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The inverse eigenvalue problem is a classical and difficult problem in matrix theory. In the case of real spectrum, we first present
some sufficient conditions of a real r-tuple (for 𝑟 = 2; 3; 4; 5) to be realized by a symmetric stochasticmatrix. Part of these conditions
is also extended to the complex case in the case of complex spectrumwhere the realizationmatrixmay not necessarily be symmetry.
The main approach throughout the paper in our discussion is the specific construction of realization matrices and the recursion
when the targeted r-tuple is updated to a (𝑟 + 1)-tuple.

1. Introduction

For a square matrix 𝐴, let 𝜎(𝐴) denote the spectrum of 𝐴.
Given an 𝑛-tuple Λ = (𝜆

1
, . . . , 𝜆

𝑛
) of numbers, real or com-

plex, the problem of deciding the existence of a nonnegative
matrix 𝐴 with 𝜎(𝐴) = Λ is called the nonnegative inverse
eigenvalue problem (NIEP) which has for a long time been
one of the problems ofmain interest in the theory ofmatrices.

Sufficient conditions for the existence of an entrywise
positive matrix 𝐴 with 𝜎(𝐴) = Λ have been investigated by
many authors [1–14]. The case 𝑛 = 2 is trivial. The problem
has been solved for 𝑛 = 3 by Loewy and London [6].The cases
𝑛 = 4 and 𝑛 = 5 have been solved for matrices with trace zero
by Reams [10] and Laffey and Meehan [5], respectively. So,
for real spectra, complete constructive solutions to NIEP are
available for 𝑛 ≤ 4. For the case of nonreal spectra for 𝑛 = 4,
complete solutions are available through the work of Laffey
andMeehan [5], independently, and that of Torre-Mayo et al.
[12] by analyzing coefficients of the characteristic polynomial.
EBL digraphs, and for 𝑛 = 2, 3, 4, 5, complete solutions are
available through the work of Nazari and Sherafat [8].

An 𝑛 × 𝑛 nonnegative matrix 𝐴 = (𝑎
𝑖𝑗
) is called a row

stochastic matrix if ∑𝑛
𝑗=1
𝑎
𝑖𝑗
= 1, 𝑖 = 1, . . . , 𝑛; 𝐴 is called

a doubly stochastic matrix if ∑𝑛
𝑗=1
𝑎
𝑖𝑗
= 1, 𝑖 = 1, . . . , 𝑛, and

∑
𝑛

𝑖=1
𝑎
𝑖𝑗
= 1, 𝑗 = 1, . . . , 𝑛. Since row stochastic and doubly

stochastic matrices are important nonnegative matrices, it is
surely important to investigate the existence of row or doubly
stochastic matrices with prescribed spectrum under certain
conditions. We call this special NIEP the row or doubly
stochastic inverse eigenvalue problem (RSIEP or DSIEP).
Hwang and Pyo [3] gave some interesting results for the
symmetric DSIEP.

An 𝑛-tuple Λ = (𝜆
1
, . . . , 𝜆

𝑛
) is nonnegative (doubly

stochastic) realizable if there exists an 𝑛 × 𝑛 nonnegative
(doubly stochastic) matrix 𝐴 with 𝜎(𝐴) = Λ. In this case, we
say 𝐴 is a nonnegative (doubly stochastic) realization of Λ or
the nonnegative (doubly stochastic) matrix 𝐴 that realizes the
𝑛-tuple Λ.

A nonincreasing 𝑛-tuple Λ = (𝜆
1
, . . . , 𝜆

𝑛
) is called 𝑆-

feasible if it satisfies

(1) ∑𝑛
𝑗=1
𝜆
𝑗
≥ 0;

(2) 1 ≡ 𝜆
1
≥ |𝜆
𝑗
| for all 𝑗 = 2, . . . , 𝑛.

Throughout the paper, we denote the spectrum of 𝐴 by
𝜎(𝐴); the spectrum radius of 𝐴 by 𝜌(𝐴); the all-ones column
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vector of 𝑛 dimensions by 𝑒 ∈ 𝑅
𝑛. We use 𝑢

𝑛
for the

𝑛 dimensional normalized vector (1/√𝑛)𝑒𝑇 and 𝐼
𝑛
for the

identity matrix of order 𝑛.
Theorem NN (see [15]). Let 𝐴 be an irreducible nonnegative
matrix of order 𝑛. Then, we have

(a) 𝜌(𝐴) > 0 and 𝜌(𝐴) ∈ 𝜎(𝐴);
(b) 𝐴(𝑥) = 𝜌(𝐴)𝑥 for some 𝑥 in Rn, and the null space of

𝐴 − 𝜌(𝐴)𝐼
𝑛
is of dimension 1;

(c) |𝜆| < 𝜌(𝐴) for any 𝜆 ̸= 𝜌(𝐴), 𝜆 ∈ 𝜎(𝐴).

In this paper, we study DSIEP of order 𝑛 ∈ {2, 3, 4, 5}.
In Section 2, we present some sufficient conditions for the
DSIEP for a given real 𝑛-tuple. In Section 3, we present some
sufficient conditions for the DSIEP for a given nonreal com-
plex 𝑛-tuple where the realization matrix may not necessarily
be symmetric.

2. The Case of Real Spectrum

Lemma 1. If 1 > 𝜆
2
≥ −1, then there is a 2 × 2 irreducible

doubly stochastic matrix realizing Λ = {1, 𝜆
2
}.

Proof. It is easy to verify that the following 2 × 2 irreducible
doubly stochastic matrix:

1

2

(

1 + 𝜆
2
1 − 𝜆
2

1 − 𝜆
2
1 + 𝜆
2

) (1)

realizes Λ = {1, 𝜆
2
}.

In this section, we present a theorem that is analogy to
Theorem 2.1 of [8]. The theorem is used to construct an 𝑛 × 𝑛
irreducible symmetric stochastic realization of a given 𝑛-tuple
with designed conditions.

Theorem 2. For any integer𝑚 ≥ 2 if 𝐵 is an𝑚×𝑚 irreducible
doubly stochastic matrix with 𝜎(𝐵) = {1, 𝜇

2
, . . . , 𝜇

𝑚
} and 1 >

𝜆 ≥ −1, then there exists an (𝑚+1)×(𝑚+1) irreducible doubly
stochastic matrix 𝐶 such that 𝜎(𝐶) = {1, 𝑐𝜇

2
, . . . , 𝑐𝜇

𝑚
, 𝜇
𝑚+1
},

where 𝑐 = 1 − (1 − 𝜆)/2𝑚 = (2𝑚 − 1 + 𝜆)/2𝑚 > 0; 𝜇
𝑚+1

=

((𝑚 + 1)𝜆 + 𝑚 − 1)/2𝑚.

Proof. We know, by Theorem NN, that 𝜌(𝐵) = 1 is a simple
eigenvalue of 𝐵 and 𝑢

𝑚
is the unique normalized positive

eigenvector associated with 1 such that 𝑢𝑇
𝑚
𝑢
𝑚
= 1, 𝐵𝑢

𝑚
= 𝑢
𝑚
,

𝑢
𝑇

𝑚
𝐵 = 𝑢

𝑇

𝑚
. Now we can find an 𝑚 × (𝑚 − 1) matrix 𝑉

1
such

that 𝑌
1
= (𝑢
𝑚
, 𝑉
1
) is a unitary matrix. Then,

𝐵
1
= 𝑌
∗

1
𝐵𝑌
1
= (

𝑢
𝑇

𝑚
𝑢
𝑚
𝑢
𝑇

𝑚
𝐵𝑉
1

𝑉
∗

1
𝑢
𝑚
𝑉
∗

1
𝐵𝑉
1

) = (

1 ∗

0 𝐵

) , (2)

where (𝑉∗
1
𝑢
𝑚
)
∗
= 𝑢
𝑇

𝑚
𝑉
1
= 0, 𝐵 = 𝑉

∗

1
𝐵𝑉
1
and it is not

necessary to know the value of each entry in the location
remarked by “∗.” Since 𝜎(𝐵

1
) = 𝜎(𝐵) = {1, 𝜇

2
, . . . , 𝜇

𝑚
}, we

have𝜎(𝐵) = {𝜇
2
, . . . , 𝜇

𝑚
}. By Schur’s unitary triangularization

theorem (see [15]), there exists a unitary matrix 𝑉
2
of order

𝑚 − 1, such that 𝑉∗
2
𝐵𝑉
2
=
̂
𝑇
𝐵
, where ̂𝑇

𝐵
is a upper triangular

matrix and 𝜎(𝐵) is the set of all diagonal entries of ̂𝑇
𝐵
. Now

for the𝑚 × 𝑚 unitary matrix 𝑌
2
= (1) ⊕ 𝑉

2
, we have

𝑌
∗

2
𝐵
1
𝑌
2
= 𝑌
∗

2
(𝑌
∗

1
𝐵𝑌
1
) 𝑌
2
= (𝑌
1
𝑌
2
)
∗

𝐵 (𝑌
1
𝑌
2
) = 𝑌
∗
𝐵𝑌, (3)

where 𝑌 = 𝑌
1
𝑌
2
= (𝑢
𝑚
, 𝑉
1
𝑉
2
) = (𝑢

𝑚
, 𝑇) is unitary with 𝑇 =

𝑉
1
𝑉
2
and

𝑌𝑌
∗
= 𝑢
𝑚
𝑢
𝑇

𝑚
+ 𝑇𝑇
∗
= 𝐼
𝑚
,

𝑌
∗
𝑌 = (

𝑢
𝑇

𝑚
𝑢
𝑚
𝑢
𝑇

𝑚
𝑇

𝑇
∗
𝑢
𝑚
𝑇
∗
𝑇

) = (1) ⊕ 𝐼
𝑚−1
.

(4)

Therefore,

𝑢
𝑇

𝑚
𝑇 = 0, 𝑇

∗
𝑢
𝑚
= 0, 𝑇

∗
𝑇 = 𝐼
𝑚−1
,

𝑌
∗
𝐵𝑌 = (

𝑢
𝑇

𝑚
𝐵𝑢
𝑚
𝑢
𝑇

𝑚
𝐵𝑇

𝑇
∗
𝐵𝑢
𝑚
𝑇
∗
𝐵𝑇

) = (

1 ∗

0 𝑇
∗
𝐵𝑇
) ,

(5)

where 𝑇∗𝐵𝑢
𝑚
= 𝑇
∗
𝑢
𝑚
= 0 by (5) and

𝜎 (𝑇
∗
𝐵𝑇) = 𝜎 (𝑌

∗
𝐵𝑌) − {1} = 𝜎 (𝐵) − {1} = {𝜇

2
, . . . , 𝜇

𝑚
} .

(6)

It is easy to verify that the following (𝑚 + 1) × (𝑚 + 1)

matrix:

𝐶 = (

1 + 𝜆

2

1 − 𝜆

2√𝑚

𝑢
𝑇

𝑚

1 − 𝜆

2√𝑚

𝑢
𝑚
(1 −

(1 − 𝜆) /2

𝑚

)𝐵

)

=(

1 + 𝜆

2

1 − 𝜆

2√𝑚

𝑢
𝑇

𝑚

1 − 𝜆

2√𝑚

𝑢
𝑚

𝑐𝐵

)

(7)

is a doubly stochastic matrix. Let 𝛽 = (1/√2, −1/√2)𝑇; then
the following (𝑚 + 1) × (𝑚 + 1)matrix:

𝑍 = (

𝑢
𝑇

2
0

𝑢
𝑚
𝛽
𝑇
𝑇

) (8)

is a unitary matrix, since

𝑍𝑍
∗
= (

𝑢
𝑇

2
𝑢
2

0

0 𝑇𝑇
∗) = (

1 0

0 𝐼
𝑚

) (9)

by 𝑢𝑇
2
𝛽 = 0, 𝛽𝑇𝑢

2
= 0, and 𝑢

𝑚
𝑢
𝑇

𝑚
+ 𝑇𝑇
∗
= 𝐼
𝑚
. In addition

using 𝑢𝑇
𝑚
𝑢
𝑚
= 1 and 𝑇∗𝐵𝑢

𝑚
= 𝑇
∗
𝑢
𝑚
= 0, we have

𝑍
∗
𝐶𝑍

= (

1 + 𝜆

2

𝑢
2
𝑢
𝑇

2
+

1 − 𝜆

2√𝑚

𝛽𝑢
𝑇

2
+

1 − 𝜆

2√𝑚

𝑢
2
𝛽
𝑇
+ 𝑐𝛽𝛽

𝑇
0

0 𝑐𝑇
∗
𝐵𝑇

)

= (

𝐶
1

0

0 𝑐𝑇
∗
𝐵𝑇
) ,

(10)
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where

𝐶
1
=

1 + 𝜆

2

𝑢
2
𝑢
𝑇

2
+

1 − 𝜆

2√𝑚

𝛽𝑢
𝑇

2
+

1 − 𝜆

2√𝑚

𝑢
2
𝛽
𝑇
+ 𝑐𝛽𝛽

𝑇

= (

1 + 𝜆

4

1 + 𝜆

4

1 + 𝜆

4

1 + 𝜆

4

) +(

1 − 𝜆

8√𝑚

1 − 𝜆

8√𝑚

−

1 − 𝜆

8√𝑚

−

1 − 𝜆

8√𝑚

)

+(

1 − 𝜆

8√𝑚

−

1 − 𝜆

8√𝑚

1 − 𝜆

8√𝑚

−

1 − 𝜆

8√𝑚

) +(

𝑐

2

−

𝑐

2

−

𝑐

2

𝑐

2

) .

(11)

Therefore,𝜎(𝐶) = 𝜎(𝐶
1
)∪𝜎(𝑐𝑇

∗
𝐵𝑇) = 𝜎(𝐶

1
)∪{𝑐𝜇

2
, . . . , 𝑐𝜇

𝑚
}.

Since 0 < 𝑐 < 1, we have |𝑐𝜇
𝑖
| < 1, 𝑖 = 2, . . . , 𝑚 and hence

1 ∉ {𝑐𝜇
2
, . . . , 𝑐𝜇

𝑚
}. In addition, 1 ∈ 𝜎(𝐶) (for 𝐶 is a doubly

stochastic matrix) implies that 1 ∈ 𝜎(𝐶
1
). So the spectrum

of 𝐶
1
is 𝜎(𝐶

1
) = {1, tr(𝐶

1
) − 1} = {1, 𝜇

𝑚+1
}. Now a direct

calculation produces the following:

𝜇
𝑚+1

= tr (𝐶
1
) − 1

=

(𝑚 + 1) 𝜆 + 3𝑚 − 1

2𝑚

− 1

=

(𝑚 + 1) 𝜆 + 𝑚 − 1

2𝑚

.

(12)

Finally, the irreducible doubly stochastic matrix 𝐶 has the
desired spectrum 𝜎(𝐶) = {1, 𝜇

2
, . . . , 𝜇

𝑚+1
}.

The following result is obtained by a similar argument
used inTheorem 2.

Corollary 3. Let 𝐵 be an irreducible row (symmetric) stochas-
tic matrix with 𝑚-tuple Λ = {1, 𝜇

2
, . . . , 𝜇

𝑚
} as its spectrum.

Denote Λ = {1, 𝑐𝜇
2
, . . . , 𝑐𝜇

𝑚
, 𝜇
𝑚+1

= ((𝑚 + 1)𝜆 + 𝑚 − 1)/2𝑚},
where 𝑐 = (2𝑚 − 1 + 𝜆)/2𝑚. Then Λ can be realized by an
irreducible row (symmetric) stochastic matrix.

Notice that a real 𝑛-tuple Λ = {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
} is

realized by an irreducible doubly stochastic matrix 𝐴 only if
max{𝜆

1
, . . . , 𝜆

𝑛
} = 1 = 𝜌(𝐴) is a simple eigenvalue of 𝐴. For

convenience, we always assume that 1 = 𝜆
1
> 𝜆
2
≥ 𝜆
3
≥

⋅ ⋅ ⋅ ≥ 𝜆
𝑛
≥ −1.

Corollary 4. If the real triple Λ = {1, 𝜆
2
, 𝜆
3
} (1 > 𝜆

2
≥ 𝜆
3
≥

−1) satisfies

2 + 𝜆
2
+ 3𝜆
3
≥ 0, (13)

thenΛ is realized by a symmetric irreducible stochastic matrix.

Proof. Assume that Λ satisfies Condition (13) which implies
that 𝜆

2
≥ −0.5. Let 𝑚 = 2, 𝜆

2
= 𝜇
𝑚+1

= ((𝑚 + 1)𝜆 + 𝑚 −

1)/2𝑚 = (3𝜆 + 1)/4; then 𝜆 = (4𝜆
2
− 1)/3 ∈ [−1, 1), 𝑐 =

(2𝑚 − 1 + 𝜆)/2𝑚 = (3 + 𝜆)/4 = (11 + 4𝜆
2
)/12 > 0. Let

𝑐𝜇
2
= 𝜆
3
and

𝐵 =

1

2

(

1 + 𝜆
3
1 − 𝜆
3

1 − 𝜆
3
1 + 𝜆
3

) . (14)

Then 𝐵 is an irreducible doubly stochastic matrices with
𝜎(𝐵) = {1, 𝜆

3
} by Lemma 1 and

𝑐𝐵 = 𝑐(

1 + 𝜆
3
/𝑐

2

1 − 𝜆
3
/𝑐

2

1 − 𝜆
3
/𝑐

2

1 + 𝜆
3
/𝑐

2

) = (

𝑐 + 𝜆
3

2

𝑐 − 𝜆
3

2

𝑐 − 𝜆
3

2

𝑐 + 𝜆
3

2

)

= (

8 + 4𝜆
2
+ 12𝜆

3

24

8 + 4𝜆
2
− 12𝜆

3

24

8 + 4𝜆
2
− 12𝜆

3

24

8 + 4𝜆
2
+ 12𝜆

3

24

)

= (

2 + 𝜆
2
+ 3𝜆
3

6

2 + 𝜆
2
− 3𝜆
3

6

2 + 𝜆
2
− 3𝜆
3

6

2 + 𝜆
2
+ 3𝜆
3

6

)

(15)

is nonnegative. Finally, the matrix of order𝑚 + 1 = 3 in (7)

𝐶 = (

1 + 𝜆

2

1 − 𝜆

2√2

𝑢
𝑇

2

1 − 𝜆

2√2

𝑢
2

𝑐𝐵

)

=
(

(

(

1+ 2𝜆
2

3

1 − 𝜆
2

3

1 − 𝜆
2

3

1 − 𝜆
2

3

2 + 𝜆
2
+ 3𝜆
3

6

2 + 𝜆
2
− 3𝜆
3

6

1 − 𝜆
2

3

2 + 𝜆
2
− 3𝜆
3

6

2 + 𝜆
2
+ 3𝜆
3

6

)

)

)

(16)

is irreducible symmetric stochastic with 𝜎(𝐶) = {1, 𝑐𝜇
2
, 𝜇
3
} =

Λ byTheorem 2.

Remark 5. Theorem 14 of [8] shows that Condition (13) is
sufficient and necessary for a real triple Λ = {1, 𝜆

2
, 𝜆
3
} to be

doubly stochastic realizable.

Corollary 6. If a real feasible nonincreasing 4-tuple Λ =

{1, 𝜆
2
, 𝜆
3
, 𝜆
4
} satisfies

3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4
≥ 0, (17)

thenΛ is realized by a symmetric irreducible stochastic matrix.

Proof. Assume that Λ satisfies Condition (17). Then 0 ≤ 3 +
𝜆
2
+ 2𝜆
3
+ 6𝜆
4
≤ 3 + 9𝜆

2
yields 𝜆

2
≥ −1/3. Let 𝑚 = 3,

𝜆
2
= 𝜇
𝑚+1

= ((𝑚 + 1)𝜆 + 𝑚 − 1)/2𝑚 = (4𝜆 + 2)/6; then
𝜆 = (3𝜆

2
− 1)/2 ∈ [−1, 1), 𝑐 = (2𝑚 − 1 + 𝜆)/2𝑚 = (5 + 𝜆)/6 =

(3 + 𝜆
2
)/4 > 0. It is clear that 𝜆

4
/𝑐 = 4𝜆

4
/(3 + 𝜆

2
) ≥ −1 since

4𝜆
4
/(3 + 𝜆

2
) < −1 would produce 3 + 𝜆

2
+ 4𝜆
4
< 0, which,

together with (17), yields

3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4
> 3 + 2𝜆

2
+ 4𝜆
4
⇒ 𝜆

3
+ 𝜆
4
> 0. (18)

It follows that 3+2𝜆
2
+4𝜆
4
≥ 3(1+𝜆

4
)+(𝜆
3
+𝜆
4
) > 0, which is

a contradiction. So 1 > 4𝜆
2
/(3 + 𝜆

2
) ≥ 4𝜆

3
/(3 + 𝜆

2
) =𝜆
3
/𝑐 ≥
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𝜆
4
/𝑐 ≥ −1. Since 2 + 𝜆

3
/𝑐 + 3𝜆

4
/𝑐 = (1/2𝑐)(4𝑐 + 2𝜆

3
+ 6𝜆
4
) =

(1/2𝑐)(3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4
) ≥ 0 by (17), the following matrix:

𝐵 =
(

(

(

1+ 2𝜆
3
/𝑐

3

1 − 𝜆
3
/𝑐

3

1 − 𝜆
3
/𝑐

3

1 − 𝜆
3
/𝑐

3

2 + 𝜆
3
/𝑐 + 3𝜆

4
/𝑐

6

2 + 𝜆
3
/𝑐 − 3𝜆

4
/𝑐

6

1 − 𝜆
3
/𝑐

3

2 + 𝜆
3
/𝑐 − 3𝜆

4
/𝑐

6

2 + 𝜆
3
/𝑐 + 3𝜆

4
/𝑐

6

)

)

)

(19)

is irreducible doubly stochastic by whom {1, 𝜆
3
/𝑐, 𝜆
4
/𝑐} =

{1, 𝜇
2
, 𝜇
3
} is realized by Corollary 4 and

𝑐𝐵

=
(

(

(

3+ 𝜆
2
+ 8𝜆
3

12

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4

6

3 + 𝜆
2
+ 2𝜆
3
− 6𝜆
4

6

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
+ 2𝜆
3
− 6𝜆
4

6

3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4

6

)

)

)

(20)

is nonnegative. Finally, the matrix of order𝑚 + 1 = 4 in (7)

𝐶 = (

1 + 𝜆

2

1 − 𝜆

2√3

𝑢
𝑇

3

1 − 𝜆

2√3

𝑢
3

𝑐𝐵

)

=

(

(

(

(

(

(

(

1+ 3𝜆
2

4

1 − 𝜆
2

4

1 − 𝜆
2

4

1 − 𝜆
2

4

1 − 𝜆
2

4

3 + 𝜆
2
+ 8𝜆
3

12

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
− 4𝜆
3

12

1 − 𝜆
2

4

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4

12

3 + 𝜆
2
+ 2𝜆
3
− 6𝜆
4

12

1 − 𝜆
2

4

3 + 𝜆
2
− 4𝜆
3

12

3 + 𝜆
2
+ 2𝜆
3
− 6𝜆
4

12

3 + 𝜆
2
+ 2𝜆
3
+ 6𝜆
4

12

)

)

)

)

)

)

)

(21)

is irreducible symmetric stochastic with 𝜎(𝐶) = {1, 𝑐𝜇
2
, 𝑐𝜇
3
,

𝜇
4
} = Λ byTheorem 2.

Using this recursive method, we can prove the following
result.

Corollary 7. Let Λ = {1, 𝜆
2
, 𝜆
3
, 𝜆
4
} be 𝑆-feasible and satisfies

12 + 3𝜆
2
+ 5𝜆
3
+ 10𝜆

4
+ 30𝜆

5
≥ 0, (22)

then Λ can be realized by a symmetric irreducible stochastic
matrix.

Proof. Assume that Λ satisfies Condition (22) which implies
that 𝜆

2
≥ −1/4. Let 𝑚 = 4, 𝜆

2
= 𝜇
𝑚+1

= ((𝑚 + 1)𝜆 + 𝑚 −

1)/2𝑚 = (5𝜆+3)/8; then 𝜆 = (8𝜆
2
−3)/5 ∈ [−1, 1), 𝑐 =(2𝑚−

1+𝜆)/2𝑚 = (7+𝜆)/8 = (4+𝜆
2
)/5 > 0. Now under Condition

(22) using the same recursive method and Theorem 2, we
can construct the following irreducible symmetric stochastic
matrix:

(

(

(

(

(

(

(

(

(

(

(

(

1+ 4𝜆
2

5

1 − 𝜆
2

5

1 − 𝜆
2

5

1 − 𝜆
2

5

1 − 𝜆
2

5

1 − 𝜆
2

5

4 + 𝜆
2
+ 15𝜆

3

20

4 + 𝜆
2
− 5𝜆
3

20

4 + 𝜆
2
− 5𝜆
3

20

4 + 𝜆
2
− 5𝜆
3

20

1 − 𝜆
2

5

4 + 𝜆
2
− 5𝜆
3

20

12 + 3𝜆
2
+ 5𝜆
3
+ 40𝜆

4

60

12 + 3𝜆
2
+ 5𝜆
3
− 20𝜆

4

60

12 + 3𝜆
2
+ 5𝜆
3
− 20𝜆

4

60

1 − 𝜆
2

5

4 + 𝜆
2
− 5𝜆
3

20

12 + 3𝜆
2
+ 5𝜆
3
− 20𝜆

4

60

12 + 3𝜆
2
+ 5𝜆
3
+ 10𝜆

4
+ 30𝜆

5

60

12 + 3𝜆
2
+ 5𝜆
3
+ 10𝜆

4
− 30𝜆

5

60

1 − 𝜆
2

5

4 + 𝜆
2
− 5𝜆
3

20

12 + 3𝜆
2
+ 5𝜆
3
− 20𝜆

4

60

12 + 3𝜆
2
+ 5𝜆
3
+ 10𝜆

4
− 30𝜆

5

60

12 + 3𝜆
2
+ 5𝜆
3
+ 10𝜆

4
+ 30𝜆

5

60

)

)

)

)

)

)

)

)

)

)

)

)

,

(23)

by whom Λ is realized.
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The next result shows that under some stronger condi-
tions, we can construct a 3 × 3 nonsymmetric irreducible
doubly stochastic matrix to realize the given real triple.

Proposition 8. Let Λ = {1, 𝜆
2
, 𝜆
3
} satisfy 1 > 𝜆

2
≥ 𝜆
3
≥ −1.

If

𝜆
2
𝜆
3
+ 2𝜆
2
+ 2𝜆
3
+ 1 > 0, (24)

then Λ is realized by a 3 × 3 nonsymmetric irreducible doubly
stochastic matrix.

Proof. IfΛ satisfies Condition (24), then construct the follow-
ing bunch of 3 × 3 irreducible matrices with one parameter 𝑝
and trace of 1 + 𝜆

2
+ 𝜆
3
whose row sums are all equal to 1:

𝐴 (𝑝) = (

𝑝 1 − 𝑝 0

1 + 𝜆
2
+ 𝜆
3
− 3𝑝 𝑝 2𝑝 − 𝜆

2
− 𝜆
3

2𝑝 − 𝜆
2
− 𝜆
3

0 1 + 𝜆
2
+ 𝜆
3
− 2𝑝

) .

(25)

Then det(𝐴(𝑝)) = −6𝑝2 +3(2+𝜆
2
+𝜆
3
)𝑝−1−2(𝜆

2
+𝜆
3
) and

det(𝐴(𝑝)) = 𝜆
2
𝜆
3
become 𝑝2 − ((2 + 𝜆

2
+ 𝜆
3
)/2)𝑝 + (𝜆

2
𝜆
3
+

2(𝜆
2
+ 𝜆
3
) + 1)/6 = 0 which has a positive zero as follows:

𝑝
∗
=

2 + 𝜆
2
+ 𝜆
3

4

− √(

2 + 𝜆
2
+ 𝜆
3

4

)

2

−

𝜆
2
𝜆
3
+ 2𝜆
2
+ 2𝜆
3
+ 1

6

=

2 + 𝜆
2
+ 𝜆
3

4

−
√
2(1 − 𝜆

2
)
2

+ 2(1 − 𝜆
3
)
2

+ (𝜆
2
− 𝜆
3
)
2

48

.

(26)

Moreover,

𝑝
∗
<

2 + 𝜆
2
+ 𝜆
3

2

< 1, (27)

2𝑝
∗
− 𝜆
2
− 𝜆
3
=

1 − 𝜆
2

2

+

1 − 𝜆
3

2

−
√
2(1 − 𝜆

2
)
2

+ 2(1 − 𝜆
3
)
2

+ (𝜆
2
− 𝜆
3
)
2

48

≥
√
(1 − 𝜆

2
)
2

+ (1 − 𝜆
3
)
2

4

−
√
2(1 − 𝜆

2
)
2

+ 2(1 − 𝜆
3
)
2

+ (𝜆
2
− 𝜆
3
)
2

48

=
√
11(1 − 𝜆

2
)
2

+ 11(1 − 𝜆
3
)
2

+ (𝜆
2
− 𝜆
3
)
2

48

−
√
2(1 − 𝜆

2
)
2

+ 2(1 − 𝜆
3
)
2

+ (𝜆
2
− 𝜆
3
)
2

48

≥ 0.

(28)

In addition, since

6(1 − 𝜆
2
)
2

+ 6(1 − 𝜆
3
)
2

+ 3(𝜆
2
− 𝜆
3
)
2

− (𝜆
2
+ 𝜆
3
− 2)
2

= 4(1 − 𝜆
3
)
2

+ 4(𝜆
2
− 𝜆
3
)
2

+ 4(𝜆
2
− 𝜆
3
)
2

> 0,

(29)

we have
1 + 𝜆
2
+ 𝜆
3
− 3𝑝
∗

=

𝜆
2
+ 𝜆
3
− 2

4

+

1

4

√6(1 − 𝜆
2
)
2

+ 6(1 − 𝜆
3
)
2

+ 3(𝜆
2
− 𝜆
3
)
2

> 0.

(30)

Therefore, 𝐴(𝑝∗) is an irreducible doubly stochastic matrix
with tr(𝐴(𝑝∗)) = 1 + 𝜆

2
+ 𝜆
3
, det(𝐴(𝑝∗)) = 𝜆

2
𝜆
3
and hence

𝜎(𝐴(𝑝
∗
)) = Λ.

Remark 9. Corollary 6 produces the sufficient condition (13)
for an irreducible symmetric stochastic matrix of order 3
to have the prescribed real spectrum, and Proposition 8
produces the sufficient condition (24) for an irreducible
nonsymmetric doubly stochasticmatrix of order 3 to have the
prescribed real spectrum. Note that Condition (24) implies
Condition (13) because 2+𝜆

2
+ 3𝜆
3
= 1+ 2𝜆

2
+ 2𝜆
3
+𝜆
2
𝜆
3
+

(1 − 𝜆
2
)(1 + 𝜆

3
) ≥ 0 if 1 + 2𝜆

2
+ 2𝜆
3
+ 𝜆
2
𝜆
3
≥ 0.

Theorem M (see [7]). Let Λ = {1, 𝜆


2
, 𝜆


3
, 𝜆


4
} with −1 ≤

𝜆


2
, 𝜆


3
, 𝜆


4
≤ 1. Then Λ is realized by a symmetric doubly

stochastic matrix with zero trace if and only if 1+𝜆
2
+𝜆


3
+𝜆


4
=

0, and when Λ satisfies the condition, the matrix is

𝐵 =
(

(

(

0 1 + 𝜆


2
1 + 𝜆


3
1 + 𝜆


4

1 + 𝜆


2
0 1 + 𝜆



4
1 + 𝜆


3

1 + 𝜆


3
1 + 𝜆


4
0 1 + 𝜆



2

1 + 𝜆


4
1 + 𝜆


3
1 + 𝜆


2
0

)

)

)

. (31)

Corollary 10. Let Λ = {1, 𝜆
2
, 𝜆
3
, 𝜆
4
, −1/4}, −1 ≤ 𝜆

2
, 𝜆
3
, 𝜆
4
≤

1 and 𝑐 = 3/4. If

−1 ≤

𝜆
2

𝑐

,

𝜆
3

𝑐

,

𝜆
4

𝑐

≤ 1, 𝜆
2
+ 𝜆
3
+ 𝜆
4
= −𝑐, (32)

thenΛ is realized by a symmetric doubly stochastic matrix with
zero trace.
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Proof. Let 𝜆
𝑘
= 𝜆
𝑘
/𝑐, 𝑘 = 2, 3, 4. If (32) holds, then we have

−1 ≤ 𝜆


2
, 𝜆


3
, 𝜆


4
≤ 1 and 1+𝜆

2
+𝜆


3
+𝜆


4
= 0. So {1, 𝜆

2
, 𝜆


3
, 𝜆


4
} =

{1, 𝜆
2
/𝑐, 𝜆
3
/𝑐, 𝜆
4
/𝑐} is realized by the 4 × 4 doubly stochastic

matrix 𝐵 given in (31) byTheoremM. Let𝑚 = 4, −1/4 = 𝜆
5
=

(𝑚+1+𝜆)/2𝑚 = (5+𝜆)/8; then 𝜆 = −1, 𝑐 = (2𝑚−1+𝜆)/2𝑚 =

3/4. Now {1, 𝑐𝜆
2
, 𝑐𝜆
3
, 𝑐𝜆
4
} = Λ is realized by the 5 × 5matrix

(given in (7)) as follows:

𝐶 = (

1 + 𝜆

2

1 − 𝜆

4

𝑢
𝑇

4

1 − 𝜆

4

𝑢
4

𝑐𝐵

) = (

0

1

2

𝑢
𝑇

4

1

2

𝑢
4
𝑐𝐵

) , (33)

that is an irreducible doubly stochastic with zero by
Theorem 2.

3. The Case of Complex Spectrum

Given a circulant doubly stochastic matrix, it is easy to obtain
its spectrum (see Lemma 11). In this section, we use this result
to construct an IDS (irreducible doubly stochastic) matrix to
realize a given complex triple containing a pair of conjugate
complex numbers with some additional conditions. This
matrix is used together with Theorem 2 to construct an IDS
matrix to realize a given complex 4-tuple and a 5-tuple
containing exactly a pair of conjugate complex numbers with
special conditions in a recursive method. Also constructed
is an IDS realization of a given complex 5-tuple, which
contains twopairs of conjugate complex numberswith special
conditions.

The following result is well known. We give a short proof
for completeness.

Lemma 11. In the complex plane, letΩ
𝑛
be the regular polygon

whose vertices are all the 𝑛th roots of unity as follows: 𝑞
𝑘
=

cos(2𝑘𝜋/𝑛) + 𝑖sin(2𝑘𝜋/𝑛), 𝑘 = 0, 1, 2, . . . , 𝑛 − 1, 𝑖 = √−1,
and let 𝑝 = 𝑢 + 𝑖V (V ̸= 0) be a nonreal number. If 𝑝 ∈ Ω

𝑛
,

or equivalently, 𝑝 is a convex combination of the 𝑛th roots of
unity; that is, 𝑝 = 𝜆

0
𝑞
0
+ 𝜆
1
𝑞
1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛−1
𝑞
𝑛−1

, ∑𝑛−1
𝑘=0
𝜆
𝑘
= 1,

𝜆
𝑘
≥ 0, 𝑘 = 0, 1, . . . , 𝑛 − 1; then there is a doubly stochastic

matrix 𝐶
𝑛
such that

𝑝 ∈ 𝜎 (𝐶
𝑛
)

= {𝜆
0
+ 𝜆
1
𝑞
𝑘
+ 𝜆
2
𝑞
2

𝑘
+ ⋅ ⋅ ⋅ + 𝜆

𝑛−1
𝑞
𝑛−1

𝑘
, 𝑘 = 0, 1, . . . , 𝑛 − 1} .

(34)

Proof. It is clear that the following permutation matrix:

𝑃
𝑛
=
(

(

0 1

0 1

0 d
d d

d 1

1 0

)

)

(35)

has spectrum 𝜎(𝑃
𝑛
) = {𝑞

0
, 𝑞
1
, . . . , 𝑞

𝑛−1
} and then the

following circulant matrix:

𝐶
𝑛
= (

𝜆
0
𝜆
1
⋅ ⋅ ⋅ 𝜆
𝑛−1

𝜆
𝑛−1

𝜆
0
⋅ ⋅ ⋅ 𝜆
𝑛−2

...
... d

...
𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

0

)

= 𝜆
0
𝐼
𝑛
+ 𝜆
1
𝑃
𝑛
+ ⋅ ⋅ ⋅ + 𝜆

𝑛−1
𝑃
𝑛−1

𝑛

(36)

is doubly stochastic and has spectrum 𝜎(𝐶
𝑛
) = {𝜆

0
+ 𝜆
1
𝑞
𝑘
+

𝜆
2
𝑞
2

𝑘
+ ⋅ ⋅ ⋅ + 𝜆

𝑛−1
𝑞
𝑛−1

𝑘
, 𝑘 = 0, 1, . . . , 𝑛 − 1}. When 𝑘 = 1, we

have 𝜆
0
+ 𝜆
1
𝑞
1
+ 𝜆
2
𝑞
2

1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛−1
𝑞
𝑛−1

1
= 𝑝 ∈ 𝜎(𝐶

𝑛
).

Theorem 12. Let Λ = {1, 𝜆
2
= 𝑢 + 𝑖V, 𝜆

3
= 𝑢 − 𝑖V} with 𝑢 ∈ R

and V > 0. ThenΛ can be realized by an IDSmatrix if and only
if

−

1

2

≤ 𝑢 < 1, V ≤
1 − 𝑢

√3

. (37)

When (37) holds Λ to be realized by the irreducible doubly
stochastic matrix,

𝐶
3
= (

𝛼 𝛽 1 − 𝛼 − 𝛽

1 − 𝛼 − 𝛽 𝛼 𝛽

𝛽 1 − 𝛼 − 𝛽 𝛼

) , (38)

where

𝛼 =

1 + 2𝑢

3

< 1, 𝛽 =

1 − 𝑢

3

(1 −

√3V
1 − 𝑢

) . (39)

Proof. Assume that (37) holds. Then, in the complex plane,
𝑢 + 𝑖V is inside the regular triangle whose vertices are all the
3rd roots of unit 𝑞

0
= 1, 𝑞

1
= cos(2𝜋/3)+𝑖sin(2𝜋/3) = −1/2+

𝑖(√3/2), and 𝑞
2
= cos(4𝜋/3) + 𝑖𝑠in(4𝜋/3) = −1/2 − 𝑖(√3/2),

and hence 𝑢 + 𝑖V is a convex combination of 𝑞
0
, 𝑞
1
, and 𝑞

2
. It

is not difficult to calculate

𝑢 + 𝑖V = 𝛼 + 𝛽𝑞
1
+ (1 − 𝛼 − 𝛽) 𝑞

2
, (40)

where 𝛼, 𝛽 is given by (39). Therefore the spectrum 𝜎(𝐶
3
)

of the irreducible doubly stochastic matrix 𝐶
3
given in (38)

contains 𝑢 + 𝑖V by Lemma 11. Since 𝐶
3
is a doubly stochastic

matrix, we have 𝜎(𝐶
3
) = Λ and hence the sufficiency is

proved. To prove the necessity, assume that Λ is realized by
a doubly stochastic matrix 𝐶 = (𝑐

𝑟𝑠
), 𝑐
𝑟𝑠
≥ 0, 𝑟, 𝑠 = 1, . . . , 𝑛.

Then 1 + 2𝑢 = 𝑡𝑐𝐶 ≥ 0 from which follows 𝑢 ≥ −1/2, and the
sum of products of pairs eigenvalues of 𝐶 is

2𝑢 + 𝑢
2
+ V2 = ∑

1≤𝑟<𝑠≤3

det(𝑐𝑟𝑟 𝑐𝑟𝑠
𝑐
𝑠𝑟
𝑐
𝑠𝑠

) ≤ ∑

1≤𝑟<𝑠≤3

𝑐
𝑟𝑟
𝑐
𝑠𝑠

≤

1

3

(

3

∑

𝑟=1

𝑐
𝑟𝑟
)

2

=

1

3

(𝑡𝑐𝐶)
2
=

1

3

(1 + 2𝑢)
2
,

(41)

from which follows 3V2 ≤ (1 − 𝑢)2. Therefore, (37) holds.
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Remark 13. The necessary and sufficient condition (37) for
the 3 × 3 DSIEP was given byTheorems 12 and 14 of [9].

UsingTheorems 2 and 12, we have the following corollar-
ies.

Corollary 14. Let Λ = {1, 𝜆
2
, 𝜆
3
= 𝑢 + 𝑖V, 𝜆

4
= 𝑢 − 𝑖V}, 1 >

𝜆
2
≥ −1, 𝑢, V(> 0) ∈ 𝑅, and 𝑐 = (3 + 𝜆

2
)/4. If

−

1

2

≤

𝑢

𝑐

< 1,

V
𝑐

≤

1 − 𝑢/𝑐

√3

, (42)

then Λ can be realized by a 4 × 4 irreducible stochastic matrix.

Proof. Let𝑚 = 3, 𝜆
2
= ((𝑚 + 1)𝜆 + 𝑚 − 1)/2𝑚 = (4𝜆 + 2)/6;

then 𝜆 = (3𝜆
2
− 1)/2 ∈ (−1, 1), 𝑐 = (2𝑚 − 1 + 𝜆)/2𝑚 =

(5+𝜆)/6 = (3+𝜆
2
)/4 > 0. If (42) holds, then {1, (𝑢+𝑖V)/𝑐, (𝑢−

𝑖V)/𝑐} is realized by the irreducible doubly stochastic matrix

𝐵 = (

𝛼 𝛽 1 − 𝛼 − 𝛽

1 − 𝛼 − 𝛽 𝛼 𝛽

𝛽 1 − 𝛼 − 𝛽 𝛼

) (43)

byTheorem 12, where

𝛼 =

1 + 2𝑢/𝑐

3

, 𝛽 =

1 − 𝑢/𝑐

3

(1 −

√3V/𝑐
1 − 𝑢/𝑐

) . (44)

Now, the 4 × 4matrix (given in (7)) as follows:

𝐶 = (

1 + 𝜆

2

1 − 𝜆

2√3

𝑢
𝑇

3

1 − 𝜆

2√3

𝑢
3

𝑐𝐵

) (45)

is an irreducible doubly stochastic matrix 𝑏 whom {1, 𝑐((𝑢 +

𝑖V)/𝑐), 𝑐((𝑢 − 𝑖V)/𝑐), 𝜆
2
} = Λ is realized (Theorem 2).

Corollary 15. Let Λ = {1, 𝜆
2
, 𝜆
3
, 𝑢 + 𝑖V, 𝑢 − 𝑖V} be a complex

5-tuple with 1 > 𝜆
2
≥ 𝜆
3
≥ −1, 𝑢2 < 𝑢2 + V2 ≤ 1, V > 0,

and 𝑐∗ = (4 + 𝜆
3
)/5, 𝑐 = (3 + 𝜆

2
/𝑐
∗
)/4, 𝑐 = 𝑐∗𝑐, then 𝑐∗ ∈

(11/15, 1), 𝑐 > 7/11, 0 < 𝑐 < 𝑐. If

𝜆
3
≥ −

1

4

, 1 >

𝜆
2

𝑐

≥ −1, (

𝑢

𝑐

)

2

+ (

V
𝑐

)

2

≤ 1,

−

1

2

≤

𝑢

𝑐

,

V
𝑐

≤

1 − 𝑢/𝑐

√3

,

(46)

then Λ is realized by a 5 × 5 irreducible stochastic matrix.

Proof. Let𝑚 = 4, 𝜆
3
= ((𝑚 + 1)𝜆 + 𝑚 − 1)/2𝑚 = (5𝜆 + 3)/8;

then 𝜆 = (8𝜆
3
− 3)/5 ∈ (−1, 1), 𝑐∗ = (2𝑚 − 1 + 𝜆)/2𝑚 = (7 +

𝜆)/8 = (4+𝜆
3
)/5 ∈ (3/4, 1) and hence 𝑐 ≥ (3−4/3)/4 = 5/12.

If Λ satisfies Condition (46), then {1, 𝜆
2
/𝑐
∗
, (𝑢 + 𝑖V)/𝑐∗, (𝑢 −

𝑖V)/𝑐∗} is realized by an irreducible 4 × 4 doubly stochastic
matrix 𝐵∗ by Corollary 14. Now for 𝜆 = (8𝜆

3
− 3)/5, the 5 × 5

matrix (given in (7))

𝐶 = (

1 + 𝜆

2

1 − 𝜆

4

𝑢
𝑇

4

1 − 𝜆

4

𝑢
4

𝑐
∗
𝐵
∗

) (47)

is an irreducible doubly stochastic by whom {1, 𝑐
∗
(𝜆
2
/

𝑐
∗
), 𝑐
∗
((𝑢 + 𝑖V)/𝑐∗), 𝑐∗((𝑢 − 𝑖V)/𝑐∗), 𝜆

3
} = Λ is realized by

Theorem 2.

Theorem16. LetΛ = {𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
} = {1, −2𝑢−1, 𝑢+𝑖V, 𝜆

3
=

𝑢 − 𝑖V}, 𝑢, V(> 0) ∈ 𝑅 contain a pair of conjugate complex
numbers such that 𝜆

1
+ 𝜆
2
+ 𝜆
3
+ 𝜆
4
= 0. If

−

1

2

≤ 𝑢 ≤ 0, 1 + 𝑢 − V ≥ 0, (48)

thenΛ is realized by a 4×4 irreducible doubly stochastic matrix
with zero trace.

Proof. Assume that (48) holds. Then, in the complex plane,
𝑢 + 𝑖V is inside the right triangle whose vertices are 𝑞

1
= 𝑖,

𝑞
2
= −1, 𝑞

3
= −𝑖 and hence 𝑢 + 𝑖V is a convex combination of

𝑞
1
, 𝑞
2
, and 𝑞

3
. It is not difficult to calculate

𝑢 + 𝑖V =
1 + 𝑢 − V

2

𝑞
1
+ (−𝑢) 𝑞

2
+

1 + 𝑢 + V
2

𝑞
3
. (49)

Since 𝑞
0
= 1, 𝑞

1
= 𝑖, 𝑞

2
= −1, 𝑞

3
= −𝑖 are all the 4th roots

of unit, Lemma 11 asserts that the spectrum of the following
4 × 4 irreducible doubly stochastic matrix:

(

(

(

(

(

(

(

0

1 + 𝑢 − V
2

−𝑢

1 + 𝑢 + V
2

1 + 𝑢 + V
2

0

1 + 𝑢 − V
2

−𝑢

−𝑢

1 + 𝑢 + V
2

0

1 + 𝑢 − V
2

1 + 𝑢 − V
2

−𝑢

1 + 𝑢 + V
2

0

)

)

)

)

)

)

)

(50)

is {((1+𝑢−V)/2)𝑖𝑘−𝑢(−1)𝑘+((1+𝑢+V)/2)(−𝑖)𝑘, 𝑘 = 0, 1, 2, 3} =
{1, 𝑢 − 𝑖V, −1 − 2𝑢, 𝑢 + 𝑖V} = Λ.

Corollary 17. Let Λ = {𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
} = {1, −1/4, (−3 −

8𝑢)/4, 𝑢+𝑖V, 𝑢− 𝑖V}, 𝑢, V(> 0) ∈ 𝑅 and 𝑐 = (3+𝜆
2
)/4 = 11/16.

If

−

1

2

≤

𝑢

𝑐

≤ 0, 1 +

𝑢

𝑐

−

V
𝑐

≥ 0, (51)

then Λ is a realized by a 5 × 5 irreducible stochastic matrix.

Proof. Let𝑚 = 4, 𝜆
2
= ((𝑚 + 1)𝜆 + 𝑚 − 1)/2𝑚 = (5𝜆 + 3)/8;

then 𝜆 = −1. If (51) holds, then {1, −1 − 2𝑢/𝑐, (𝑢 + 𝑖V)/𝑐, (𝑢 −
𝑖V)/𝑐} is realized by the irreducible doubly stochastic matrix
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𝐵 =

(

(

(

(

(

(

(

0

1 + 𝑢/𝑐 − V/𝑐
2

−𝑢/𝑐

1 + 𝑢/𝑐 + V/𝑐
2

1 + 𝑢/𝑐 + V/𝑐
2

0

1 + 𝑢/𝑐 − V/𝑐
2

−𝑢/𝑐

−𝑢/𝑐

1 + 𝑢/𝑐 + V/𝑐
2

0

1 + 𝑢/𝑐 − V/𝑐
2

1 + 𝑢/𝑐 − V/𝑐
2

−𝑢/𝑐

1 + 𝑢/𝑐 + V/𝑐
2

0

)

)

)

)

)

)

)

(52)

byTheorem 16. Now the following 5×5matrix (given in (7)):

𝐶 = (

1 + 𝜆

2

1 − 𝜆

4

𝑢
𝑇

4

1 − 𝜆

4

𝑢
4

𝑐𝐵

) = (

0

1

2

𝑢
𝑇

4

1

2

𝑢
4
𝑐𝐵

) (53)

is an irreducible doubly stochastic matrix with zero trace by
whom {1, 𝑐((𝑢 + 𝑖V)/𝑐), 𝑐((𝑢 − 𝑖V)/𝑐), 𝜆

2
, −1 − 𝜆

2
− 2𝑢} = Λ is

realized byTheorem 2.

Theorem 18. Let Λ = {1, 𝜆
2
= 𝑢 + 𝑖V, 𝜆

3
= 𝑢 − 𝑖V, 𝜆

4
=

𝑢

+ 𝑖V, 𝜆

5
= 𝑢 − 𝑖V} contain two pairs of conjugate complex

numbers with 𝑢, V(> 0) given and 𝑢, V(> 0) depending on 𝑢, V
(𝑖 = √−1). If

cos 4𝜋
5

≤ 𝑢 < 1,

V < min{ sin (2𝜋/5) (𝑢 − 1)
cos (2𝜋/5) − 1

, cos (4𝜋/5)

+

(sin (2𝜋/5) − sin (4𝜋/5)) (𝑢 − cos (2𝜋/5))
cos (2𝜋/5) − cos (4𝜋/5)

} ,

(54)

thenΛ is realized by a 5×5 irreducible doubly stochasticmatrix,
where 𝑢, V are depending on 𝑢, V (see (58) and (63)).

Proof. Assume that (54) holds. Then, in the complex plane,
𝑢 + 𝑖V is inside the right pentagon whose vertices are all the
5th roots of units 𝑞

0
= 1, 𝑞

𝑘
= cos(2𝑘𝜋/5) + 𝑖sin(2𝑘𝜋/5),

𝑘 = 1, 2, 3, 4 (see Figure 1) and hence 𝑢 + 𝑖V is a convex
combination of 𝑞

0
, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
. There are two cases to be

considered.
Case 1. 𝑢, V satisfy (54) and V ≤ sin(4𝜋/5)(𝑢−1)/(cos(4𝜋/5)−
1). In this case,𝑢+𝑖V is insideTriangleΔ𝑞

0
𝑞
2
𝑞
3
andhence𝑢+𝑖V

is a convex combination of 𝑞
0
, 𝑞
2
, 𝑞
3
. A calculation yields

𝑢 + 𝑖V = 𝜆
0
+ 𝜆
2
𝑞
2
+ 𝜆
3
𝑞
3
, (55)

where

𝜆
0
=

𝑢 − cos (4𝜋/5)
1 − cos (4𝜋/5)

,

𝜆
2
=

1 − 𝑢

1 − cos (4𝜋/5)
(

1

2

−

(1 − cos (4𝜋/5)) V
2 sin (4𝜋/5) (1 − 𝑢)

) ,

𝜆
3
= 1 − 𝜆

0
− 𝜆
2
.

(56)

Now the following irreducible circulant matrix that is also
doubly stochastic:

𝐶
5
=(

𝜆
0
0 𝜆
2
𝜆
3
0

0 𝜆
0
0 𝜆
2
𝜆
3

𝜆
3
0 𝜆
0
0 𝜆
2

𝜆
2
𝜆
3
0 𝜆
0
0

0 𝜆
2
𝜆
3
0 𝜆
0

) (57)

has spectrum: 𝜎(𝐶
5
) = {𝜆

0
+ 𝜆
2
𝑞
2

𝑘
+ 𝜆
3
𝑞
3

𝑘
, 𝑘 = 0, 1, 2, 3, 4} by

Lemma 11. Taking 𝑘 = 0, 1, 4, we have 1, 𝑢 ± 𝑖V ∈ 𝜎(𝐶
3
) and

taking 𝑘 = 2, 3, we have that 𝜆
0
+𝜆
2
𝑞
4
+𝜆
3
𝑞
1
and 𝜆

0
+𝜆
2
𝑞
1
+

𝜆
3
𝑞
4
are in 𝜎(𝐶

3
) and are conjugate to each other. Therefore,

if we set

𝑢

= 𝜆
0
+ 𝜆
2
cos 8𝜋

5

+ 𝜆
3
cos 2𝜋

5

,

V =








𝜆
2
sin 8𝜋

5

+ 𝜆
3
sin 2𝜋

5









,

(58)

then Λ is realized by the 5 × 5 irreducible doubly stochastic
matrix 𝐶

5
.

Case 2. 𝑢, V satisfy (54) and V > sin(4𝜋/5)(𝑢−1)/(cos(4𝜋/5)−
1). In this case,𝑢+𝑖V is insideTriangleΔ𝑞

0
𝑞
1
𝑞
2
andhence𝑢+𝑖V

is a convex combination of 𝑞
0
, 𝑞
1
, 𝑞
2
. A calculation yields

𝑢 + 𝑖V = 𝜆
0
+ 𝜆


1
𝑞
1
+ 𝜆


2
𝑞
2
, (59)

where

𝜆


0
=

𝑢 − 𝑥

1 − 𝑥

,

𝜆


1
=

(𝑥 − cos (4𝜋/5)) (1 − 𝜆
0
)

cos (2𝜋/5) − cos (4𝜋/5)
,

𝜆


2
= 1 − 𝜆



0
− 𝜆


1
,

(60)

with

𝑥 = ((sin 2𝜋
5

− (

sin (2𝜋/5) − sin (4𝜋/5)
cos (2𝜋/5) − cos (4𝜋/5)

)

× cos 2𝜋
5

) (𝑢 − 1) + V)

× ((

sin(2𝜋/5) − sin(4𝜋/5)
cos(2𝜋/5) − cos(4𝜋/5)

) (1 − 𝑢) + V)
−1

.

(61)



Abstract and Applied Analysis 9

q2 = cos(4𝜋/5) + isin(4𝜋/5)

q1 = cos(2𝜋/5) + isin(2𝜋/5)

q3 = cos(6𝜋/5) + isin(6𝜋/5)

q4 = cos(8𝜋/5) + isin(8𝜋/5)

q0 = 1

u + i�

Figure 1

Now the irreducible circulant matrix that is also doubly
stochastic as follows:

𝐶


5
=

(

(

(

(

(

(

(

𝜆


0
𝜆


1
𝜆


2
0 0

0 𝜆


0
𝜆


1
𝜆


2
0

0 0 𝜆


0
𝜆


1
𝜆


2

𝜆


2
0 0 𝜆



0
𝜆


1

𝜆


1
𝜆


2
0 0 𝜆



0

)

)

)

)

)

)

)

(62)

has spectrum 𝜎(𝐶


5
) = {𝜆



0
+ 𝜆


1
𝑞
𝑘
+ 𝜆


2
𝑞
2

𝑘
, 𝑘 = 0, 1, 2, 3, 4} by

Lemma 11. Taking 𝑘 = 0, 1, 4, we have 1, 𝑢 ± 𝑖V ∈ 𝜎(𝐶
3
) and

taking 𝑘 = 2, 3, we have that 𝜆
0
+𝜆


1
𝑞
2
+𝜆


2
𝑞
4
and 𝜆

0
+𝜆


1
𝑞
3
+

𝜆


2
𝑞
1
are in 𝜎(𝐶

3
) and are conjugate to each other. Therefore,

if we set

𝑢

= 𝜆


0
+ 𝜆


1
cos 4𝜋

5

+ 𝜆


2
cos 8𝜋

5

,

V =








𝜆


1
sin 4𝜋

5

+ 𝜆


2
sin 8𝜋

5









,

(63)

then Λ is realized by the 5 × 5 irreducible doubly stochastic
matrix 𝐶

5
.

Example 19. Λ
1
= {1, −0.3+0.6𝑖, −0.3−0.6𝑖} satisfies Condit-

ion (37) of Theorem 12 and is doubly stochastic realized by

𝐴
1
= (

0.13333 0.08692 0.77974

0.77974 0.13333 0.08692

0.08692 0.77974 0.13333

) . (64)

Example 20. Let Λ
2
= {1, 𝜆

2
, 𝑢 + V𝑖, 𝑢 − V𝑖} = {1, 0.46, −0.3 +

0.6𝑖, −0.3 − 0.6𝑖}, 𝑐 = (3 + 𝜆
2
)/4 = 0.865. Then Condition

(42) of Corollary 14 is satisfied and Λ
2
is doubly stochastic

realized by

𝐴
2
= (

0.595 0.135 0.135 0.135

0.135 0.08833 0.04192 0.73744

0.135 0.73744 0.08833 0.04192

0.135 0.04192 0.73744 0.08833

) . (65)

Example 21. Let Λ
3

= {1, 𝜆
2
, 𝜆
3
, 𝑢 + V𝑖, 𝑢 − V𝑖} =

{1, 0.6, 0.1, −0.3 + 0.6𝑖, −0.3 − 0.6𝑖}. Then 𝑐∗ = (4 + 𝜆
3
)/5 =

0.82, 𝑐 = (3 + 𝜆
2
/𝑐
∗
)/4 = 0.93295, 𝑐 = 𝑐∗𝑐 = 0.765, and

Condition (46) of Corollary 15 is satisfied and Λ
3
is doubly

stochastic realized by

𝐴
3
=(

0.28 0.18 0.18 0.18 0.18

0.18 0.655 0.055 0.055 0.055

0.18 0.055 0.055 0.00859 0.70141

0.18 0.055 0.70141 0.055 0.00859

0.18 0.055 0.00859 0.70141 0.055

) . (66)

Example 22. Let Λ
4
= {1, −1/4, (−3 − 8𝑢)/3, 𝑢 + 𝑖V, 𝑢 − 𝑖V}

with 𝑢 = −0.2, V = 0.4 and 𝑐 = 3/4. Then Condition (51) of
Corollary 17 is satisfied and Λ

4
is doubly stochastic realized

by

𝐴
4
=(

0 0.25 0.25 0.25 0.25

0.25 0 0.475 0.2 0.075

0.25 0.075 0 0.475 0.2

0.25 0.2 0.075 0 0.475

0.25 0.475 0.2 0.075 0

) . (67)

Example 23. Let Λ
5
= {1, 𝑢 + V𝑖, 𝑢 − V𝑖, 𝑢 + V𝑖, 𝑢 −

V𝑖}, where 𝑢 = 0.3, V = 0.6 and 𝑢

, V(> 0) will

be determined later. It is easy to verify that 𝑢, V satisfy
Condition (54) of Theorem 18 and V > sin(4𝜋/5)(𝑢 −
1)/(cos(4𝜋/5) − 1) (i.e., Λ

4
belongs to Case 2) and 𝑢 +

V𝑖 = 𝜆
0
+ 𝜆
1
𝑞
1
+ 𝜆
2
𝑞
2
= 0.29613 + 0.51278(cos(2𝜋/5) +

sin(2𝜋/5)𝑖) + 0.19109(cos(4𝜋/5) + sin(4𝜋/5)𝑖). Let 𝑢 = 𝜆
0
+

𝜆
1
cos(2𝜋/5)+𝜆

2
cos(4𝜋/5) = −0.05966, V = |𝜆

1
sin(2𝜋/5)+

𝜆
2
sin(4𝜋/5)| = 0.11967. Then Λ

4
= {1, 𝑢 + V𝑖, 𝑢 − V𝑖, 𝑢 +

V𝑖, 𝑢 − V𝑖} is doubly stochastic realized by the following
irreducible doubly stochastic matrix:

𝐴
5
=(

0.29613 0.51278 0.19109 0 0

0 0.29613 0.51278 0.19109 0

0 0 0.29613 0.51278 0.19109

0.19109 0 0 0.29613 0.51278

0.51278 0.19109 0 0 0.29613

).

(68)
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