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This study includes the first work about the absorption of a panel absorber under the effects of microperforation, air pumping,
and linear and nonlinear vibrations. In practice, thin perforated panel absorber is backed by a flexible wall to enhance the acoustic
performance within the room. The panel is easily excited to vibrate nonlinearly and the wall can vibrate linearly. However, the
assumptions of linear panel vibration and nowall vibration are adopted inmany research works.The development of the absorption
formula is based on the classical approach and the electroacoustic analogy, in which the impedances of microperforation, air
pumping, and linear and nonlinear vibrations are in parallel and connected to that of the air cavity in series. Unlike those finite
element, numerical integration, and multiscale solution methods and so forth, the analytic formula to calculate the absorption of a
panel absorber does not require heavy computation effort and is suitable for engineering calculation purpose.The theoretical result
obtained from the proposed method shows reasonable agreement with that from a previous numerical integration method. It can
be concluded that the overall absorption bandwidth of a panel absorber with an appropriate configuration can be optimized and
widened by making use of the positive effects of microperforation, air pumping, and panel vibration.

1. Introduction

Numerous studies of structural-acoustic interaction have
been carried out in recent decades (e.g., [1–6]). Particularly,
the topics of microperforated panel and panel absorber have
attracted the interest of many researchers. It is because (1)
microperforated panel and panel absorber can be made of
any durable materials, (2) their maintenance is relatively
simple, and (3) microperforated panel requires small space to
achieve high sound absorption when compared with typical
foam or porous materials. Acoustic theories for these two
treatments were developed by Mulholland and Parbrook [7],
Ford and McCormick [8], and Maa [9, 10]. According to the
assumptions of the previous studies, the wall behind a panel
absorber was considered as rigid panel (i.e., no vibration) and
the panel absorber was considered to vibrate linearly (in fact,
thin panels are easy to vibrate nonlinearly). Although many
linear structural-acoustic or nonlinear structural vibration
problems had been solved (e.g. [11–17]), very limited studies

considered the nonlinear vibration effect on the sound
absorption performance of a panel absorber. In fact, it is
more appropriate to employ nonlinear approach to analyze
the vibration of a thin panel. There are five of those limited
nonlinear structural-acoustic research works [18–22], which
focused on the natural frequencies of nonlinear structural-
acoustic systems, and the sound absorption, radiation, and
transmission of nonlinear flat/curved panels.These works are
relevant to the nonlinear structural-acoustic problem han-
dled in this paper, but the researchers adopted the solution
methods which required heavy computational efforts (e.g.,
finite element method, numerical integration method, and
harmonic balancemethod). Other solutionmethods for large
amplitude structural vibrations and nonlinear oscillations
(e.g., the method of multiple scales, the method of normal
forms, the method of Shaw and Pierre, and the method of
King and Vakakis [23–27]) also require relatively tedious
solution implementation and heavy computational efforts. In
[28], the simple and straightforward electroacoustic analogy
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was adopted for modelling of the sound absorption of a
panel absorber. Besides, the air pumping effect (or Helmholtz
resonance effect) has beenmentioned in many textbooks and
articles (e.g., [29]), but it has not been incorporated into the
research problem of nonlinear panel absorber. In this paper,
it focuses on the development of the analytic absorption
formula of a panel absorber which considers the four effects
(i.e.,microperforation, air pumping, and linear and nonlinear
vibrations).

2. Analytic Formulation

2.1. Nonlinear Panel Vibration and Liner Wall Vibration.
Figure 1 shows the proposed panel absorber subject to the
effects of microperforation, air pumping, and linear and
nonlinear vibrations. Firstly, the impedances of the nonlinear
panel and linear wall are derived in this subsection. Accord-
ing to the formulation of Chu and Herrmann [30], the gov-
erning equation for the nonlinear vibration of a rectangular
panel subject to uniformly distributed harmonic excitation
can be expressed in the following form (see Appendix A for
more):

𝜌
𝑑
2
𝜀

𝑑𝜏2
+ 𝜌𝜔
2

𝑜
𝜀 + 𝛽𝜀

3
+ 𝐹 (𝜏) = 0, (1)

where

𝐹(𝜏) = 𝐹
𝑜,𝑚𝑛

sin(𝜔𝜏) =modal harmonic excitation,

𝐹
𝑜,𝑚𝑛

= 𝐹
𝑜
Λ
𝑚𝑛

= 𝜆𝜌𝑡𝑔Λ
𝑚𝑛

= modal excitation
magnitude,

𝐹
𝑜
= 𝜆 𝜌𝑡𝑔 = physical excitation magnitude,

𝑔 = gravity acceleration (9.81ms−2),

𝜏 = time,

𝜆 = dimensionless excitation parameter,

Λ
𝑚𝑛
=

(∫
𝑏

0
∫
𝑎

0
sin (𝑚𝜋𝑥/𝑎) sin (𝑛𝜋𝑦/𝑏) 𝑑𝑥 𝑑𝑦)

∫
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0
∫
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0
[sin (𝑚𝜋𝑥/𝑎) sin (𝑛𝜋𝑦/𝑏)]2𝑑𝑥 𝑑𝑦

= modal coefficient,

(2)

𝜔 = excitation frequency,

𝜔
𝑜
= linear resonant frequency of the (𝑚, 𝑛) mode,

𝑚, 𝑛 = structural mode numbers,
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𝐸𝑡
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= nonlinear stiffness coefficient,
(3)

𝑟 = 𝑎/𝑏 is the aspect ratio; 𝐸 is Young’s modulus; 𝜌 is
the surface density; ] is Poisson’s ratio; and 𝑡, 𝑎, and 𝑏
are the thickness, length, and width.

Consider the approximation of 𝜀 = 𝐴 cos(𝜔𝜏) in (1). Then

3

4
𝛽𝐴
3
+ 𝜌 (𝜔

2

𝑜
− 𝜔
2
)𝐴 + 𝐹

𝑜,𝑚𝑛
= 0, (4)

⇒

𝐴
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3𝛽
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2
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− 𝜔
2
)𝐴 +

4

3𝛽
𝐹
𝑜,𝑚𝑛

= 0, (5)

where 𝐴 =modal vibration amplitude.
For simplicity, let𝑝 = (4/3𝛽)𝜌(𝜔2

𝑜
−𝜔
2
), 𝑞 = (4/3𝛽)𝐹

𝑜,𝑚𝑛
,

and 𝐴 = 𝐵 − (𝑝/3𝐵) (i.e., Vieta’s substitution [31]). Equation
(5) can be rewritten as

𝐵
3
+ 𝑞 −

𝑝
3

27𝐵3
= 0, (6)

⇒

𝐵
6
+ 𝑞𝐵
3
−
𝑝
3

27
= 0. (7)

If 𝐵3 is considered as an independent unknown, (7) is a
“modified” quadratic equation. Then, the analytic formulas
for the cubic solutions are given below:
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where Θ = √(27𝑞)
2
+ 4(3𝑝)

3,Ω = 27𝑞.
In the next step, the nonlinear stiffness can be defined as

(3/4)𝛽𝐴
2 and overall panel stiffness is 𝜌𝜔2

𝑜
+ (3/4)𝛽𝐴

2. The
panel impedance of the (𝑚, 𝑛) mode is given by

𝑍
𝑃,𝑚𝑛

=
𝐹
𝑜,𝑚𝑛

𝑉
𝑃,𝑚𝑛

=

2𝜌𝜉𝜔𝜔
𝑁
+ 𝑗 [𝜌 (𝜔

2
− 𝜔
2

𝑜
) − (3/4) 𝛽𝐴

2
]

𝜔
,

(9)

where 𝑗 = √−1 = complex number; 𝜉 is the panel damping
ratio. 𝑉

𝑃,𝑚𝑛
is the modal panel velocity. Note that 𝜔

𝑁
is
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Figure 1: A panel absorber subject to the effects of microperforation, air pumping, and linear and nonlinear vibrations.

the nonlinear peak frequency, instead of the linear natural
frequency, 𝜔

𝑜
in [32] (see Appendix B for the derivation of

𝜔
𝑁
).When it is the case of small amplitude vibration or linear

vibration, 𝜔
𝑁
is equal to 𝜔

𝑜
.

Consider the overall panel velocity contributed from the
modal velocities and find the overall panel impedance:

𝑉
𝑃
=

𝑀

∑

𝑚

𝑁

∑

𝑛

𝐹
𝑜
Λ
𝑚𝑛
Λ
󸀠

𝑚𝑛

𝑍
𝑃,𝑚𝑛

, (10)

⇒

𝑍
𝑃
=
𝐹
𝑜

𝑉
𝑃

= (

𝑀

∑

𝑚

𝑁

∑

𝑛

Λ
𝑚𝑛
Λ
󸀠

𝑚𝑛

𝑍
𝑃,𝑚𝑛

)

−1

, (11)

where Λ
󸀠

𝑚𝑛
= (∫

𝑏

0
∫
𝑎

0
sin(𝑚𝜋𝑥/𝑎) sin(𝑛𝜋𝑦/𝑏)𝑑𝑥 𝑑𝑦)/𝑎𝑏.

According to [33], the sound absorption of two linearly
vibrating plates with different boundary conditions was very
close. It was concluded that the boundary condition would
not affect the sound absorption significantly.That is why only
one boundary condition case is considered here.

Consider the linear case (or small amplitude case) in
the model representing the panel vibration and the corre-
sponding modal and overall panel impedances (i.e., (9), (11)).
It is noted that, for the linear vibration, the fundamental
harmonic balance can lead to the exact solution (no higher
harmonic terms are required). Hence the modal and overall
wall impedances are given below:

𝑍
𝑊,𝑚𝑛

=
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𝜔
,

(12)

𝑍
𝑊
= (

𝑀

∑

𝑚

𝑁
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𝑛

Λ
𝑚𝑛
Λ
󸀠

𝑚𝑛

𝑍
𝑊,𝑚𝑛

)

−1

, (13)

where 𝜉
𝑊
, 𝜌
𝑊
, and 𝜔

𝑊
are the wall damping factor, density,

and natural frequency

2.2. Air Pumping (Helmholtz Resonance). In Figure 1, the
impedance of the air pumping along the tubemounted on the

panel absorber is obtained here. The differential equation for
the air mass pumping in/out along the tube is given by [29]

𝜌
𝑎
𝐿
󸀠 𝑑
2
Λ

𝑑𝜏2
+
(𝑅
𝑟
+ 𝑅
𝑤
)

𝑆

𝑑Λ

𝑑𝜏
+ 𝑃 (𝜏) = 0, (14)

where Λ = air mass displacement, 𝑃(𝜏) = acoustic pressure
excitation, 𝑅

𝑟
= 𝜌
𝑎
𝑐
𝑎
𝑘
2
𝑆
2
/4𝜋 = damping due to radiation

resistance, 𝑅
𝑤
= 2𝜌
𝑎
𝐿
󸀠
𝑆𝛼
𝑤
= damping due to thermoviscous

resistance, 𝐿󸀠 = 𝐿 + 1.4𝑎
𝑡
= effective tube length, 𝛼

𝑤
=

(1/𝑎
𝑡
𝑐
𝑎
)(𝜂𝜔/2𝜌

𝑎
)
0.5
(1 + (𝛾/√Pr)) = absorption coefficient for

wall losses, and 𝜌
𝑎
is the air density; 𝐿󸀠 is the effective length

of the tube with unflanged outer end; 𝑘 is the wave number;
𝐿 is the tube length; 𝑎

𝑡
is the radius of the tube; 𝑆 is the cross

section area of the tube; 𝜂 is the air viscosity; 𝛾 is the ratio of
specific heat; Pr is Prandtl number.

Similar to the overall panel impedance in (9), the
impedance of air pumping along the tube is given below:

𝑍
󸀠

𝐻
=
((𝑅
𝑟
+ 𝑅
𝑤
) /𝑆) 𝜔 + 𝑗𝜌

𝑎
𝐿
󸀠
𝜔
2

𝜔
. (15)

Using (15), the air mass velocity is given by

𝑍
󸀠

𝐻
=
𝑃
𝑜

𝑉󸀠
𝐻

󳨐⇒ 𝑉
󸀠

𝐻
=
𝑃
𝑜

𝑍󸀠
𝐻

, (16)

where 𝑃
𝑜
= acoustic pressure magnitude.

Consider the average velocity over the panel surface

𝑉
𝐻
= 𝑉
󸀠

𝐻
𝜎
𝐻
, (17)

where 𝜎
𝐻
= the ratio of tube area to panel area.

Then the overall impedance of air pumping is obtained by
substituting (17) into (16):

𝑍
𝐻
=
𝑍
󸀠

𝐻

𝜎
𝐻

. (18)

2.3. Microperforation. In Figure 1, the impedance of the
microholes over the panel surface is obtained here. According
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to [9, 10], the real and imaginary parts of the acoustic
impedance of a microhole are given below:

𝑍
󸀠

𝑀,𝑅
= 𝜌
𝑎
𝑐
𝑎
(0.147

𝑡

𝑑2
)(√9 +

100𝑑
2
𝑓

32
+ 1.768√𝑓

𝑑
2

𝑡
) ,

(19a)

𝑍
󸀠

𝑀,𝐼
= 𝜌
𝑎
𝑐
𝑎
1.847 𝑓𝑡(1 +

1

√9 + 50𝑑2𝑓

+ 0.85
𝑑

𝑡
) ,

(19b)

where 𝑍󸀠
𝑀
= 𝑍
󸀠

𝑀,𝑅
+ 𝑗𝑍
󸀠

𝑀,𝐼
= the impedance of a microhole,

𝑓 is frequency, 𝑡 is panel thickness, and 𝑑 is the perforation
diameter. 𝜌

𝑎
and 𝑐
𝑎
are air density and sound speed.

Then, the overall impedance of all microholes over the
panel is given by

𝑍
𝑀
=
𝑍
󸀠

𝑀

𝜎
, (20)

where 𝜎 is the perforation ratio.

2.4. Air Cavity. In Figure 1, the impedance of the air cavity
is obtained here. The acoustic velocity potential within a
rectangular cavity is given by the following homogeneous
wave equation [1]:

∇
2
𝜙 −

1

𝑐2
𝑎

𝜕
2
𝜙

𝜕𝜏2
= 0, (21)

where 𝜙 is the velocity potential function.
The air particle velocities in the 𝑥, 𝑦, and 𝑧 direc-

tions and pressures within the air cavity can be given by
𝜕𝜙/𝜕𝑥, 𝜕𝜙/𝜕𝑦, 𝜕𝜙/𝜕𝑧, and −𝜌

𝑎
(𝜕𝜙/𝜕𝜏), respectively.

The boundary conditions of the rectangular cavity to be
satisfied are

𝜕𝜙

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0
=
𝜕𝜙

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑎
= 0; (22a)

𝜕𝜙

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0

=
𝜕𝜙

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑏

= 0, (22b)

𝜕𝜙

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0

= 0; (22c)

𝜕𝜙

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=−𝐷
= 𝑉
𝐷
, (22d)

where 𝑎 and 𝑏 are the length and width of the rectangular
cavity or the panel and 𝑉

𝐷
is the average velocity at 𝑧 =

𝐷 = cavity depth. Note that the cavity impedance of no wall
vibration is derived here and used into the sound absorption
formulation in the next subsection which can consider both
the panel and wall vibration effects and is derived using the
electroacoustic analogy.

By applying the boundary conditions in (22a) and (22b),
the solution of (21) can be expressed as

𝜙 =

𝑈

∑

𝑢=0

𝑊

∑

𝑤=0

[𝐿
𝑢𝑤

cosh (𝜇
𝑢𝑤
𝑧) + 𝑁

𝑢𝑤
sinh (𝜇

𝑢𝑤
𝑧)]

× cos(𝑢𝜋𝑥
𝑎
) cos(

𝑤𝜋𝑦

𝑏
) 𝑒
𝑖𝜔𝜏
,

(23)

where 𝜇
𝑢𝑤

= √((𝑢𝜋/𝑎)
2
+ (𝑤𝜋/𝑏)

2
) − (𝜔/𝑐

𝑎
)
2, 𝑢 and 𝑤 are

the acoustic mode numbers, 𝑈 and 𝑊 are the numbers of
acoustic modes used in the 𝑥 and 𝑦 directions, and 𝐿

𝑢𝑤
and

𝑁
𝑢𝑤

are coefficients to be determined in the following step.
Substituting (23) into (22c) and (22d) gives

𝜕𝜙

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0

= 0 󳨐⇒ 𝑁
𝑢𝑤
= 0, (24a)

𝜕𝜙

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝐷

= 𝑉
𝐷
𝑒
𝑖𝜔𝜏
󳨐⇒ 𝐿

𝑢𝑤

= −
∫
𝑎

0
∫
𝑏

0
𝑉
𝐷
cos (𝑢𝜋𝑥/𝑎) cos (𝑤𝜋𝑦/𝑏) 𝑑𝑥 𝑑𝑦
𝜅
𝑢𝑤
𝜇
𝑢𝑤

sinh (𝜇
𝑢𝑤
𝐷)

,

(24b)

where 𝜅
𝑢𝑤
= ∫
𝑎

0
∫
𝑏

0
cos (𝑢𝜋𝑥/𝑎)2 cos (𝑤𝜋𝑦/𝑏)2𝑑𝑥 𝑑𝑦.

By inputting (24a) and (24b) into (23), the pressure at 𝑧 =
𝐷 is obtained and given below:

𝐹
𝐷

=

𝑈

∑

𝑢=0

𝑊

∑

𝑤=0

[𝑗𝜌
𝑎
𝜔
coth (𝜇

𝑢𝑤
𝐷)

𝜅
𝑢𝑤
𝜇
𝑢𝑤

× ∫

𝑎

0

∫

𝑏

0

𝑉
𝐷
cos(𝑢𝜋𝑥

𝑎
) cos(

𝑤𝜋𝑦

𝑏
) 𝑑𝑥 𝑑𝑦]

× cos(𝑢𝜋𝑥
𝑎
) cos(

𝑤𝜋𝑦

𝑏
) .

(25)

The average pressure force at 𝑧 = 𝐷 is then given by taking
integration over the panel area

𝐹
𝐷
=
∫
𝑎

0
∫
𝑏

0
𝐹
𝐷
cos (𝑢𝜋𝑥/𝑎) cos (𝑤𝜋𝑦/𝑏) 𝑑𝑥 𝑑𝑦

𝑎𝑏

= 𝑉
𝐷
𝑗𝜌
𝑎
𝜔

𝑈

∑

𝑢=0

𝑊

∑

𝑤=0

[
𝜅
󸀠

𝑢𝑤

𝜅
𝑢𝑤

coth (𝜇
𝑢𝑤
𝐷)

𝜇
𝑢𝑤

] ,

(26)

where 𝜅󸀠
𝑢𝑤
= (∫
𝑎

0
∫
𝑏

0
cos(𝑢𝜋𝑥/𝑎) cos(𝑤𝜋𝑦/𝑏)𝑑𝑥 𝑑𝑦)

2

/𝑎𝑏.
Finally, the impedance of the air cavity is given by

𝑍cav =
𝐹
𝐷

𝑉
𝐷

= 𝑗𝜌
𝑎
𝜔

𝑈

∑

𝑢=0

𝑊

∑

𝑤=0

[
𝜅
󸀠

𝑢𝑤

𝜅
𝑢𝑤

coth (𝜇
𝑢𝑤
𝐷)

𝜇
𝑢𝑤

] . (27)

Note that since even pressure distribution is considered, then
𝑢, 𝑤 = 0, 2, 4, . . .. If 𝑎 and 𝑏 are less than 0.3m, then the
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frequencies of the fundamental resonances parallel to the
cavity length or width are higher than 1000Hz (note that
1000Hz is not within the frequency range concerned in this
study). Then, in this case, only the mode numbers, 𝑢 = 0 and
𝑤 = 0, are considered. The impedance can be approximated
by

𝑍cav ≈ −𝑗𝜌𝑎𝜔cot(
𝜔

𝑐
𝑎

𝐷) . (28)

2.5. Electroacoustic Analogy. According to [34], the acoustic
impedance of a double panel absorber can be analogous to
that of the electrical circuit. The acoustic impedance is given
below:

𝑍dou = 𝑍𝑝,1 + 𝑍cav,1 +
(𝑍cav,1)

2

𝑍
𝑝,2
+ 𝑍cav,1 + 𝑍cav,2

, (29)

where 𝑍
𝑝,1

and 𝑍
𝑝,2
= acoustic impedance of the 1st and 2nd

panels; 𝑍cav,1 and 𝑍cav,2 = acoustic impedance of the 1st and
2nd cavities.

If the impedance of the 2nd cavity is set to zero, that is,
equivalent to the case of a panel absorber backed by a flexible
wall, the overall impedance in (29) is rewritten as

𝑍
𝑜
= 𝑍com + 𝑍cav +

(𝑍cav)
2

𝑍
𝑊
+ 𝑍cav

, (30)

where 𝑍com = (𝑍
𝑀
𝑍
𝑃
𝑍
𝐻
)/(𝑍
𝑀
𝑍
𝑃
+ 𝑍
𝑃
𝑍
𝐻
+ 𝑍
𝐻
𝑍
𝑀
) =

combined impedance. 𝑍
𝑀
= impedance of the microperfo-

ration;𝑍
𝑃
= acoustic impedance of the panel absorber;𝑍

𝐻
=

impedance of the air pumping; 𝑍
𝑊
= impedance of the wall.

If the wall is perfectly rigid (i.e., no vibration), the natural
frequency of wall𝜔

𝑊
in (12)→ ∞. Hence,𝑍

𝑊,𝑚𝑛
,𝑍
𝑊
→ ∞

and (𝑍cav)
2
/(𝑍
𝑊
+ 𝑍cav) ≈ 0. Equation (30) can be rewritten

as

𝑍
𝑜
= 𝑍com + 𝑍cav. (31)

Then the absorption coefficient of the absorber 𝛼
𝑜
for normal

incidence can be calculated by the well-known formula (see
[29]):

𝛼
𝑜
=

4Re (𝑍
𝑜
)

(1 + Re(𝑍
𝑜
))
2

+ (Im(𝑍
𝑜
))
2
. (32)

3. Results and Discussions

Using (32), the sound absorption is obtained for the cases
considered in this section. Each panel absorber is made
of aluminum panel. The material properties are Young’s
modulus 𝐸 = 7 × 10

10N/m2, Poisson’s ratio ] = 0.3, and
mass density 𝜌 = 2700 kg/m3. The sound speed and air
density are 340m/s and 1.2 kg/m3, respectively. Air viscosity
𝜂 = 1.85 × 10

−5 Pa ⋅ s; the ratio of specific heat 𝛾 = 1.402;
Prandtl number Pr = 0.71. Various excitation levels, damping
factors, panel sizes, and so forth are considered and their
effects on the sound absorption performances are studied in
the following paragraphs.
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Figure 2: Comparison between the results from the proposed
classical and numerical methods (𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1 m,
𝐷 = 250mm, 𝜉 = 0.01, 𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 5.8).
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Figure 3: Comparison between the results from the proposed
classical and numerical methods (𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m,
𝐷 = 250mm, 𝜉 = 0.01, 𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 2.9).

Figures 2 and 3 present comparisons between the fre-
quency-absorption curves obtained from the proposed
method and numerical integration method [32]. The results
show that there is an absorption peak due to the microperfo-
ration around 178Hz. The well-known “jump phenomenon”
can be seen on both curves. The results obtained from the
two methods are generally in reasonably good agreement,
although some deviations are observed at the absorption
peaks around 422Hz in Figure 2 and 390Hz in Figure 3.
Besides, small differences between the jump frequencies (i.e.,
464 and 470Hz in Figure 2 and 410 and 420Hz in Figure 3)
are also found.The deviations are caused by that the damping
term in the proposed formulation is proportional to the
nonlinear peak frequency 𝜔

𝑁
, instead of the linear natural

frequency 𝜔
𝑜
, which was adopted in [32]. The excitation

level in Figure 3 is lower than that in Figure 2. Therefore, the
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structural vibration in Figure 3 is less nonlinear (i.e., 𝜔
𝑁
is

closer to 𝜔
𝑜
) and the deviation between the peak values from

the two methods is smaller. Note that in [32], the numerical
integration method did not deliver the unstable solutions.
Therefore, only stable results obtained by the proposed
method in Figure 3 are compared with the numerical results
in [32]. Besides, the unstable results are not obtainable in
practical environments and not very useful for practical
engineering purpose.

Figures 4(a)–4(c) present the sound absorption plotted
against the excitation frequency for various panel resonant
frequencies. In each of these three figures, there are two
nonlinear solution types. The “jump up” or “jump down”
solution is obtained by sweeping the excitation frequency
from “high to low” or “low to high”. In Figures 4(a)–4(c), the
linear (1,1) mode panel resonant frequencies of the three cases
are 387Hz, 172Hz, and 97Hz, respectively. The absorption
peak frequency due to the microperforation effect is 178Hz.
It can be seen that (1) if the panel resonant frequency
is higher than the absorption peak frequency due to the
microperforation effect, the panel vibration can enhance
and widen the absorption bandwidth and (2) if the panel
resonant frequency is close to or lower than the absorption
peak frequency, the panel vibration degrades the absorption
performance and the peak absorption is deteriorated.

Figures 5(a) and 5(b) present the sound absorption plot-
ted against the excitation frequency for various excitation lev-
els. The “jump down” solutions are shown in Figure 5(a) (i.e.,
sweeping the excitation frequency from “high to low”) while
the “jump up” solutions are in Figure 5(b) (i.e., sweeping
the excitation frequency from “low to high”). The absorption
peak around 178Hz is due to the microperforation effect and
is not significantly affected by the excitation level. It is noted
that in the cases of 𝜅 = 1, there is no jump phenomenon as the
excitation force is quite small (i.e., linear case). Besides, it can
be seen that (1) in Figure 5(a) the higher the excitation force,
the wider the absorption peak due to the panel vibration
and (2) in Figure 5(b) if the panel vibration is linear (or low
excitation level), the absorption peak is very narrow and not
very useful for widening the absorption bandwidth. Figures
6(a) and 6(b) present the sound absorption plotted against the
excitation frequency for various damping ratios. The “jump
down” solutions are shown in Figure 6(a) while the “jump
up” solutions are in Figure 6(b). The absorption peak due
to the microperforation effect is not significantly affected by
the panel damping ratio. Besides, it can be seen that, (1) in
Figure 6(a), the higher the damping ratio, the narrower the
absorption peak due to the “jump down” panel vibration and
the lower the “jump down” frequency and, (2) in Figure 6(b),
the absorption peak due to the “jump up” panel vibration is
not significantly affected by the damping ratio.

Figures 7(a) and 7(b) present the sound absorption and
vibration amplitude plotted against the excitation frequency.
Note that this case does not consider any perforation effect
and other effects. There are two peaks in each of the two
figures, which are due to the (1,1) and (1,3) mode resonances,
respectively. It can be seen that the peaks due to the (1,1)
mode resonance are more nonlinear. As the two peaks are far
from each other, no strong mode coupling effect is induced.

In Figure 7(b) the vibration amplitude is almost linearly
increasing from 100Hz to 286Hz while the sound absorption
is almost linearly increasing from 100Hz to 150Hz only and
slowly and nonlinearly increasing from 150Hz to 286Hz.
Besides, the absorption peak due to the (1,3) mode resonance
is much more significant than the vibration peak. It can
be implied that higher mode responses are important for
absorption but not for vibration.

Figures 8(a) and 8(b) present the sound absorption
plotted against the excitation frequency and show the effects
of air pumping (Helmholtz resonance) andmicroperforation.
In Figure 8(a), the peak frequencies of air pumping and
microperforation are around 100Hz. It can be seen that the
absorption bandwidth of the case with both effects is much
wider and its peak absorption is much higher than the cases
with air pumping or microperforation only. The two effects
can interact with each other and significantly enhance the
absorption performance. In Figure 8(b), the peak frequencies
of air pumping and microperforation are quite far from each
other. The enhancement of the absorption performance due
to the two effects is not as good as that in Figure 8(a).

Figures 9(a) and 9(b) present the sound absorption
plotted against the excitation frequency for various damping
ratios and show the effect of linear wall vibration. The
peak frequencies of wall panel and microperforation are
around 80Hz and 178Hz, respectively. It can be seen that
the wall vibration does not affect the absorption performance
significantly and just induces an abrupt change around 80Hz.
Themagnitude of the abrupt change depends on the damping
ratio (i.e., the higher the damping ratio, the smaller the abrupt
change). Figures 10(a) and 10(b) present the sound absorption
plotted against the excitation frequency and show the effects
of microperforation and linear and nonlinear vibrations. It
can be seen that the effects ofmicroperforation and nonlinear
panel vibration are positive and significant while the effect of
linear wall vibration is negative but not significant.

4. Conclusions

In this study, the analytic absorption formulation has been
developed for the panel absorber under the effects of microp-
erforation, air pumping, and linear and nonlinear vibration.
From the predictions, it can be concluded that (1) if the
panel resonant frequency is higher than the absorption
peak frequency due to the microperforation effect, the panel
vibration can enhance and widen the absorption bandwidth;
(2) if the panel resonant frequency is close to or lower
than the absorption peak frequency, the panel vibration
degrades the absorption performance or the peak absorption
is deteriorated; (3) the higher the excitation force, the wider
the absorption peak due to the panel vibration; (4) if the panel
vibration is linear (or low excitation level), the absorption
peak is very narrow and not very useful for widening the
absorption bandwidth; (5) the absorption bandwidth of the
case with the air pumping and microperforation effects is
much wider and its peak absorption is much higher than
the cases with any one of these two effects. If the peak
frequencies of air pumping andmicroperforation are far from
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Figure 4: (a) The effect of the (1,1) mode vibration (𝜔
𝑜
= 387.25 × 2𝜋Hz, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m, 𝐷 = 250mm, 𝜉 = 0.01, 𝜎 = 0.5%,

𝑑 = 0.4mm, and 𝜅 = 10). (b) The effect of the (1,1) mode vibration (𝜔
𝑜
= 172.11 × 2𝜋Hz, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.15m, 𝐷 = 250mm, 𝜉 = 0.01,

𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 10). (c) The effect of the (1,1) mode vibration (𝜔
𝑜
= 96.81 × 2𝜋Hz, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.2m, 𝐷 = 250mm,

𝜉 = 0.01, 𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 10).
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Figure 5: (a) The effect of excitation level (low to high frequency excitation, 𝜔
𝑜
= 387.25 × 2𝜋Hz, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1 m, 𝐷 = 250mm,

𝜉 = 0.01, 𝜎 = 0.5%, and 𝑑 = 0.4mm). (b) The effect of excitation level (high to low frequency excitation, 𝜔
𝑜
= 387.25 × 2𝜋𝐻𝑧, 𝑡 = 0.8mm,

𝑎 = 𝑏 = 0.1m,𝐷 = 250mm, 𝜉 = 0.01, 𝜎 = 0.5%, and 𝑑 = 0.4mm).
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Figure 6: (a) The effect of damping ratio (low to high frequency excitation, 𝜔
𝑜
= 387.25 × 2𝜋Hz, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m, 𝐷 = 250mm,

𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 10). (b) The effect of damping ratio (high to low frequency excitation, 𝜔
𝑜
= 387.25 × 2𝜋Hz, 𝑡 = 0.8mm,

𝑎 = 𝑏 = 0.1m,𝐷 = 250mm, 𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 10).
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Figure 7: (a) The absorption peaks due to the (1,1) and (1,3) mode vibrations (low to high frequency excitation, 𝑡 = 0.5mm, 𝑎 = 𝑏 = 0.15m,
𝐷 = 250mm, and 𝑘 = 5). (b) The vibration peaks due to the (1,1) and (1,3) mode vibrations (low to high frequency excitation, 𝑡 = 0.5mm,
𝑎 = 𝑏 = 0.15m,𝐷 = 250mm, and 𝜅 = 5).
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Figure 8: (a) The effects of the air pumping and microperforation (𝑡 = 0.3mm, 𝑎 = 𝑏 = 0.1m, 𝐷 = 150mm, 𝜎 = 0.5%, 𝑑 = 0.3mm,
𝐿 = 10mm, and 𝑎

𝑡
= 5mm). (b) The effects of the air pumping and microperforation (𝑡 = 0.3mm, 𝑎 = 𝑏 = 0.1m, 𝐷 = 100mm, 𝜎 = 0.28%,

𝑑 = 0.3mm, 𝐿 = 10mm, and 𝑎
𝑡
= 5mm).



Abstract and Applied Analysis 9

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700
Frequency (Hz)

Ab
so

rp
tio

n 
co

effi
ci

en
t,
𝛼
o

Peak freq. = 178Hz

Dip freq. = 80Hz

(a)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700
Frequency (Hz)

Ab
so

rp
tio

n 
co

effi
ci

en
t,
𝛼
o

Peak freq. = 178Hz

Dip freq. = 80Hz

(b)

Figure 9: (a) The effects of linear wall vibration and microperforation (𝜔
𝑊
= 80 × 2𝜋Hz, 𝜌

𝑤
= 240/m2, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m,

𝐷 = 250mm, 𝜉
𝑊
= 0.02, 𝜎 = 0.5%, and 𝑑 = 0.4mm). (b) The effects of linear wall vibration and microperforation (𝜔

𝑊
= 80 × 2𝜋Hz,

𝜌
𝑤
= 240/m2, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m,𝐷 = 250mm, 𝜉

𝑊
= 0.01, 𝜎 = 0.5%, and 𝑑 = 0.4mm).
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Figure 10: (a) The effects of microperforation and linear and nonlinear vibrations (low to high frequency excitation, 𝜔
𝑜
= 387.25 × 2𝜋Hz,

𝜔
𝑊
= 80 × 2𝜋Hz, 𝜌

𝑤
= 240 kg/m2, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m, 𝐷 = 250mm, 𝜉 = 𝜉

𝑊
= 0.01, 𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 10). (b) The

effects of microperforation and linear and nonlinear vibrations (high to low frequency excitation, 𝜔
𝑜
= 387.25 × 2𝜋Hz, 𝜔

𝑊
= 80 × 2𝜋Hz,

𝜌
𝑤
= 240 kg/m2, 𝑡 = 0.8mm, 𝑎 = 𝑏 = 0.1m,𝐷 = 250mm, 𝜉 = 𝜉

𝑊
= 0.01, 𝜎 = 0.5%, 𝑑 = 0.4mm, and 𝜅 = 10).

each other, the enhancement of the absorption performance
is small; and (6) the wall vibration does not affect the
absorption performance significantly and just induces a small
abrupt change on the absorption bandwidth around the wall
resonant frequency.

Appendices

A. Derivation of the Nonlinear
Differential Equation

The explanation of how the formulation of a nonlinear
panel is expressed into the form of Duffing equation, which
is abstracted from [30], is shown here. The flexible panel
vibration is governed by the Von-Karman plate theory. The
well-known partial differential equation of the nonlinear

panel can be presented in terms of its displacement and the
Airy stress function as follows:

1

12
(
𝑑
2
𝑤

𝑑𝜉2
+ ∇
4
𝑤)

= (
𝜕
2
𝐹

𝜕𝜂
2

𝜕
2
𝑤

𝜕𝜉
2
+
𝜕
2
𝐹

𝜕𝜉
2

𝜕
2
𝑤

𝜕𝜂
2
− 2

𝜕
2
𝐹

𝜕𝜂𝜕𝜉

𝜕
2
𝑤

𝜕𝜂𝜕𝜉
) .

(A.1)

Note that (A.1) is abstracted [30] and the notations are the
same as those in [30] but the definitions of some notations
are different from those in the main text (see the following
definitions). 𝑤 = panel displacement; 𝜉 and 𝜂 are the
dimensionless space variables of the 𝑥 and 𝑦 directions; 𝜉
is the dimensionless time variable; ] is Poisson’s ratio. 𝐹 is
the Airy stress function. According to [30], the derivatives
of 𝐹 can be expressed in terms of the in-plane displacements
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along the 𝑥 and 𝑦 directions (i.e., 𝑢 and V) and transverse
displacement (i.e., 𝑤).Consider

𝜕
2
𝐹

𝜕𝜉2
=
𝜕V
𝜕𝜂

+
1

2
(
𝜕𝑤

𝜕𝜂
)

2

+ ][
𝜕𝑢

𝜕𝜉
+
1

2
(
𝜕𝑤

𝜕𝜉
)

2

] , (A.2a)

𝜕
2
𝐹

𝜕𝜂2
=
𝜕𝑢

𝜕𝜉
+
1

2
(
𝜕𝑤

𝜕𝜉
)

2

+ ][
𝜕V
𝜕𝜂

+
1

2
(
𝜕𝑤

𝜕𝜂
)

2

] , (A.2b)

−
𝜕
2
𝐹

𝜕𝜉𝜕𝜂
=
1 − ]
2

[
𝜕𝑢

𝜕𝜂
+
𝜕V
𝜕𝜉
+
𝜕𝑤

𝜕𝜂

𝜕𝑤

𝜕𝜉
] . (A.2c)

As it is assumed that the panel is simply supported, the follow-
ing displacement functions which can satisfy the boundary
conditions are adopted:

𝑤 = 𝜀 sin (𝑚𝜋𝜉) sin (𝑛𝜋𝑟𝜂) , (A.3a)

𝑢 =
𝜀
2
𝜋

16
(cos (2𝜋𝑛𝑟𝜂) − 1 + ]

𝑛
2
𝑟
2

𝑚2
)𝑚 sin (2𝜋𝑚𝜉) ,

(A.3b)

V =
𝜀
2
𝜋

16
(𝑛𝑟 cos (2𝜋𝑚𝜉) − 𝑛𝑟 + ]

𝑚
2

𝑛𝑟
) sin (2𝜋𝑛𝑟𝜂) .

(A.3c)

Again, (A.3a)–(A.3c) originate from [30] and the definitions
of some notations are different from those in the main
text (see the following definitions). 𝑚 and 𝑛 are the modal
number. 𝜀 is the modal amplitude. Consider 𝑟 = 𝑎/𝑏.

Then, consider putting (A.2a)–(A.2c) and (A.3a)–(A.3c)
into the right terms of (A.1):

𝜕
2
𝐹

𝜕𝜉2

𝜕
2
𝑤

𝜕𝜂2

= −
𝜕
2
𝐹

𝜕𝜉2
𝜋
2
𝑛
2
𝑟
2
𝑀 sin (𝑚𝜋𝜉) sin (𝜋𝑛𝑟𝜂)

= −
𝜀
3
𝜋
4

8
𝑛
4
𝑟
4
(cos (2𝜋𝑚𝜉) − 1 + ]

𝑚
2

𝑛2𝑟2
)

× cos (2𝜋𝑛𝑟𝜂) sin (𝑚𝜋𝜉) sin (𝜋𝑛𝑟𝜂)

−
1

2
𝜀
3
𝜋
4
𝑛
4
𝑟
4sin2 (𝜋𝑚𝜉)

× cos2 (𝜋𝑛𝑟𝜂) sin (𝑚𝜋𝜉) sin (𝜋𝑛𝑟𝜂)

− ]
𝜀
3
𝜋
4

8
𝑛
2
𝑟
2
𝑚
2
(cos (2𝜋𝑟𝜂) − 1 + ]

𝑛
2
𝑟
2

𝑚2
)

× cos (2𝜋𝑚𝜉) sin (𝑚𝜋𝜉) sin (𝜋𝑛𝑟𝜂)

− ]
1

2
𝜀
3
𝜋
4
𝑚
2
𝑛
2
𝑟
2

× cos2 (𝜋𝑚𝜉) sin2 (𝜋𝑛𝑟𝜂) sin (𝑚𝜋𝜉) sin (𝜋𝑛𝑟𝜂) ,
(A.4a)

𝜕
2
𝐹

𝜕𝜂2

𝜕
2
𝑤

𝜕𝜉2

= −
𝜕
2
𝐹

𝜕𝜂2
𝑚
2
𝜋
2
𝜀 sin (𝜋𝑚𝜉) sin (𝜋𝑛𝑟𝜂)

= −
𝜀
3
𝜋
4

8
𝑚
4
(cos (2𝜋𝑟𝜂) − 1 + ]

𝑛
2
𝑟
2

𝑚2
)

× cos (2𝜋𝑚𝜉) sin (𝜋𝑚𝜉) sin (𝜋𝑛𝑟𝜂) − 1
2
𝜀
3
𝜋
4
𝑚
4

× cos2 (𝜋𝑚𝜉) sin2 (𝜋𝑛𝑟𝜂) sin (𝜋𝑚𝜉) sin (𝜋𝑛𝑟𝜂)

− ]
𝜀
3
𝜋
4

8
𝑛
2
𝑟
2
𝑚
2
(cos (2𝜋𝑚𝜉) − 1 + ]

𝑚
2

𝑛2𝑟2
)

× cos (2𝜋𝑛𝑟𝜂) sin (𝜋𝑚𝜉) sin (𝜋𝑛𝑟𝜂)

− ]
1

2
𝜀
3
𝜋
4
𝑚
2
𝑛
2
𝑟
2sin2 (𝜋𝑚𝜉)

× cos2 (𝜋𝑛𝑟𝜂) sin (𝜋𝑚𝜉) sin (𝜋𝑛𝑟𝜂) .
(A.4b)

−
𝜕
2
𝐹

𝜕𝜉𝜕𝜂

=
1 − ]
2

[
𝜕𝑢

𝜕𝜂
+
𝜕V
𝜕𝜉
+
𝜕𝑤

𝜕𝜂

𝜕𝑤

𝜕𝜉
]

=
1 − ]
2

[−
𝜀
2
𝑚𝑛𝑟𝜋

2

4
sin (2𝜋𝑛𝑟𝜂) sin (2𝜋𝑚𝜉)

+ 𝜀
2
𝑚𝑛𝑟𝜋

2 sin (𝜋𝑛𝑟𝜂)

× cos (𝜋𝑛𝑟𝜂) sin (𝜋𝑚𝜉) cos (𝜋𝑚𝜉)] = 0.

(A.4c)

Hence, (A.1) can be rewritten in the following form:

[𝐶
1

𝑑
2
𝜀

𝑑𝜉2
+ 𝐶
2
𝜀 + 𝐶
3
𝜀
3
] sin (𝜋𝑚𝜉) sin (𝜋𝑛𝑟𝜂)

+ higher mode terms = 0,

(A.5)

where 𝐶
1
, 𝐶
2
, and 𝐶

3
are the constants dependent of 𝑚,

𝑛, 𝑟, ], and the material and dimension parameters and so
forth. According to [30], the higher mode terms in (A.5)
are neglected. For forced vibration cases, a forcing term 𝑃 is
considered. That is,

𝐶
1

𝑑
2
𝜀

𝑑𝜉2
+ 𝐶
2
𝜀 + 𝐶
3
𝜀
3
+ 𝑃 = 0, (A.6)
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where (A.6) is a Duffing equation which form is the same as
that of (1).

B. Derivation of the Peak Frequency

Consider a damping term and rewrite (1):

𝜌
𝑑
2
𝜀

𝑑𝜏2
+ 2𝜉𝜌𝜔

𝑜

𝑑𝜀

𝑑𝜏
+ 𝜌𝜔
2

𝑜
𝜀 + 𝛽𝜀

3
+ 𝐹
𝑜,𝑚𝑛

sin (𝜔𝜏) = 0. (B.1)

Take the approximation of 𝜀 = 𝐴cos cos(𝜔𝑡)+𝐴 sin sin(𝜔𝑡) and
consider the harmonic balance of sin(𝜔𝑡) and cos(𝜔𝑡):

− 𝜌𝜔
2
𝐴 sin − 2𝜉𝜌𝜔𝑜𝜔𝐴cos + 𝜌𝜔

2

𝑜
𝐴 sin

+
3

4
𝛽𝐴
3

sin +
3

4
𝛽𝐴 sin𝐴

2

cos + 𝐹𝑜,𝑚𝑛 = 0,
(B.2a)

− 𝜌𝜔
2
𝐴cos + 2𝜉𝜌𝜔𝑜𝜔𝐴 sin + 𝜌𝜔

2

𝑜
𝐴cos

+
3

4
𝛽
𝑐
𝐴
3

cos +
3

4
𝛽
𝑐
𝐴
2

sin𝐴cos = 0.
(B.2b)

Let 𝐴2
𝑜
= 𝐴
2

cos + 𝐴
2

sin. Multiplying (B.2a) and (B.2b) by 𝐴cos
and𝐴 sin, respectively, and then subtracting the new (B.2a) by
the new (B.2b) yield

−
2𝜉𝜌𝜔
𝑜
𝜔𝐴
2

𝑜

𝐹
𝑜,𝑚𝑛

= 𝐴cos, (B.3a)

𝐴
𝑜
√1 − (

2𝜉𝜌𝜔
𝑜
𝜔𝐴
𝑜

𝐹
𝑜,𝑚𝑛

)

2

= 𝐴 sin. (B.3b)

Then inputting (B.3a)-(B.3b) into (B.2b) yields

𝜌 (𝜔
2
− 𝜔
2

𝑜
)
2𝜉𝜌𝜔
𝑜
𝜔𝐴
2

𝑜

𝐹
𝑜,𝑚𝑛

+ 2𝜉𝜌𝜔
𝑜
𝜔𝐴
𝑜
√1 − (

2𝜉𝜌𝜔
𝑜
𝜔𝐴
𝑜

𝐹
𝑜,𝑚𝑛

)

2

−
3

4
𝛽(𝐴
𝑜
)
4 2𝜉𝜌𝜔𝑜𝜔

𝐹
𝑜,𝑚𝑛

= 0.

(B.4)

Consider the equation representing the backbone curve by
taking the forcing and damping terms out of (B.1):

𝜌 (−𝜔
2
+ 𝜔
2

𝑜
)𝐴
𝑜
+
3

4
𝛽𝐴
3

𝑜
= 0, (B.5)

⇒

𝐴
2

𝑜
=
𝜌 (𝜔
2
− 𝜔
2

𝑜
)

(3/4) 𝛽
. (B.6)

Inputting (B.6) into (B.4) yields

1 − (
2𝜉𝜌𝜔
𝑜
𝜔

𝐹
𝑜,𝑚𝑛

)

2
𝜌 (𝜔
2
− 𝜔
2

𝑜
)

(3/4) 𝛽
= 0, (B.7)

where (B.7) contains only one unknown, 𝜔. It is obtainable
and represents the frequency at which the vibration ampli-
tude peaks and is equal to 𝜔

𝑁
in (9).
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