T . From (14),

(𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼)

Δ

≤ −𝐿𝑞 (𝑡) 𝑥𝛼 [𝜏 (𝑡)] ≤ −𝐿𝑙𝛼𝑞 (𝑡) .
(27)

If (25) holds, then integrating (27) from 𝑡
1
to 𝑡 (𝑡 ∈

[𝑡
1
,∞)T ), we get

𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼 ≤ 𝑟

2
(𝑡
1
) [(𝑟
1
(𝑡
1
) 𝑥Δ (𝑡

1
))Δ]𝛼 − 𝐿𝑙𝛼

×∫
𝑡

𝑡1

𝑞 (𝑠) Δ𝑠 󳨀→ −∞

(𝑡 󳨀→ +∞) .
(28)

This is contrary to (𝑟
1
(𝑡)𝑥Δ(𝑡))Δ > 0.

If (26) holds, then integrating (1) from 𝑡 to∞, we get

− 𝑟
2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼

≤ −𝐿∫
∞

𝑡

𝑞 (𝑠) 𝑥𝛼 [𝜏 (𝑠)] Δ𝑠

≤ −𝐿𝑙𝛼 ∫
∞

𝑡

𝑞 (𝑠) Δ𝑠, 𝑡 ∈ [𝑡
1
,∞)

T
,

(29)

and hence,

−(𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ ≤ −𝑙[ 1

𝑟
2
(𝑡) ∫
∞

𝑡

𝐿𝑞(𝑠)Δ𝑠]
1/𝛼

. (30)

Again, integrating this inequality from 𝑡 to∞, we obtain

𝑟
1
(𝑡) 𝑥Δ (𝑡) ≤ −𝑙𝐿1/𝛼 ∫

∞

𝑡

[ 1
𝑟
2
(𝑠) ∫
∞

𝑠

𝑞(𝑢)Δ𝑢]
1/𝛼

Δ𝑠. (31)

Finally, integrating the last inequality from 𝑇 to 𝑡, we get

𝑥 (𝑡) − 𝑥 (𝑇) ≤ − 𝑙𝐿1/𝛼 ∫
𝑡

𝑇

1
𝑟
1
(𝑠)

× ∫
∞

𝑠

[ 1
𝑟
2
(𝑢) ∫
∞

𝑢

𝑞(V)ΔV]
1/𝛼

Δ𝑢Δ𝑠.
(32)

Hence by (26), we obtain lim
𝑡→∞

𝑥(𝑡) = −∞, which
contradicts 𝑥(𝑡) > 0. Thus, we get 𝑙 = 0. This completes the
proof.

Lemma 7 (see [19]). Let 𝑎, 𝑏 ∈ T . Then for positive rd-
continuous functions 𝑓, 𝑔 : [𝑎, 𝑏] → R, one has

∫
𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑠) 𝑔 (𝑠)󵄨󵄨󵄨󵄨 Δ𝑠 ≤ (∫
𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑠)󵄨󵄨󵄨󵄨𝑝Δ𝑠)
1/𝑝

(∫
𝑏

𝑎

󵄨󵄨󵄨󵄨𝑔 (𝑠)󵄨󵄨󵄨󵄨𝑞Δ𝑠)
1/𝑞

,
(33)

where 𝑝 > 1 and 1/𝑝 + 1/𝑞 = 1.



4 Abstract and Applied Analysis

3. Main Results

New we state and prove the main results of this paper.

Theorem8. Assume that (H
1
)–(H
4
), (26), and 𝑟Δ

2
(𝑡) ≥ 0 hold.

Furthermore, suppose that there exists a positive function 𝛿 ∈
𝐶1
𝑟𝑑
([𝑡
0
,∞)T , (0,∞)) with 𝛿Δ(𝑡) ≥ 0, and for all sufficiently

large 𝑇, there exists 𝑇
0
> 𝑇, such that

lim sup
𝑡→∞

∫
𝑡

𝑇0

{𝑄 (𝑠)− 𝑟
2
(𝑠) 𝛿 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2 [
𝛿Δ (𝑠)
𝛿 (𝑠) ]

𝛼+1

[𝜎 (𝑠)𝜏 (𝑠) ]
𝛼
2

}Δ𝑠

= ∞,
(34)

where 𝑄(𝑡) = 𝐿𝑞(𝑡)𝛿(𝜎(𝑡))(𝑘ℎ
2
(𝜏(𝑡), 𝑡

0
)/(2𝑟
1
(𝜏(𝑡))𝜎(𝑡)))𝛼.

Then every solution 𝑥(𝑡) of (1) is either oscillatory or converges
to zero.

Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists sufficiently large 𝑇 ≥ 𝑡
0
, such that 𝑥(𝑡) > 0 and

𝑥(𝜏(𝑡)) > 0 for all 𝑡 ∈ [𝑇,∞)T . In the case when 𝑥(𝑡) is
eventually negative, the proof is similar. By Lemma 1, we see
that 𝑥(𝑡) satisfies either case (I) or case (II).

If case (I) holds, then 𝑥Δ(𝑡) > 0, 𝑡 ∈ [𝑇,∞)T . Define the
function𝑊(𝑡) by

𝑊(𝑡) = 𝛿 (𝑡) 𝑟
2
(𝑡)((𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ
𝑟
1
(𝑡)𝑥Δ(𝑡) )

𝛼

, 𝑡 ∈ [𝑇,∞)T .
(35)

Then𝑊(𝑡) > 0. By the product rule (7) and the quotient rule
(8), we have

𝑊Δ (𝑡) = 𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡) − 𝛿 (𝜎 (𝑡)) 𝑞 (𝑡) 𝑓 (𝑥 (𝜏 (𝑡)))

[𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡))]𝛼

− 𝛿 (𝜎 (𝑡)) 𝑟
2
(𝑡) [

[
(𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ

𝑟
1
(𝑡) 𝑥Δ (𝑡) ]

]

𝛼

× [(𝑟
1
(𝑡) 𝑥Δ (𝑡))𝛼]Δ

[𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡))]𝛼 .

(36)

Let 𝑢(𝑡) = 𝑟
1
(𝑡)𝑥Δ(𝑡), from case (I) in Lemma 1, we get 𝑢(𝑡) >

0, 𝑢Δ(𝑡) > 0. In view of that

[𝑟
2
(𝑡) (𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ]Δ = [𝑟

2
(𝑡) 𝑢Δ (𝑡)]Δ

= 𝑟Δ
2
(𝑡) 𝑢Δ (𝜎 (𝑡)) + 𝑟

2
(𝑡) 𝑢ΔΔ (𝑡)

< 0
(37)

and 𝑟Δ
2
(𝑡) ≥ 0, it is not difficult to see that 𝑢ΔΔ(𝑡) < 0. Thus,

by Lemma 2, for every 𝑘 ∈ (0, 1), there exists 𝑡
1
∈ [𝑇,∞)T

with 𝑡
1
≥ max{𝑡

𝑘
, 𝑇}, such that 𝑢(𝜎(𝑡)) ≤ 𝜎(𝑡)𝑢(𝜏(𝑡))/𝑘𝜏(𝑡) ≤

𝜎(𝑡)𝑢(𝑡)/𝑘𝜏(𝑡) for all 𝑡 ∈ [𝑡
1
,∞)T ; this implies that

𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡)) ≤ 𝜎 (𝑡) 𝑟

1
(𝜏 (𝑡)) 𝑥Δ (𝜏 (𝑡))
𝑘𝜏 (𝑡)

≤ 𝜎 (𝑡) 𝑟
1
(𝑡) 𝑥Δ (𝑡)

𝑘𝜏 (𝑡) .
(38)

By Lemma 3, we get [(𝑢(𝑡))𝛼]Δ ≥ 𝛼𝑢Δ(𝑡) ∫1
0
[ℎ𝑢 + (1−

ℎ)𝑢]𝛼−1𝑑ℎ = 𝛼(𝑢(𝑡))𝛼−1𝑢Δ(𝑡), that is,

[(𝑟
1
(𝑡) 𝑥Δ (𝑡))𝛼]Δ ≥ 𝛼(𝑟

1
(𝑡) 𝑥Δ (𝑡))𝛼−1(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ.

(39)

Using (38) and (39),

𝑊Δ (𝑡) ≤ 𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡) − 𝐿𝑞 (𝑡) 𝑥𝛼 (𝜏 (𝑡)) 𝛿 (𝜎 (𝑡))

[𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡))]𝛼

−
𝛼𝛿 (𝜎 (𝑡)) 𝑟

2
(𝑡) [(𝑟

1
(𝑡) 𝑥Δ (𝑡))Δ]𝛼+1

(𝑟
1
(𝑡) 𝑥Δ (𝑡)) (𝑟

1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡)))𝛼

≤ 𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡) − 𝐿𝑞 (𝑡) 𝑥𝛼 (𝜏 (𝑡)) 𝛿 (𝜎 (𝑡))

[𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡))]𝛼

− 𝛼𝑘𝛼𝜏𝛼 (𝑡) 𝑟
2
(𝑡) 𝛿 (𝜎 (𝑡))

𝜎𝛼 (𝑡) [
[
(𝑟
1
(𝑡) 𝑥Δ (𝑡))Δ

𝑟
1
(𝑡) 𝑥Δ (𝑡) ]

]

𝛼+1

≤ 𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡) − 𝐿𝑞 (𝑡) 𝑥𝛼 (𝜏 (𝑡)) 𝛿 (𝜎 (𝑡))

[𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡))]𝛼

− 𝛼𝑘𝛼𝜏𝛼 (𝑡) 𝑟
2
(𝑡) 𝛿 (𝜎 (𝑡))𝑊1+1/𝛼 (𝑡)

𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟
2
(𝑡))1+1/𝛼

≤ 𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡) − 𝐿𝑞 (𝑡) 𝑥𝛼 (𝜏 (𝑡)) 𝛿 (𝜎 (𝑡))

[𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡))]𝛼

− 𝛼𝑘𝛼𝜏𝛼 (𝑡)𝑊1+1/𝛼 (𝑡)
𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟

2
(𝑡))1/𝛼

.
(40)

Let V(𝑡) = ∫𝑡
𝑇
𝑟
1
(𝑠)𝑥Δ(𝑠)Δ𝑠 for all 𝑡 ∈ (𝑇,∞)T ; it is easy to

see that V(𝑡) > 0, VΔ(𝑡) > 0, VΔΔ(𝑡) > 0, VΔΔΔ(𝑡) ≤ 0.
Thus, by Lemma 4, there exists 𝑡

1/2
∈ [𝑇,∞)T such that

𝑡V(𝑡)/(ℎ
2
(𝑡, 𝑡
0
)VΔ(𝑡)) ≥ 1/2 for all 𝑡 ∈ [𝑡

1/2
,∞)T . Then, we

get

∫𝑡
𝑇
𝑟
1
(𝑠) 𝑥Δ (𝑠) Δ𝑠

𝑟
1
(𝑡) 𝑥Δ (𝑡) ≥ ℎ

2
(𝑡, 𝑡
0
)

2𝑡 , 𝑡 ∈ [𝑡
1/2

,∞)
T
. (41)
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From ∫𝑡
𝑇
𝑟
1
(𝑠)𝑥Δ(𝑠)Δ𝑠 = 𝑟

1
(𝑡)𝑥(𝑡) − 𝑟

1
(𝑇)𝑥(𝑇) −

∫𝑡
𝑇
𝑟Δ
1
(𝑠)𝑥Δ(𝜎(𝑠))Δ𝑠, we obtain 𝑟

1
(𝑡)𝑥(𝑡) ≥ ∫𝑡

𝑇
𝑟
1
(𝑠)𝑥Δ(𝑠)Δ𝑠. By

(41), we get

𝑥 (𝑡)
𝑥Δ (𝑡) =

𝑟
1
(𝑡) 𝑥 (𝑡)

𝑟
1
(𝑡) 𝑥Δ (𝑡) ≥

∫𝑡
𝑇
𝑟
1
(𝑠) 𝑥Δ (𝑠) Δ𝑠

𝑟
1
(𝑡) 𝑥Δ (𝑡) ≥ ℎ

2
(𝑡, 𝑡
0
)

2𝑡 ,

𝑡 ∈ [𝑡
1/2

,∞)
T
.
(42)

Therefore, from (38) and (42), there exists 𝑡
2
∈ [𝑡
0
,∞)T with

𝑡
2
≥ max{𝑡

1
, 𝑡
1/2

} such that

𝑥 (𝜏 (𝑡))
𝑟
1
(𝜎 (𝑡)) 𝑥Δ (𝜎 (𝑡)) ≥

𝑘ℎ
2
(𝜏 (𝑡) , 𝑡

0
)

2𝑟
1
(𝜏 (𝑡)) 𝜎 (𝑡) , 𝑡 ∈ [𝑡

2
,∞)

T
.
(43)

Using (43), we get

𝑊Δ (𝑡) ≤ − 𝐿𝑘𝛼𝑞 (𝑡) 𝛿 (𝜎 (𝑡)) ℎ𝛼
2
(𝜏 (𝑡) , 𝑡

0
)

2𝛼[𝑟
1
(𝜏 (𝑡)) 𝜎 (𝑡)]𝛼 + 𝛿Δ (𝑡)

𝛿 (𝑡) 𝑊 (𝑡)

− 𝛼𝑘𝛼𝜏𝛼 (𝑡)
𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟

2
(𝑡))1/𝛼

𝑊1+1/𝛼 (𝑡) , 𝑡 ∈ [𝑡
2
,∞)

T
,

(44)

that is,

𝑄 (𝑡) ≤ −𝑊Δ (𝑡) + 𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡)

− 𝛼𝑘𝛼𝜏𝛼 (𝑡)
𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟

2
(𝑡))1/𝛼

𝑊1+1/𝛼 (𝑡) .
(45)

Now, set

𝑋𝜆 = 𝛼𝑘𝛼𝜏𝛼 (𝑡)
𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟

2
(𝑡))1/𝛼

𝑊𝜆 (𝑡) ,

𝑌𝜆−1 =
𝛿Δ (𝑡) [𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟

2
(𝑡))1/𝛼]1/𝜆

𝜆𝛿 (𝑡) [𝛼𝑘𝛼𝜏𝛼 (𝑡)]1/𝜆 ,
(46)

where 𝜆 = (𝛼+1)/𝛼 > 1, 𝑋 ≥ 0 and𝑌 ≥ 0. Using the equality
(24), we obtain

𝛿Δ (𝑡)
𝛿 (𝑡) 𝑊 (𝑡) − 𝛼𝑘𝛼𝜏𝛼 (𝑡)

𝜎𝛼 (𝑡) (𝛿 (𝑡) 𝑟
2
(𝑡))1/𝛼

𝑊1+1/𝛼 (𝑡)

≤ 𝑟
2
(𝑡) 𝛿 (𝑡)

(𝛼 + 1)𝛼+1𝑘𝛼2 [
𝛿Δ(𝑡)
𝛿(𝑡) ]

𝛼+1

[𝜎(𝑡)𝜏(𝑡) ]
𝛼
2

.
(47)

From (47), we obtain

𝑄 (𝑡) ≤ −𝑊Δ (𝑡) + 𝑟
2
(𝑡) 𝛿 (𝑡)

(𝛼 + 1)𝛼+1𝑘𝛼2 [
𝛿Δ(𝑡)
𝛿(𝑡) ]

𝛼+1

[𝜎(𝑡)𝜏(𝑡) ]
𝛼
2

.
(48)

Integrating (48) from 𝑇
0
to 𝑡, we get

∫
𝑡

𝑇0

𝑄 (𝑠) Δ𝑠 ≤ 𝑊(𝑇
0
) − 𝑊 (𝑡)

+ ∫
𝑡

𝑇0

𝑟
2
(𝑠) 𝛿 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2 [
𝛿Δ(𝑠)
𝛿(𝑠) ]

𝛼+1

[𝜎(𝑠)𝜏(𝑠) ]
𝛼
2

Δ𝑠,
(49)

consequently,

∫
𝑡

𝑇0

{𝑄 (𝑠) − 𝑟
2
(𝑠) 𝛿 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2 [
𝛿Δ(𝑠)
𝛿(𝑠) ]

𝛼+1

[𝜎(𝑠)𝜏(𝑠) ]
𝛼
2

}Δ𝑠

≤ 𝑊(𝑇
0
) − 𝑊 (𝑡) ≤ 𝑊(𝑇

0
) .

(50)

This is contrary to (34).
If case (II) holds, from (26), we get lim

𝑡→∞
𝑥(𝑡) = 0. This

completes the proof.

Theorem 9. Assume that (H
1
)–(H
4
), (26), and 𝑟Δ

2
(𝑡) ≥ 0

hold. Furthermore, suppose that there exist functions 𝐻, ℎ ∈
𝐶
𝑟𝑑
(D,R), where D ≡ {(𝑡, 𝑠) : 𝑡 ≥ 𝑠 ≥ 𝑇} such that

𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑇;
𝐻 (𝑡, 𝑠) > 0, 𝑡 > 𝑠 ≥ 𝑇, (51)

and 𝐻 has a nonpositive continuous Δ-partial derivative
𝐻Δ 𝑠(𝑡, 𝑠) onD with respect to the second variable and satisfies,
for all sufficiently large 𝑇 ∈ [𝑡

0
,∞)T , that there exists 𝑇0 > 𝑇,

such that

𝐻Δ 𝑠 (𝜎 (𝑡) , 𝑠) + 𝛿Δ (𝑠)
𝛿 (𝑠) 𝐻 (𝜎 (𝑡) , 𝑠)

= −ℎ (𝑡, 𝑠)𝛿 (𝑠) 𝐻𝛼/(𝛼+1) (𝜎 (𝑡) , 𝑠) for (𝑡, 𝑠) ∈ D,
(52)

lim sup
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

= ∞,
(53)

where 𝛿(𝑡) and 𝑄(𝑡) are defined in Theorem 8. ℎ
−
(𝑡, 𝑠) =

max{0, −ℎ(𝑡, 𝑠)}, ℎ
+
(𝑡, 𝑠) = max{0, ℎ(𝑡, 𝑠)}.Then every solution

𝑥(𝑡) of (1) is either oscillatory or converges to zero.
Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists sufficiently large 𝑇 ≥ 𝑡
0
, such that 𝑥(𝑡) > 0 and

𝑥[𝜏(𝑡)] > 0 for all 𝑡 ∈ [𝑇,∞)T . In the case when 𝑥(𝑡) is
eventually negative, the proof is similar. By Lemma 1, we see
that 𝑥(𝑡) satisfies either case (I) or case (II). If case (I) holds,
we proceed as in the proof of Theorem 8 and get (45). In
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(45), replace 𝑡 by 𝑠 and multiply both sides by𝐻(𝜎(𝑡), 𝑠) and
integrate with respect to 𝑠 from 𝑇

0
to 𝜎(𝑡), 𝑡 ≥ 𝑇

0
; we get

∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠

≤ −∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠)𝑊Δ (𝑠) Δ𝑠

+ ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝛿
Δ (𝑠)
𝛿 (𝑠) 𝑊 (𝑠) Δ𝑠

− ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) × 𝛼𝑘𝛼𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

×𝑊1+1/𝛼 (𝑠) Δ𝑠.

(54)

Integrating by parts using (51) and (52), we obtain

∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝑇
0
)𝑊 (𝑇

0
) + ∫
𝜎(𝑡)

𝑇0

𝐻Δ 𝑠 (𝜎 (𝑡) , 𝑠)𝑊 (𝑠) Δ𝑠

+ ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝛿Δ (𝑠)
𝛿 (𝑠) 𝑊 (𝑠) Δ𝑠

− ∫
𝜎(𝑡)

𝑇0

𝛼𝑘𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝑇
0
)𝑊 (𝑇

0
)

+ ∫
𝜎(𝑡)

𝑇0

[−ℎ (𝑡, 𝑠)𝐻
𝛼/(1+𝛼) (𝜎 (𝑡) , 𝑠)
𝛿 (𝑠) 𝑊 (𝑠)

−𝛼𝑘
𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)

𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟
2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠)]Δ𝑠,
(55)

and so

∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝑇
0
)𝑊 (𝑇

0
)

+ ∫
𝜎(𝑡)

𝑇0

[ℎ− (𝑡, 𝑠)𝐻
𝛼/(1+𝛼) (𝜎 (𝑡) , 𝑠)
𝛿 (𝑠) 𝑊 (𝑠)

−𝛼𝑘
𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)

𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟
2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠)]Δ𝑠.
(56)

Now, set

𝑋𝜆 = 𝛼𝑘𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊𝜆 (𝑠) ,

𝑌𝜆−1 =
ℎ
−
(𝑡, 𝑠) [𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼]1/𝜆

𝜆𝛿 (𝑠) [𝛼𝑘𝛼𝜏𝛼 (𝑠)]1/𝜆 ,
(57)

where 𝜆 = (𝛼 + 1)/𝛼 > 1, 𝑋 ≥ 0 and 𝑌 ≥ 0. Using inequality
(24), we obtain

ℎ
−
(𝑡, 𝑠)𝐻1/𝜆 (𝜎 (𝑡) , 𝑠)

𝛿 (𝑠) 𝑊 (𝑠) − 𝛼𝑘𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊𝜆 (𝑠)

≤ ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠) .
(58)

Combining (56) and (58), we get

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

×∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

≤ 𝑊(𝑇
0
) ,

(59)

which contradicts (53).
If case (II) holds, from (26), we get lim

𝑡→∞
𝑥(𝑡) = 0. This

completes the proof.

If (53) is not held, then we get the following result.

Theorem 10. Assume that (H
1
)–(H
4
), (26), and 𝑟Δ

2
(𝑡) ≥ 0

hold. Furthermore, suppose that there exist functions 𝐻, ℎ ∈
𝐶
𝑟𝑑
(D,R), where D ≡ {(𝑡, 𝑠) : 𝑡 ≥ 𝑠 ≥ 𝑇}, such that (51) holds,

𝐻 has a nonpositive continuous Δ-partial derivative 𝐻Δ 𝑠(𝑡, 𝑠)
on D with respect to the second variable and satisfies (52).
Assume that

0 < inf
𝑠≥𝑇0

[lim inf
𝑡→∞

𝐻(𝜎 (𝑡) , 𝑠)
𝐻 (𝜎 (𝑡) , 𝑇

0
)] ≤ ∞, 𝑇

0
∈ [𝑡
0
,∞)

T
,
(60)

lim sup
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠) Δ𝑠 < ∞,
(61)
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and a real rd-continuous function Ψ : [𝑡
0
,∞)T → R such

that

∫
∞

𝑇

𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

Ψ1+1/𝛼
+

(𝑠) Δ𝑠 = ∞, (62)

lim sup
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

×∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼+1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

≥ Ψ (𝑇
0
)

(63)

for 𝑇
0

∈ (𝑇,∞)T , where 𝛿(𝑡) and 𝑄(𝑡) are defined in
Theorem 8, Ψ

+
(𝑡) = max{0, Ψ(𝑡)}. Then every solution 𝑥(𝑡) of

(1) is either oscillatory or converges to zero.

Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists sufficiently large 𝑇 ≥ 𝑡
0
, such that 𝑥(𝑡) > 0 and

𝑥[𝜏(𝑡)] > 0 for all 𝑡 ∈ [𝑇,∞)T . In the case when 𝑥(𝑡) is
eventually negative, the proof is similar. By Lemma 1, we see
that 𝑥(𝑡) satisfies either case (I) or case (II).

If case (I) holds, proceeding as in the proof ofTheorem 9,
we get that (56) and (58) hold. Then we conclude that

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

×∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

≤ 𝑊(𝑇
0
) .

(64)

From (63), we obtain

Ψ (𝑇
0
) ≤ 𝑊(𝑇

0
) , 𝑇

0
∈ (𝑇,∞)T , (65)

lim sup
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠 ≥ Ψ (𝑇
0
) .
(66)

By (56), we get

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠

≤ 𝑊(𝑇
0
) + 1

𝐻 (𝜎 (𝑡) , 𝑇
0
)

× ∫
𝜎(𝑡)

𝑇0

ℎ
−
(𝑡, 𝑠)𝐻𝛼/(1+𝛼) (𝜎 (𝑡) , 𝑠)

𝛿 (𝑠) 𝑊 (𝑠) Δ𝑠

− 1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

𝛼𝑘𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠.

(67)

We denote

𝐴 (𝑡) = 1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

ℎ
−
(𝑡, 𝑠)𝐻𝛼/(1+𝛼) (𝜎 (𝑡) , 𝑠)

𝛿 (𝑠) 𝑊 (𝑠) Δ𝑠,

𝐵 (𝑡) = 1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

𝛼𝑘𝛼𝐻(𝜎 (𝑡) , 𝑠) 𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠,
(68)

meanwhile noting that (63), we obtain

lim inf
𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)] ≤ 𝑊 (𝑇
0
) − Ψ (𝑇

0
) < ∞. (69)

Now we assert that

∫
∞

𝑇

𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠 < ∞ (70)

holds. Suppose to the contrary that

∫
∞

𝑇

𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠 = ∞, (71)

by (60), there exists a constant 𝜀 > 0 such that

inf
𝑠≥𝑇0

[lim inf
𝑡→∞

𝐻(𝜎 (𝑡) , 𝑠)
𝐻 (𝜎 (𝑡) , 𝑇

0
)] > 𝜀 > 0, (72)

from (71); there exists𝑇
1
∈ [𝑇
0
,∞)T for arbitrary real number

𝑀 > 0 such that

∫
𝜎(𝑡)

𝑇1

𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠 ≥ 𝑀
𝛼𝑘𝛼𝜀 ,

for 𝑡 ∈ [𝑇
1
,∞)

T
.

(73)
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By (10), we obtain

𝐵 (𝑡) = 1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

{
{
{
𝛼𝑘𝛼𝐻(𝜎 (𝑡) , 𝑠)

× (∫
𝑠

𝑇0

𝜏𝛼 (𝑢)
𝜎𝛼 (𝑢) (𝛿 (𝑢) 𝑟

2
(𝑢))1/𝛼

×𝑊1+1/𝛼 (𝑢) Δ𝑢)
Δ 𝑠}
}
}
Δ𝑠

= 1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

{ − 𝛼𝑘𝛼𝐻Δ 𝑠 (𝜎 (𝑡) , 𝜎 (𝑠))

× ∫
𝜎(𝑠)

𝑇0

𝜏𝛼 (𝑢)
𝜎𝛼 (𝑢) (𝛿 (𝑢) 𝑟

2
(𝑢))1/𝛼

×𝑊1+1/𝛼 (𝑢) Δ𝑢}Δ𝑠

≥ 1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇1

{ − 𝛼𝑘𝛼𝐻Δ 𝑠 (𝜎 (𝑡) , 𝑠)

× ∫
𝜎(𝑠)

𝑇0

𝜏𝛼 (𝑢)
𝜎𝛼 (𝑢) (𝛿 (𝑢) 𝑟

2
(𝑢))1/𝛼

×𝑊1+1/𝛼 (𝑢) Δ𝑢}Δ𝑠

≥ 1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇1

−𝛼𝑘𝛼𝐻Δ 𝑠 (𝜎 (𝑡) , 𝑠) 𝑀
𝛼𝑘𝛼𝜀Δ𝑠

= 𝑀
𝜀
𝐻 (𝜎 (𝑡) , 𝑇

1
)

𝐻 (𝜎 (𝑡) , 𝑇
0
) .

(74)

From (72), there exists 𝑇
2

∈ [𝑇
1
,∞)T , we get 𝐻(𝜎(𝑡),

𝑇
1
)/𝐻(𝜎(𝑡), 𝑇

0
) ≥ 𝜀 for 𝑡 ∈ [𝑇

2
,∞)T , so that 𝐵(𝑡) ≥ 𝑀. Since

𝑀 is arbitrary, we obtain
lim
𝑡→∞

𝐵 (𝑡) = ∞. (75)

Selecting a sequence {𝑇
𝑛
}∞
𝑛=1

: 𝑇
𝑛

∈ [𝑇
0
,∞)T with

lim
𝑛→∞

𝑇
𝑛
= ∞ satisfying

lim
𝑛→∞

[𝐵 (𝑇
𝑛
) − 𝐴 (𝑇

𝑛
)] = lim inf

𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)] < ∞,
(76)

then there exists a constant𝑀
0
> 0 such that

𝐵 (𝑇
𝑛
) − 𝐴 (𝑇

𝑛
) ≤ 𝑀

0 (77)

for sufficiently large positive integer 𝑛. From (75), we can
easily see

lim
𝑛→∞

𝐵 (𝑇
𝑛
) = ∞; (78)

(77) implies that

lim
𝑛→∞

𝐴 (𝑇
𝑛
) = ∞. (79)

From (77) and (78), we obtain

𝐴 (𝑇
𝑛
)

𝐵 (𝑇
𝑛
) − 1 ≥ − 𝑀

0

𝐵 (𝑇
𝑛
) > − 𝑀

0

2𝑀
0

= −12 , (80)

that is,

𝐴 (𝑇
𝑛
)

𝐵 (𝑇
𝑛
) > 1

2 (81)

for sufficiently large positive integer 𝑛, which together with
(79) implies

lim
𝑛→∞

[𝐴(𝑇
𝑛
)]𝛼+1

[𝐵(𝑇
𝑛
)]𝛼 = lim

𝑛→∞
[𝐴 (𝑇

𝑛
)

𝐵 (𝑇
𝑛
) ]
𝛼

𝐴 (𝑇
𝑛
) = ∞. (82)

On the other hand, by Lemma 7, we obtain

𝐴 (𝑇
𝑛
)

= 1
𝐻 (𝜎 (𝑇

𝑛
) , 𝑇
0
)

× ∫
𝜎(𝑇𝑛)

𝑇0

ℎ
−
(𝑇
𝑛
, 𝑠)𝐻𝛼/(𝛼+1) (𝜎 (𝑇

𝑛
) , 𝑠)

𝛿 (𝑠) 𝑊 (𝑠) Δ𝑠

= ∫
𝜎(𝑇𝑛)

𝑇0

ℎ
−
(𝑇
𝑛
, 𝑠)𝐻𝛼/(𝛼+1) (𝜎 (𝑇

𝑛
) , 𝑠)

𝐻 (𝜎 (𝑇
𝑛
) , 𝑇
0
) 𝛿 (𝑠) 𝑊 (𝑠) Δ𝑠

= ∫
𝜎(𝑇𝑛)

𝑇0

{[𝛼𝑘
𝛼𝐻(𝜎 (𝑇

𝑛
) , 𝑠) 𝜏𝛼 (𝑠)

𝐻 (𝜎 (𝑇
𝑛
) , 𝑇
0
) ]

𝛼/(𝛼+1)

× 𝑊(𝑠)
𝜎𝛼2/(𝛼+1) (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/(𝛼+1)

}

× {(ℎ
−
(𝑇
𝑛
, 𝑠)𝐻𝛼/(𝛼+1) (𝜎 (𝑇

𝑛
) , 𝑠)

× 𝜎𝛼2/(𝛼+1) (𝑠) 𝑟1/(𝛼+1)
2

(𝑠))

× (𝐻 (𝜎 (𝑇
𝑛
) , 𝑇
0
) 𝛿𝛼/(𝛼+1) (𝑠))−1

× [𝛼𝑘
𝛼𝐻(𝜎 (𝑇

𝑛
) , 𝑠) 𝜏𝛼 (𝑠)

𝐻 (𝜎 (𝑇
𝑛
) , 𝑇
0
) ]

−𝛼/(𝛼+1)

}Δ𝑠
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≤ {
{
{
∫
𝜎(𝑇𝑛)

𝑇0

𝛼𝑘𝛼𝐻(𝜎 (𝑇
𝑛
) , 𝑠) 𝜏𝛼 (𝑠)

𝐻 (𝜎 (𝑇
𝑛
) , 𝑇
0
)

×[ 𝑊 (𝑠)
𝜎𝛼2/(𝛼+1)(𝑠)(𝛿 (𝑠) 𝑟

2
(𝑠))1/(𝛼+1)

]
(𝛼+1)/𝛼

Δ𝑠}}
}

𝛼/(𝛼+1)

× {∫
𝜎(𝑇𝑛)

𝑇0

ℎ𝛼+1
−

(𝑇
𝑛
, 𝑠)𝐻𝛼 (𝜎 (𝑇

𝑛
) , 𝑠) 𝜎𝛼2 (𝑠) 𝑟

2
(𝑠)

𝐻𝛼+1 (𝜎 (𝑇
𝑛
) , 𝑇
0
) 𝛿𝛼 (𝑠)

× [𝛼𝑘
𝛼𝐻(𝜎(𝑇

𝑛
), 𝑠)𝜏𝛼(𝑠)

𝐻(𝜎(𝑇
𝑛
), 𝑇
0
) ]

−𝛼

Δ𝑠}
1/(𝛼+1)

= [𝐵 (𝑇
𝑛
)]𝛼/(𝛼+1)

× { 1
𝛼𝛼𝑘𝛼2𝐻(𝜎 (𝑇

𝑛
) , 𝑇
0
)

×∫
𝜎(𝑇𝑛)

𝑇0

ℎ𝛼+1
−

(𝑇
𝑛
, 𝑠)𝜎𝛼2(𝑠)𝑟

2
(𝑠)

𝛿𝛼(𝑠)𝜏𝛼2(𝑠) Δ𝑠}
1/(𝛼+1)

.
(83)

The above inequality shows that

[𝐴(𝑇
𝑛
)]𝛼+1

[𝐵(𝑇
𝑛
)]𝛼 ≤ 1

𝛼𝛼𝑘𝛼2𝐻(𝜎 (𝑇
𝑛
) , 𝑇
0
)

× ∫
𝜎(𝑇𝑛)

𝑇0

ℎ𝛼+1
−

(𝑇
𝑛
, 𝑠) 𝜎𝛼2 (𝑠) 𝑟

2
(𝑠)

𝛿𝛼 (𝑠) 𝜏𝛼2 (𝑠) Δ𝑠.
(84)

Hence, (82) implies

lim
𝑛→∞

1
𝐻 (𝜎 (𝑇

𝑛
) , 𝑇
0
) ∫
𝜎(𝑇𝑛)

𝑇0

ℎ𝛼+1
−

(𝑇
𝑛
, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠) Δ𝑠 = ∞.
(85)

This contradicts (61). Therefore (70) holds. Noting Ψ(𝑇
0
) ≤

𝑊(𝑇
0
) for 𝑇

0
∈ [𝑇,∞)T , by using (70), we obtain

∫
∞

𝑇

𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

Ψ1+1/𝛼
+

(𝑠) Δ𝑠

≤ ∫
∞

𝑇

𝜏𝛼 (𝑠)
𝜎𝛼 (𝑠) (𝛿 (𝑠) 𝑟

2
(𝑠))1/𝛼

𝑊1+1/𝛼 (𝑠) Δ𝑠 < ∞.
(86)

This contradicts (62). This completes the proof.

If case (II) holds, from (26), we get lim
𝑡→∞

𝑥(𝑡) = 0. This
completes the proof.

Theorem 11. Assume that (H
1
)–(H
4
), (26), (52), (60), (62),

and 𝑟Δ
2
(𝑡) ≥ 0 hold, where 𝐻, ℎ, and 𝛿 are defined in

Theorem 10. Furthermore suppose that there is a real rd-
continuous function Ψ : [𝑡

0
,∞)T → R such that

lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠 < ∞, (87)

lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

×∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼+1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

≥ Ψ (𝑇
0
)

(88)

for 𝑇
0

∈ (𝑇,∞)T , where 𝑄(𝑡) is defined in Theorem 8,
Ψ
+
(𝑡) = max{0, Ψ(𝑡)}. Then every solution 𝑥(𝑡) of (1) is either

oscillatory or converges to zero.

Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists sufficiently large 𝑇 ≥ 𝑡
0
, such that 𝑥(𝑡) > 0 and

𝑥[𝜏(𝑡)] > 0 for all 𝑡 ∈ [𝑇,∞)T . In the case when 𝑥(𝑡) is
eventually negative, the proof is similar. By Lemma 1, we see
that 𝑥(𝑡) satisfies either case (I) or case (II).

If case (I) holds, proceeding as in the proof ofTheorem 9,
we get that (56) and (58) hold. We conclude that

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼+1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

≤ 𝑊(𝑇
0
) .

(89)

From (88), we obtain

Ψ (𝑇
0
) ≤ 𝑊(𝑇

0
) , 𝑇

0
∈ (𝑇,∞)T ; (90)

lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠 ≥ Ψ (𝑇
0
) ,
(91)

lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠

− lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

× ∫
𝜎(𝑡)

𝑇0

ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)Δ𝑠
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≥ lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
)

×∫
𝜎(𝑡)

𝑇0

[𝐻 (𝜎 (𝑡) , 𝑠) 𝑄 (𝑠)

− ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)]Δ𝑠

≥ Ψ (𝑇
0
) .

(92)

Using (87) and (92), we get

lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

ℎ𝛼+1
−

(𝑡, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼 + 1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)Δ𝑠 < ∞.
(93)

Thus, there exists a sequence {𝑇
𝑛
}∞
𝑛=1

: 𝑇
𝑛

∈ [𝑇
0
,∞)T with

lim
𝑛→∞

𝑇
𝑛
= ∞ such that

lim
𝑛→∞

1
𝐻 (𝜎 (𝑇

𝑛
) , 𝑇
0
) ∫
𝜎(𝑇𝑛)

𝑇0

ℎ𝛼+1
−

(𝑇
𝑛
, 𝑠) 𝑟
2
(𝑠) 𝜎𝛼2 (𝑠)

(𝛼+1)𝛼+1𝑘𝛼2𝜏𝛼2 (𝑠) 𝛿𝛼 (𝑠)Δ𝑠<∞.
(94)

We define 𝐴(𝑡) and 𝐵(𝑡) also, as in the proof of Theorem 10.
From (56) and (91), we obtain

lim sup
𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)]

≤ 𝑊 (𝑇
0
) − lim inf
𝑡→∞

1
𝐻 (𝜎 (𝑡) , 𝑇

0
) ∫
𝜎(𝑡)

𝑇0

𝐻(𝜎 (𝑡) , 𝑠) 𝑄 (𝑠) Δ𝑠

< ∞.
(95)

For the above sequence {𝑇
𝑛
}∞
𝑛=1

, we get

lim
𝑛→∞

[𝐵 (𝑇
𝑛
) − 𝐴 (𝑇

𝑛
)] ≤ lim sup

𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)] < ∞.
(96)

Similar to the proof of Theorem 10, we get (70). The rest
proofs are the same as the Theorem 10, here omitted. This
completes the proof.

Remark 12. From Theorems 9, 10, and 11, we can obtain
different sufficient conditions for the oscillation of (1) with
different choices of the functions 𝛿 and𝐻.

Remark 13. The theorems in this paper are new even for the
cases of T = R and T = Z.

Example 14. Consider the third-order nonlinear delay
dynamic equation

(𝑡2/3[(1𝑡 𝑥
Δ (𝑡))

Δ

]
5/3

)
Δ

+ 1
𝑡2 (𝑥(

𝑡
2))
5/3

(1 + 𝑥2 ( 𝑡2))

= 0, 𝑡 ∈ 2Z, 𝑡 ≥ 𝑡
0
:= 2.

(97)

Here 𝑟
1
(𝑡) = 1/𝑡, 𝑟

2
(𝑡) = 𝑡2/3, 𝑞(𝑡) = 1/𝑡2, 𝑓(𝑥) = 𝑥5/3(1 +𝑥2),

𝜏(𝑡) = 𝑡/2 < 𝑡, and 𝛼 = 5/3.
Conditions (H

1
)–(H
3
) are clearly satisfied, and (H

4
) holds

with𝐿 = 1. 𝑟Δ
2
(𝑡) = ((2𝑡)2/3−𝑡2/3)/(2𝑡−𝑡) = (22/3−1)/𝑡1/3 > 0,

and

∫
∞

𝑡0

𝑞 (𝑠) Δ𝑠 = ∫
∞

2

1
𝑠2Δ𝑠 = [−2𝑠 ]

∞

2

= 1 < ∞,

∫
∞

𝑡0

1
𝑟
1
(𝑡) ∫
∞

𝑡

[ 1
𝑟
2
(𝑠) ∫
∞

𝑠

𝑞 (𝑢) Δ𝑢]
1/𝛼

Δ𝑠Δ𝑡

= ∫
∞

2

1
𝑡 ∫
∞

𝑡

[ 1
𝑠2/3 ∫

∞

𝑠

1
𝑢2Δ𝑢]

3/5

Δ𝑠Δ𝑡

= ∫
∞

2

1
𝑡 ∫
∞

𝑡

[ 1
𝑠2/3 ⋅

2
𝑠 ]
3/5

Δ𝑠Δ𝑡

= 23/5 ∫
∞

2

1
𝑡 ∫
∞

𝑡

1
𝑠 Δ𝑠 Δ𝑡 = ∞,

(98)

so (26) holds.
Let 𝛿(𝑡) = 𝑡2, then 𝛿Δ(𝑡) = 3𝑡 ≥ 0. Since

𝑄 (𝑡) = 𝐿𝑞 (𝑡) 𝛿 (𝜎 (𝑡)) ( 𝑘ℎ
2
(𝜏 (𝑡) , 𝑡

0
)

2𝑟
1
(𝜏 (𝑡)) 𝜎 (𝑡))

𝛼

= 1 ⋅ 1𝑡2 ⋅ (2𝑡)
2 ⋅ (𝑘ℎ

2
(𝜏 (𝑡) , 𝑡

0
)

2 ⋅ (2/𝑡) ⋅ 2𝑡 )
𝛼

= 𝑘5/3
8 (ℎ
2
(𝜏 (𝑡) , 𝑡

0
))5/3

≥ 𝑘5/3
8 ℎ
2
(𝜏 (𝑡) , 𝑡

0
) as 𝑡 󳨀→ ∞,

𝑟
2
(𝑡) 𝛿 (𝑡)

(𝛼 + 1)𝛼+1𝑘𝛼2 [
𝛿Δ (𝑡)
𝛿 (𝑡) ]

𝛼+1

[𝜎 (𝑡)𝜏 (𝑡) ]
𝛼
2

= 𝑡2/3 ⋅ 𝑡2
(8/3)8/3 ⋅ 𝑘25/9 ⋅ (

3𝑡
𝑡2 )
8/3

( 2𝑡
𝑡/2)
25/9

= (98)
8/3

⋅ 425/9 ⋅ 𝑘−25/9,

(99)

so that

lim sup
𝑡→∞

∫
𝑡

𝑡0

{𝑄 (𝑠) − 𝑟
2
(𝑠) 𝛿 (𝑠)

(𝛼+1)𝛼+1𝑘𝛼2 [
𝛿Δ (𝑠)
𝛿 (𝑠) ]

𝛼+1

[𝜎 (𝑠)𝜏 (𝑠) ]
𝛼
2

}Δ𝑠

≥ lim sup
𝑡→∞

∫
𝑡

2

{𝑘5/3
8 ℎ
2
(𝜏 (𝑠) , 2) − (98)

8/3

⋅ 425/9 ⋅ 𝑘−25/9}Δ𝑠
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= lim sup
𝑡→∞

{𝑘5/3
8 ∫
𝑡

2

ℎ
2
(𝜏 (𝑠) , 2) Δ𝑠 − (98)

8/3

⋅ 425/9 ⋅ 𝑘−25/9 ⋅ ∫
𝑡

2

Δ𝑠}

= lim sup
𝑡→∞

{𝑘5/3
8 ∫
𝑡

2

2ℎ
2
(𝜏 (𝑠) , 2) 𝜏Δ (𝑠) Δ𝑠 − (98)

8/3

⋅ 425/9 ⋅ 𝑘−25/9 ⋅ ∫
𝑡

2

Δ𝑠}

= lim sup
𝑡→∞

{𝑘5/3
4 [ℎ
3
(𝜏 (𝑡) , 2) − ℎ

3
(1, 2)] − (98)

8/3

⋅ 425/9 ⋅ 𝑘−25/9 ⋅ (𝑡 − 2) }

= lim sup
𝑡→∞

{𝑘5/3
4 [((𝑡/2) − 2) ((𝑡/2) − 4) ((𝑡/2) − 8)

21 + 1]

− (98)
8/3

⋅ 425/9 ⋅ 𝑘−25/9 ⋅ (𝑡 − 2)} = ∞.
(100)

Then by Theorem 8, every solution 𝑥(𝑡) of (97) is either
oscillatory or converges to zero. But the other known results
cannot be applied in (97).
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