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Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine
(SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness.
In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and
applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (𝐷s) and an
approximation (𝐴

3
) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between

each𝐷 subtime series and original monthly streamflow time series are calculated.𝐷s components with high correlation coefficients
(𝐷
3
) are added to the approximation (𝐴

3
) as the input values of the SVMmodel. Secondly, the PSO is employed to select the optimal

parameters, 𝐶, 𝜀, and 𝜎, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow
time series of Tangnaihai Station located in YellowRiver upper stream from January 1956 toDecember 2008.The test results indicate
that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in
situations without formulating models for internal structure of the watershed.

1. Introduction

The accuracy of streamflow forecasting is a key factor for
reservoir operation and water resource management. How-
ever, streamflow is one of the most complex and difficult
elements of the hydrological cycle due to the complexity of
the atmospheric process. The elements affecting streamflow
forecasting precision include catchment, geomorphologic
and climate characteristics, and so forth [1]. The process of
streamflow is extremely complex due to the influence of these
variables and their combinations. Therefore, there are many
forecasting techniques that have been proposed for stream-
flow forecasting [2–4].

Among them, the most popular and widely known
statistical method used in time series forecasting is autore-
gressive integrated moving average (ARIMA) model due
to its superiority of forecasting capabilities and richness of
information on time-related changes [5]. Several studies have
shown that ARIMAcan be trusted as a reliablemodel inwater

resources time series analysis [6]. For example, Lee and Tong
[7] proposed a hybrid model for nonlinear time series fore-
casting by combining ARIMA and genetic programming and
demonstrated the effectiveness of the proposed forecasting
model. But the ARIMA models are a class of linear model
and thus only suitable for capturing linear features of data
time series [8]. In recent years, gray model, artificial neural
network (ANN), and support vector machine (SVM) have
been frequently used to predict the nonlinear time series
and achieved good results [9–11]. For instance, Kişi [12] used
three different ANN techniques, namely, feed forward neural
networks, generalized regression neural networks and, radial
basis ANN in one-month-ahead streamflow forecasting.
However, there are some disadvantages of ANN due to its
network structure, which is hard to determine and usually
established using a trial-and-error approach [13].

Support vector machines (SVM) were suggested by Vap-
nik [14] as one of the soft computational techniques and
are widely used for classification and regression based on
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statistical learning theory (SLT). The basic idea of SVM for
regression is to introduce a kernel function, map the input
data into a high-dimensional feature space by a nonlinear
mapping, and then perform linear regression in the feature
space [5]. Currently, SVM were frequently applied in a
number of different fields, such as fault diagnosis [16], pattern
recognition [17], and classification [18]. In the hydrology con-
text, SVM has been successfully applied to forecast the flood
stage [19–21], to predict future water levels in Lake Erie [22],
and to forecast discharges [23, 24]. Previous studies have
indicated that SVM is an effective method for streamflow
forecasting [5, 23–25].

More recently, the conjunction model of wavelet and
SVM has drawn increasing interest and has displayed advan-
tages over a single SVM model in terms of prediction accu-
racy.Wavelet analysis (WA) is an advancedmethod proposed
by Morlet et al. [26] in signal processing and has attracted
much attention due to its ability to reveal simultaneously both
spectral and temporal information within one signal [27].
The application of WA in the areas of hydrology and water
resource research mainly includes these aspects: identifica-
tion of hydrologic series deterministic components such as
trend, periods, and change points [28–31]; wavelet denoising
in hydrologic series [30, 31]; and hydrologic series simulation
and prediction based on wavelet [27, 32, 33]. Wavelet analysis
can be used to decompose an observed time series (such as
streamflow time series) into various components so that the
new time series can be used as inputs for SVMmodels [34].

SVM implements the principle of structure risk mini-
mization in place of experiential risk minimization, which
makes it have excellent generalization ability in the situation
of small sample. However, the practicability of SVM is
affected by the difficulty of selecting appropriate SVMparam-
eters [35]. At present, themost common parameters selection
method for SVM is the cross validationmethod but it is time-
consuming [36]. Recently, some intelligent algorithms have
been applied for parameters selecting. Compared with cross
validation, genetic algorithm (GA) is less time-consuming
and can obtain the optimal solution well, but the operation
of genetic algorithm is difficult with the steps of choosing,
crossover, and mutation for different optimal problems [37].
As a new global optimizing algorithm, particle swarm opti-
mization (PSO), proposed by Kennedy and Eberhart in 1995,
is based on swarm intelligent by generating a random deci-
sion variable set called “particles” [35]. PSO is a versatile algo-
rithm and can be used to solve different optimizing problems.
In recent years, because of the best global searching ability
and the simple implementing procedure, PSO has been suc-
cessfully applied for function optimization [38], data mining
[39], and other engineering optimization problems [15, 40]
and achieved good results. Therefore, the PSO can be applied
to optimize the parameters of SVM model for streamflow
forecasting in this paper.

This paper is organized as follows. Section 2 introduces
the principle theory of wavelet analysis, parameter selection
method of SVM models based on PSO, and SVM regression
forecasting model. The study area and streamflow time series
analysis are introduced in Section 3.The forecasting results of
the conjunction model with the real streamflow time series

data sets from Tangnaihai hydrology station in China are
analyzed in Section 4. Finally, the conclusion is presented in
Section 5.

2. Methodology

2.1. Support Vector Machine (SVM). The basic idea of SVM
for regression is to introduce a kernel function, map the
input data into a high-dimensional feature space by a non-
linear mapping, and then perform linear regression in the
feature space [5]. Supposing that there is a training dataset
𝐷 = {(x

1
, y
1
), (x
2
, y
2
), . . . , (x
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)} ∈ 𝑅

𝑝
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vector, y is the excepted output, 𝑛 is the number of data, and
𝑝 is the total number of data patterns. By nonlinear mapping
functionB, x is mapped into a feature space in which a linear
estimate function is defined as

y = 𝑓 (x,𝜔) = ⟨𝜔, Φ (x)⟩ + 𝑏; 𝜔, x ∈ 𝑅
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where B(x) represents the high-dimensional feature spaces,
which is nonlinearly mapped from the input space x; 𝜔 and 𝑏

are coefficients that have to be estimated from the input data.
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The first term (1/2)‖𝜔‖
2 is weight vector norm; 𝐶 is

referred to as the regularized constraint determining the
tradeoff between the empirical error and the regularized
term; and 𝜀 is the insensitive loss function.

By using Lagrange multiplier techniques, the minimiza-
tion of (2) leads to the following dual-optimization problem:
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where (𝛼
∗

𝑖
, 𝛼
𝑖
) are coefficients determined by training and

𝐾(x
𝑖
, x
𝑗
) is the kernel function which can be expressed as

inner product:

𝐾(x
𝑖
, x) = Φ(x

𝑖
)
𝑇
Φ (x) . (5)
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The decision function takes the form

𝑓 (𝑥) =

𝑛

∑

𝑖=1
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∗

𝑖
− 𝛼
𝑖
)𝐾 (x, x

𝑖
) + 𝑏. (6)

The selection of an appropriate kernel function plays an
important role in SVM regression since the kernel function
defines the feature space. Gaussian radial basis function
kernel has received significant attention from the machine
learning community. Gaussian radial basis function (RBF)
kernel is defined as

𝐾(x, x
𝑖
) = exp(

−
󵄩󵄩󵄩󵄩x − x

𝑖

󵄩󵄩󵄩󵄩

2

2𝜎2
) . (7)

Here 𝜎 is the kernel parameter.

2.2. Wavelet Analysis. In wavelet analysis, the signals are
analyzed in both the time and the frequency domain by
decomposing the original signals in different frequency
bands using wavelet functions. The wavelet transform (WT)
uses the scalable windowing technique for analyzing local
variation in the time series [41]. WT provides useful decom-
positions of original time series, so that wavelet-transformed
data improve the ability of a forecasting model by capturing
useful information on various resolution levels [42].The time
series data are preprocessed using wavelet transformation
techniques to obtain decomposedwavelet coefficients that are
used as inputs in the forecasting models.

The basic objective of WT is to achieve a complete
timescale representation of localized and transient phenom-
ena occurring at different timescales [4, 43]. The continuous
wavelet transform is defined as the sum over all time of the
signal multiplied by scale and shifted versions of wavelet
function 𝜓:

𝑊(𝑎, 𝑏) =
1

√𝑎
∫

+∞

−∞

𝑓 (𝑥) 𝜓(
𝑥 − 𝑏

𝑎
)𝑑𝑥, (8)

where 𝑎 is a scale parameter; 𝑏 is a position parameter; and 𝜓

corresponds to the complex conjugate.The coefficient plots of
the continuous wavelet transform are precisely the timescale
view of the signal. However, calculating wavelet coefficients
at every possible scale is time-consuming and generates large
amount of information. Thus, the use of the continuous
wavelet transform for forecasting is not practically possible.

In hydrology, observed hydrologic series are often
expressed as discrete series, so the discrete wavelet transform
is usually employed to decompose a hydrologic series into a
set of coefficients and subsignals under different scales, and
then guide other time series analyses [44]. The DWT is
defined as the following form:

𝑓 (𝑡) = ∑𝐶
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where 𝑗 is the dilation or level index, 𝑘 is the translation
or scaling index, and 𝜙

𝑗𝑜,𝑘
is a scaling function of coarse

scale coefficients.𝐶
𝑗𝑜,𝑘

,𝜔
𝑗,𝑘
, is the scaling function of detailed

(fine scale) coefficients and all functions of 𝜓(2𝑗𝑡 − 𝑘) are
orthonormal.

The original time series are decomposed into various
details (𝐷s) and an approximation (𝐴s) at different resolution
levels using DWT. The approximations are the high-scale,
low frequency components of the signal and the details are
the low-scale, high frequency components. Normally, the low
frequency component of the signal (𝐴) is the most impor-
tant part which demonstrates the signal identity [45]. The
choice of wavelet type is an important issue. The Daubechies
wavelets are one of the widely used in wavelet family, which
are written dbN, where db is the “surname” and𝑁 is the order
of thewavelet [46]. Daubechieswavelets exhibit good tradeoff
between parsimony and information richness [34], so in this
study the Daubechies wavelets were employed as the mother
wavelet to decompose the time series.

2.3. Parameters Selection of SVM Based on PSO

2.3.1. The Principle of PSO. PSO, deriving from the research
for the movement of organisms in a bird flocking or fish
schooling, performs searches using a population (called
swarm) of individuals (called particles) that are updated from
iteration to iteration [47, 48]. An equation (velocity update)
controls the swarm in moving around the search space
seeking the optimum state. In each iteration, the algorithm
saves the local optimum and compares it with the global (best
yet) optimum values. Definitely the criteria for being chosen
as an optimum state depend on the fitness of the objective
function. Candidate solutions (decision variables) of any
particle calculate and remember its own fitness. The position
of any particle accelerated towards the global best position by
using (10) and (11) [49]. In any search step 𝑡, the 𝑖th particle
is used to update its candidate solution’s current position
𝑥
𝑖,𝑗
(𝑡) by using local best 𝑝

𝑖,𝑗
(𝑡) and best 𝑝

𝑔,𝑗
(𝑡) position

achieved yet. Consider the following:
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(𝑡 + 1) , 𝑗 = 1, 2, . . . , 𝑑, (11)

where V
𝑖,𝑗

is velocity measures for particles; 𝜔 is inertial
weight controlling velocity direction; 𝑐

1
and 𝑐
2
are acceler-

ation coefficients; 𝑟
1
and 𝑟
2
are random numbers uniformly

distributed between [0, 1]. 𝑥
𝑖,𝑗
is the position of any particle.

2.3.2. Parameters Selection of SVM Based on PSO. In the
SVM regression model, three parameters, namely, 𝐶, 𝜀, and
𝜎, should be identified before forecasting. Therefore, PSO
algorithm is used for optimizing the SVM parameters. The
process of optimizing the SVM parameters with PSO is
presented in Figure 1 and the steps are described as follows
[47].
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Yes

Start

Set scope of three parameters of SVM and
set stopping condition of whole program

No

Initialize PSO particles and
velocities of a population

Evaluate the fitness value

Does it meet the
stopping condition?

Update particle best and global best

Update particle velocity and position

Output optimal parameters of SVM

Figure 1: The process of optimizing the SVM parameters with PSO.

Step 1. Initialization: consider randomly initial particles and
velocities of a population (every particle contains three
variables, namely, 𝐶, 𝜀, and 𝜎).
Step 2. Fitness evaluation: the fitness function of PSO is
shown as follows:

fitness = 𝜂MAPE =
1

𝑚

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑖

󵄨󵄨󵄨󵄨

𝑦
𝑖

, (12)

where 𝜂MAPE is the mean absolute percentage error; 𝑦
𝑖
is the

actual value and𝑦
𝑖
is the predicted value; and𝑚 is the number

of subsets. The solution with a smaller 𝜂MAPE has a smaller
fitness value.
Step 3. Update global and personal best according to fitness
evaluation results.
Step 4. Calculation of velocity: particle flies toward a new
position by calculating the velocity of position change.
Velocity of each particle is calculated by (10).
Step 5. Update position value: each particle moves to its next
position according to (11).
Step 6. Termination: repeat the same procedures from Step 2
to Step 5 until stopping conditions are satisfied.

2.4. Model Evaluation. It is essential to evaluate the perfor-
mance of the models by employing appropriate methods. In

this study, the performance of the models is evaluated by the
indexes of the correlation coefficients (𝑅), root mean squared
error (RMSE), mean absolute error (MAE), and mean
absolute relative error (MARE). These indexes are respec-
tively defined as follows.

Correlation coefficients (𝑅):
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Root mean squared error (RMSE):
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Mean absolute error (MAE):
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Mean absolute relative error (MARE):
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where 𝑦
𝑖
stands for the observed data and 𝑦

𝑖
stands for the

forecasting data. 𝑛 is number of the data.



Journal of Applied Mathematics 5

3. Study Area and Data Analysis

In this study, we examined the data obtained from the
monthly streamflow of the Tangnaihai Hydrological station
located at the upper catchment of the Yellow River in
Qinghai Province of China. Tangnaihai Hydrological station
is the upstream hydrological station of Longyang Gorge
Reservoir which is the largest regulating reservoir in the
upper catchment of the Yellow River, so there are few human
impacts disordering streamflow regular. Location of Tang-
naihai Hydrological station is shown in Figure 2. The Yellow
River catchment covers an area of 95,000 km2.

Themonthly streamflow time series of TangnaihaiHydro-
logical station, consisting of 636 monthly records (January
1956 to December 2008), are used in this study. The dataset
was split up into two parts: training and testing, where the
first dataset consisting of 536 monthly records (January 1956
to August 2000) was used for training, while the final dataset
contains 100 monthly records (September 2000 to Decem-
ber 2008). Training data were used exclusively for model
development and testing data were used to measure the
performance of the model on untrained data. The testing set
was also used to evaluate the forecasting ability of the model
and to compare the proposed model with others.

4. Results Analysis

4.1. Wavelet Decomposition of Streamflow Time Series. The
WT-PSO-SVM model structure is shown in Figure 3. For
the SVM model inputs, the original time series are decom-
posed into subseries with an approximation (𝐴s) with low
frequency and details (𝐷

1
, 𝐷
2
, . . . , 𝐷s) with high frequency

by Daubechies DWT algorithm.
The optimal decomposition level of the streamflow time

series in wavelet analysis plays an important role in pre-
serving the information and reducing the distortion of the
datasets [4].The number of decomposition levels controls the
streamflow approximation in the data. The general rule for
the appropriate decomposition levels is that the largest levels
should be shorter than the size of the testing data [50].

In this case, the largest scales were chosen as three for
the Tangnaihai station streamflow time series. Therefore, the
flowdata sets are decomposed into various details (𝐷s) and an
approximation (𝐴

3
) at three resolution levels (21-22-23) using

db3 DWT shown in Figure 4.The new decomposed subseries
present variations of the original time series on different peri-
ods. MATLAB codes were developed using its library func-
tions to perform wavelet decomposition of the time series
data. The correlation coefficients between each 𝐷 subtime
series and original monthly streamflow time series are given
in Table 1 for the Tangnaihai station. In the table, the 𝐷

𝑡−1

and 𝑄
𝑡
denote the 𝐷 subtime series at time 𝑡 − 1 and

measured streamflow at time 𝑡, respectively.These correlation
values provide information for the determination of effective
wavelet components on streamflow. It can be seen from
Table 1 that the 𝐷

3
has the highest correlation (𝑅 = 0.259)

among𝐷s.The average correlation between𝐴 and𝑄
𝑡
is 0.363.

According to the correlation analysis between 𝐷s and the
original current streamflow data, the effective component

Table 1: The correlation coefficients between subtime series and
original streamflow data.

Discrete wavelet
components

Correlations
𝐷
𝑡−1

and 𝑄
𝑡
𝐷
𝑡−2

and 𝑄
𝑡
𝐷
𝑡−3

and 𝑄
𝑡

Average
𝐷
1

0.103 −0.003 0.105 0.070
𝐷
2

−0.081 0.084 0.328 0.164
𝐷
3

−0.023 0.295 0.459 0.259
𝐴 0.211 0.390 0.488 0.363

(𝐷
3
) is selected. Then, the new series obtained by adding the

effective 𝐷
3
and approximation component are used as an

input combination to the SVMmodel.

4.2. Parameters Selection of SVMBased on PSO. In this study,
RBF is employed as kernel function of SVM forecasting
model, so three parameters, namely, balance parameter 𝐶,
insensitive parameter 𝜀, and kernel function, parameter
𝜎 should be selected. Some researchers have shown that
different kernel functions have little impact on performance,
but kernel function parameter 𝜎 is a key factor affecting
performance of SVM. Among three parameters, 𝜎 precisely
defines structure of highly dimensional space, so it controls
complexity of ultimate solution; 𝐶 determines complexity of
model and punishment level of fitting deviation; 𝜀 indicates
forecasting model’s expectation on estimating functions’
error of sample data, and the larger 𝜀, the less support vector
number and more sparse solution expression. But large 𝜀 can
also reduce accuracy of SVM forecasting model.

For monthly streamflow time series𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
},

the flow data at time 𝑖 + 𝑝 is predicted based on the previous
flow data. The general expression is shown as follows:

𝑥
𝑖+𝑝

= 𝑓 (𝑥
𝑖+1

, 𝑥
𝑖+2

, . . . , 𝑥
𝑖+𝑝−1

) , (17)

where 𝑓 is a nonlinear function indicating relationship of
monthly streamflow time series; 𝑥

𝑖
is streamflow data at time

𝑖, 𝑖 = 1, 2, . . . , 𝑁; and 𝑝 is the forecasting step (month), which
is set as 3 in this paper.𝑁−𝑝monthly streamflow time series
data sets are used for training and testing SVM forecasting
model. The particle swarm optimization is employed to
optimize the best parameters set (𝜎, 𝐶, 𝜀) of SVMmodel [51].

For the Tangnaihai station, three input combinations
based on preceding monthly streamflows are evaluated to
estimate current streamflow value. The input combinations
evaluated in the study are as follows: (i) 𝑄

𝑡−1
, 𝑄
𝑡−2

, and 𝑄
𝑡−3

;
(ii)𝑄
𝑡−1

(𝐴),𝑄
𝑡−2

(𝐴), and𝑄
𝑡−3

(𝐴); (iii)𝑄
𝑡−1

(𝐴+𝐷
3
),𝑄
𝑡−2

(𝐴+

𝐷
3
), and𝑄

𝑡−3
(𝐴+𝐷

3
). In all cases, the output is the discharge

𝑄
𝑡
for the current month.
In the training stage, firstly the parameters 𝜎, 𝐶, and 𝜀

of SVM model are optimized by PSO, the validation error
is measured by (12), and the adjusted parameters with min-
imum validation error are selected as the most appropriate
parameters which are provided in Table 2. Then, the optimal
parameters are utilized to train SVM andWSVMmodels.
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Figure 2: Location map of Yellow River and Tangnaihai station.
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Figure 3: TheWA-LSSVM-PSO model structure.

Table 2: Optimal parameters of SVM and WSVMmodels.

Model Input variables Output Parameters
𝜎 𝐶 𝜀

(i) SVM (i) 𝑄
𝑡−1

, 𝑄
𝑡−2

, and 𝑄
𝑡−3

𝑄
𝑡

0.90156 2.3149 0.01
(ii) WSVM1 (ii) 𝑄

𝑡−1
(𝐴), 𝑄

𝑡−2
(𝐴), and 𝑄

𝑡−3
(𝐴) 0.01 46.8765 0.01

(iii) WSVM2 (iii) 𝑄
𝑡−1

(𝐴 + 𝐷
3
), 𝑄
𝑡−2

(𝐴 + 𝐷
3
), and 𝑄

𝑡−3
(𝐴 + 𝐷

3
) 28.4876 6.0929 0.01
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Figure 4: Decomposed wavelet subtime series components (Ds) of
runoff data of Tangnaihai station.

Before the training process begins, data normalization is
often performed. Runoff time series data was normalized in
the range [0, 1] by the following equation:

𝑦
𝑖
=

𝑥
𝑖
− 𝑥min

𝑥max − 𝑥min
, (18)

where 𝑦
𝑖
represents the normalized data, while 𝑥

𝑖
is the actual

observation value and 𝑥max, 𝑥min, respectively, represent the
maximumandminimumvalue among the actual observation
values.

4.3. Streamflow Forecasting Based on WT-PSO-SVM. As
shown in Table 2, the optimal parameters for SVM (input
model (i)) and WSVM (input models (ii) and (iii)) models
are 𝜎
1
= 0.90156, 𝐶

1
= 2.3149, and 𝜀

1
= 0.01; 𝜎

2
= 0.01,

𝐶
2
= 46.8765, and 𝜀

2
= 0.01; and 𝜎

3
= 28.4876, 𝐶

3
= 6.0929,

and 𝜀
3
= 0.01. The optimal parameters are used to examine

the accuracy of the SVM andWSVM forecastingmodels with
the testing data sets. Table 3 shows the performance results
obtained in the training and testing periods of the SVM and
WSVMmodels for Tangnaihai station.

Results obtained from the three models for 3-month-
advance flow forecasting at Tangnaihai station are presented
in Table 3. Performance of the three models was compared
by evaluating indexes of 𝑅, RMSE, MAE, and MARE. It
is observed that the forecasting accuracy of the WSVM

2

model was much better than that of corresponding SVM
and WSVM

1
models. Comparing the forecasting results of

SVM and WSVM
1
, the 𝑅, RMSE, MAE, and MARE in

the testing period were 0.768–0.613, 317.035–331.420 (m3/s),
247.480–256.368 (m3/s), and 17.81–23.49 (%), respectively.
It is observed that SVM is more superior than WSVM1
because some useful details (𝐷s) of original streamflow
series were eliminated in the model WSVM

1
. Comparing

the forecasting results of SVM and WSVM
2
, the values of

𝑅, RMSE, MAE, and MARE in the testing period were
0.768–0.806, 317.035–243.268, 247.480–173.20, and 17.81–11.52,
respectively. It is obvious from Table 3 and Figure 5 that the
WSVM2 performs better than the SVMmodel. These results
indicated that 𝐷

3
was an effective component for the runoff

series and the 𝐷
1
and 𝐷

2
were the noise that should be

eliminated before streamflow forecasting. Wavelet transform
is a necessary process of data preprocessing for improving
predicting accuracy.

5. Conclusion

This study developed a WT-PSO-SVM hybrid model to
forecast monthly streamflow. The WT-PSO-SVM model
was obtained by combining three methods, discrete wavelet
transform-particle swarm optimization, and support vector
machine regression. The combined model integrated the
advantages of best versatility, robustness and effectiveness
of SVM, the best global searching ability and the simple
implementing procedure of PSO for parameter selection, and
the ability of WT to reveal simultaneously both spectral
and temporal information within one signal. This hybrid
approach was successfully applied to simulate streamflow
time series of Tangnaihai Hydrology station in the Yellow
River.

The streamflow time series were decomposed into various
details (𝐷s) and an approximation (𝐴

3
) at three resolution

levels (21-22-23) by using db3DWTof the wavelet function of
Daubechies 3 (db3).The correlation coefficients between each
𝐷 subtime series and originalmonthly streamflow time series
were calculated. 𝐷s(𝐷

3
) components with high correlation

coefficients (𝑅 = 0.259)were added to the approximation (𝐴)

as the input values of SVM model. The input combinations
evaluated in the study are as follows: (i) 𝑄

𝑡−1
, 𝑄
𝑡−2

, and
𝑄
𝑡−3

; (ii) 𝑄
𝑡−1

(𝐴), 𝑄
𝑡−2

(𝐴), and 𝑄
𝑡−3

(𝐴); (iii) 𝑄
𝑡−1

(𝐴 + 𝐷
3
),

𝑄
𝑡−2

(𝐴 + 𝐷
3
), and 𝑄

𝑡−3
(𝐴 + 𝐷

3
). The PSO was employed to

select the optimal parameters, 𝐶, 𝜀, and 𝜎, of the three input
models which were used to test the accuracy of the SVM
model.Three different input combinations of SVMpredicting
results indicated that the discrete wavelet transform can
significantly increase the accuracy of the SVM model in
forecasting monthly streamflow. In addition, particle swarm
optimization can determine suitable parameters to forecast
streamflow as well. Predicting accuracy was evaluated by
indexes of 𝑅, RMSE,MAE, andMARE. At the Tangnahai sta-
tion, the best predictions belong to WSVM

2
model. WSVM

2

model increased the prediction 𝑅 by 0.038 and 0.193 with
respect to the SVM andWSVM

1
models and reducedMARE

by 6.29% and 11.97%, respectively, in the testing period.These
results indicated that 𝐷

3
was an effective component for the

runoff series and the𝐷
1
and𝐷

2
were the noise that should be

eliminated before streamflow forecasting. Wavelet transform
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Table 3: Forecasting performance indexes of SVM andWSVMmodels in Tangnaihai station.

Model Training Testing
𝑅 RMSE (m3/s) MAE (m3/s) MARE (%) 𝑅 RMSE (m3/s) MAE (m3/s) MARE (%)

(i) SVM 0.853 287.315 196.524 14.33 0.768 317.035 247.480 17.81
(ii) WSVM1 0.548 306.554 217.883 18.24 0.613 331.420 256.368 23.49
(iii) WSVM2 0.808 201.784 141.730 7.46 0.806 243.268 173.20 11.52
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Figure 5: Predicted and observed streamflow in the testing period by SVM, WSVM
1
, and WSVM
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.
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is a necessary process of data preprocessing for improving
predicting accuracy. The test results indicated that PSO-WT-
SVM approach provides a superior alternative to the single
SVMmodel for forecastingmonthly streamflow in situations,
without formulating models for the internal structure of the
watershed.
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