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The global exponential stability is investigated for genetic regulatory networks with time-varying delays and continuous distributed
delays. By choosing an appropriate Lyapunov-Krasovskii functional, new conditions of delay-dependent stability are obtained in
the formof linearmatrix inequality (LMI).The lower bound of derivatives of time-varying delay is first taken into account in genetic
networks stability analysis, and the main results with less conservatism are established by interactive convex combination method
to estimate the upper bound of derivative function of the Lyapunov-Krasovskii functional. In addition, two numerical examples
are provided to illustrate the effectiveness of the theoretical results.

1. Introduction

From the late 20th century to the early 21st century, more
than a decade’s time, life science, especiallymolecular biology
science, had great surprising changes.The research of genetic
regulatory networks has become an important area in the
molecular biology science and received great attention.There
are plenty of results [1, 2]. Genetic regulatory networks
can be seen as biochemically dynamical systems, and it
is natural to simulate them by using dynamical system
model. There are a variety of models that have been pro-
posed but mainly are the Boolean network model (discrete
model) [3–6] and the differential equationmodel (continuous
model) [7, 8]. In the Boolean models, each gene’s activity
is expressed with ON or OFF, and each gene’s state is
described by the Boolean function of other related genes’
states. In differential equation model, the variables delin-
eate the concentrations of gene products, such as mRNAs
and proteins, which are continuous values. According to
a large number of biological experiments, we know that
gene expression is usually continuously variable, so it is

more reasonable to describe genetic regulation networks with
differential equation model than with the Boolean network
model.

Gene expression is a complex process regulation by the
stimulation and inhibition of protein including transcription,
translation, and posttranslation processes, and a large num-
ber of reactions and reacting species participate in this pro-
cess. There are fast reaction and slow reaction in real genetic
regulatory systems. The fast reaction includes dimerization,
binding reaction, and phosphorylation, and the slow reaction
contains transcription, translation, and translocation or the
finite switching speed of amplifiers. Due to the slow reaction,
time delays exist in genetic regulatory networks. In [9], there
is a biochemistry experiment on mice which has proved
that there exists a time lag of about 15 min in the peaks
between the mRNA molecules and the proteins of the gene
Hes1.

The emergence of the time delays will influence the
genetic regulatory networks’ dynamic behaviors, which cause
the researchers’ interest. The stability is one of the very
important dynamic characteristics. Hence, it is necessary

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 897280, 10 pages
http://dx.doi.org/10.1155/2014/897280

http://dx.doi.org/10.1155/2014/897280


2 Abstract and Applied Analysis

to consider the stability of genetic regulatory networks
with time delay; see [10–16]. In [11], random time delays
are taken into account, and some stability criteria for the
uncertain delayed genetic networks with SUM regulatory
logic where each transcription factor acts additively to
regulate a gene were obtained; asymptotical stability cri-
teria were proposed for genetic regulatory networks with
interval time-varying delays and nonlinear disturbance in
[12]. In [14], authors gave some stochastic asymptotic
stability sufficient conditions for the uncertain stochas-
tic genetic regulatory networks with both mixed time-
varying delays by constructing the Lyapunov functional
and employing stochastic analysis methods. In [15, 16], the
authors studied genetic regulatory networks with constant
delay.

Motivated by the above discussions, we analyze the
exponential stability of genetic regulatory networks with
time-varying delays and continuous distributed delays. It is
worth mentioning that the asymptotical stability of genetic
regulatory networks is studied in most literature; see [17, 18].
But the exponential stability of our research is of better sta-
bility than asymptotical stability. Literature [11] discusses the
exponential stability of genetic regulatory networks with ran-
dom time delays, which are essentially constant delays. Our
paper considers the system with interval time-varying delays
and continuous distributed delays, which is more reasonable
than literature [11]. Literature [19] studies robust exponential
stability for stochastic genetic regulatory networks with time-
varying delays, whose derivatives’ upper bound is less than
1. In our models, the derivatives’ upper bound of inter-
val time-varying delays has no limit of less than 1. And
we study the lower bound of derivatives of time-varying
delay to systems stability effect for the first time. In the
theorem for evidence, convex combination and interactive
convex combination method were adopted, which have less
conservatism.

This paper is organized as follows. In Section 2, model
description and some assumptions are given. In Section 3,
several sufficient results are obtained to check the exponential
stability for genetic regulatory networks with time-varying
delays and continuous distributed delays. Some numerical
examples are given to demonstrate the effectiveness of our
analysis in Section 4. Finally, conclusions are drawn in
Section 5.

Notations. Throughout this paper, R, R𝑛, and R𝑛×𝑚 denote,
respectively, the set of all real numbers, real 𝑛-dimensional
space, and real 𝑛 × 𝑚-dimensional space. Z

+
denote the set

of all positive integers. ‖ ⋅ ‖ denote the Euclidean norms
in R𝑛. 𝐼 and 0 denote, respectively, the identity matrix and
the zero matrix with appropriate dimension. For a vector or
matrix 𝐴, 𝐴T denotes its transpose. For a square matrix 𝐴,
𝜆max(𝐴) and 𝜆min(𝐴) denote the maximum eigenvalue and
minimum eigenvalue ofmatrix𝐴, respectively, and sym(𝐴) is
used to represent 𝐴 + 𝐴

T. For simplicity, in symmetric block
matrices, we often use ∗ to represent the term that is induced
by symmetry.

2. Problem Formulation
and Some Preliminaries

In this paper, we are devoted to studying the stability to an
autoregulatory genetic networkwith time delays described by
the following delay differential equations:

�̇�
𝑖
(𝑡) = −𝑎

𝑖
𝑚
𝑖
(𝑡) + 𝜔

𝑖
(𝑝
1
(𝑡 − 𝜎 (𝑡)) 𝑝

𝑛
(𝑡 − 𝜎 (𝑡))) ,

𝑖 = 1, . . . , 𝑛,

�̇�
𝑖
(𝑡) = −𝑐

𝑖
𝑝
𝑖
(𝑡) + 𝑑

𝑖
𝑚
𝑖
(𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, . . . , 𝑛,

(1)

where𝑚
𝑖
(𝑡)’s and𝑝

𝑖
(𝑡)’s are the concentrations ofmRNAs and

proteins, respectively; 𝑎
𝑖
’s and 𝑐

𝑖
’s are the degradation rates

of mRNAs and proteins, respectively; 𝑑
𝑖
’s are the translation

rates of proteins; 𝜔
𝑖
(⋅)’s are the regulatory functions of

mRNAs, being generally monotonic to each argument; and
𝜎(𝑡) and 𝜏(𝑡) are time-varying delays.

Assumption 1. 𝜎(𝑡) and 𝜏(𝑡) are the time-varying delay satis-
fying

0 ≤ 𝜎
1
≤ 𝜎 (𝑡) ≤ 𝜎

2
, 𝜎

3
≤ �̇� (𝑡) ≤ 𝜎

4
< ∞,

0 ≤ 𝜏
1
≤ 𝜏 (𝑡) ≤ 𝜏

2
, 𝜏

3
≤ ̇𝜏 (𝑡) ≤ 𝜏

4
< ∞,

(2)

where 𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
, 𝜏
1
, 𝜏
2
, 𝜏
3
, 𝜏
4
are some constants.

Remark 2. In this paper, the lower bound of derivatives of
time-varying delay is considered for the first time in the
research of genetic regulatory networks. When information
on lower bound of time-varying delay’s derivatives can be
measured, our results are better than the previous works.

In genetic regulatory networks, some genes can be
activated by one of a few different transcription factors
(“OR” logic), and others can be activated by two or more
transcription factors which must be bounded at the same
time (“AND” logic). In this paper, we take a model of genetic
regulatory networks where each transcription factor acts
additively to regulate the 𝑖th gene (“SUM” logic) [20]. The
regulatory function takes the form 𝜔

𝑖
(𝑝
1
(𝑡), . . . , 𝑝

𝑛
(𝑡)) =

∑
𝑛

𝑗=1
𝜔
𝑖𝑗
(𝑝
𝑗
(𝑡)), and 𝜔

𝑖𝑗
(𝑝
𝑗
(𝑡)) is a monotonic function with

the following Hill form [21]:

𝜔
𝑖𝑗
(𝑝
𝑗
(𝑡)) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝛼
𝑖𝑗

(𝑝
𝑗
(𝑡) /𝛽
𝑗
)

𝐻𝑗

1 + (𝑝
𝑗
(𝑡) /𝛽
𝑗
)

𝐻𝑗

if transcription factor 𝑗 is an
activator of gene 𝑖,

𝛼
𝑖𝑗

1

1 + (𝑝
𝑗
(𝑡) /𝛽
𝑗
)

𝐻𝑗

if transcription factor 𝑗 is a
repressor of gene 𝑖,

(3)
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where𝐻
𝑗
is the Hill coefficient, 𝛽

𝑗
is a positive constant, and

𝛼
𝑖𝑗
is the constant transcriptional rate of 𝑗th transcriptional

factor to 𝑖th gene.
Therefore, (1) can be rewritten as

�̇�
𝑖
(𝑡) = −𝑎

𝑖
𝑚
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑝
𝑗
(𝑡 − 𝜎 (𝑡))) + 𝑒

𝑖
,

𝑖 = 1, . . . , 𝑛,

�̇�
𝑖
(𝑡) = −𝑐

𝑖
𝑝
𝑖
(𝑡) + 𝑑

𝑖
𝑚
𝑖
(𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, . . . , 𝑛,

(4)

where 𝑓
𝑗
(𝑥) = (𝑥/𝛽

𝑗
)
𝐻𝑗
/(1 + (𝑥/𝛽

𝑗
))
𝐻𝑗 is monotonically

increasing function; 𝑒
𝑖
’s are basal rate defined by 𝑒

𝑖
= ∑
𝑗∈𝑈𝑘

𝛼
𝑖𝑗

with 𝑈
𝑘
= {𝑗 | the 𝑗th transcription factor being a repressor

of the kth gene, 𝑗 = 1, . . . , 𝑛}; and matrix 𝐵 = (𝑏
𝑖𝑗
) ∈ R𝑛×𝑛 is

defined as

𝑏
𝑖𝑗
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝛼
𝑖𝑗
,

if transcription factor 𝑗 is an activator
of gene 𝑖,

0,

if there is no link from node 𝑗 to node 𝑖,
−𝛼
𝑖𝑗
,

if transcription factor 𝑗 is a repressor
of gene 𝑖.

(5)

In the compact matrix form, (4) can be rewritten as

�̇� (𝑡) = −𝐴𝑚 (𝑡) + 𝐵𝑓 (𝑝 (𝑡 − 𝜎 (𝑡))) + 𝐸,

�̇� (𝑡) = −𝐶𝑃 (𝑡) + 𝐷𝑚 (𝑡 − 𝜏 (𝑡)) ,

(6)

where

𝑚(𝑡) = [𝑚
1
(𝑡) , . . . , 𝑚

𝑛
(𝑡)]
𝑇

,

𝑝 (𝑡) = [𝑝
1
(𝑡) , . . . , 𝑝

𝑛
(𝑡)]
𝑇

,

𝑓 (𝑝 (𝑡)) = [𝑓
1
(𝑝
1
(𝑡)) , . . . , 𝑓

𝑛
(𝑝
𝑛
(𝑡))]
𝑇

,

𝐴 = diag (𝑎
1
, . . . , 𝑎

𝑛
) , 𝐼 = [𝑒

1
, . . . , 𝑒

𝑛
]
𝑇

,

𝐶 = diag (𝑐
1
, . . . , 𝑐

𝑛
) , 𝐷 = diag (𝑑

1
, . . . , 𝑑

𝑛
) .

(7)

In order to get the stability results, the following assump-
tion is necessarily imposed on (6).

Assumption 3. 𝑓
𝑖
: R → R, 𝑖 = 1, . . . , 𝑛, are monotonically

increasing functions with saturation and moreover satisfy

𝑚
−

𝑖
≤

𝑓
𝑖
(𝑎) − 𝑓

𝑖
(𝑏)

𝑎 − 𝑏

≤ 𝑚
+

𝑖
, ∀𝑎, 𝑏 ∈ R, 𝑖 = 1, . . . , 𝑛, (8)

where𝑚−
𝑖
and𝑚+

𝑖
are constants.

Remark 4. In the most existing literature, (8) was strength-
ened to 0 ≤ ((𝑓

𝑖
(𝑎) − 𝑓

𝑖
(𝑏))/(𝑎 − 𝑏)) ≤ 𝑙

𝑖
, for all 𝑎, 𝑏 ∈ R,

where 𝑙
𝑖
’s are positive constant. Therefore, Assumption 1 is

somewhat general and, in fact, similar to that of [12]; see the
discussion below.

The vectors𝑚∗, 𝑝∗ are said to be an equilibrium point of
system (6), if they satisfy

0 = −𝐴𝑚
∗

+ 𝐵𝑓 (𝑝
∗

(𝑡 − 𝜎 (𝑡))) + 𝐸,

0 = −𝐶𝑃
∗

+ 𝐷𝑚
∗

(𝑡 − 𝜏 (𝑡)) .

(9)

Let 𝑥(𝑡) = 𝑚(𝑡) − 𝑚∗ and let 𝑦(𝑡) = 𝑝(𝑡) − 𝑝∗; we get

�̇� (𝑡) = −𝐴𝑥 (𝑡) + 𝐵𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) ,

(10)

where 𝑥(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇, 𝑦(𝑡) = [𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇,

𝑔(𝑦(𝑡)) = [𝑔(𝑦
1
(𝑡)), . . . , 𝑔(𝑦

𝑛
(𝑡))]
𝑇, and 𝑔

𝑖
(𝑦
𝑖
(𝑡)) = 𝑓

𝑖
(𝑦
𝑖
(𝑡) +

𝑝
∗

𝑖
) − 𝑓
𝑖
(𝑝
∗

𝑖
).

By the definition of 𝑔
𝑖
(⋅), it satisfies sector condition:

𝑚
−

𝑖
≤

𝑔
𝑖
(𝑎)

𝑎

≤ 𝑚
+

𝑖
, 𝑖 = 1, . . . , 𝑛, (11)

which implies that

𝑔
𝑖
(𝑎) − 𝑚

−

𝑖
𝑎

𝑎

≥ 0,

𝑚
+

𝑖
𝑎 − 𝑔
𝑖
(𝑎)

𝑎

≥ 0. (12)

Let 𝑀
0
= diag(𝑚−

1
, . . . , 𝑚

−

𝑛
), 𝑀
1
= diag(𝑚+

1
, . . . , 𝑚

+

𝑛
), and

𝑚 = max{|𝑚−
1
|, . . . , |𝑚

−

𝑛
|, |𝑚
+

1
|, . . . , |𝑚

+

𝑛
|}.

The initial condition of system (10) is assumed to be

𝑥 (𝑡) = 𝜑
1
(𝑡) , 𝑦 (𝑡) = 𝜓

1
(𝑡) , −𝜌 ≤ 𝑡 ≤ 0,

𝜌 = max {𝜎
2
, 𝜏
2
} .

(13)

Based on system (10), we also consider the genetic
regulatory networks with continuous distributed delays:

�̇� (𝑡) = −𝐴𝑥 (𝑡) + 𝐵𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) + 𝑊∫

𝑡

𝑡−𝜗(𝑡)

𝑔 (𝑦 (𝑠)) 𝑑𝑠,

̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) ,

(14)

where 0 ≤ 𝜗(𝑡) ≤ 𝜗
1
.

For completeness, we recall the following definition and
lemmas.

Definition 5. System (10) or (14) is said to be globally
exponentially stable, if there exist constants 𝜆 > 0 and𝑀 ≥ 1,
such that, for any initial value 𝑧

𝑡0
,

‖𝑧 (𝑡)‖ ≤ 𝑀






𝑧
𝑡0





𝐶
1𝑒
−𝜆(𝑡−𝑡0) (15)

hold, for all 𝑡 ≥ 0, where 𝑧(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]
𝑇 and ‖𝑧(𝑡)‖

𝐶
1 =

sup
−𝜌≤𝜃≤0

{‖𝑧(𝑡 + 𝜃)‖, ‖�̇�(𝑡 + 𝜃)‖}.

Lemma 6 (see [22]). For any positive definite matrix 𝑀 ∈

R𝑛×𝑛, there exists a scalar 𝑞 > 0 and a vector-valued function
𝜔 : [0, 𝑞] → R𝑛 such that

(∫

𝑞

0

𝜔(𝑠)𝑑𝑠)

𝑇

𝑀(∫

𝑞

0

𝜔 (𝑠) 𝑑𝑠) ≤ 𝑞∫

𝑞

0

𝜔
𝑇

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠.

(16)
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Lemma 7 (see [23]). Let ℎ
1
, . . . , ℎ

𝑁
: R𝑚 → R take

positive values in an open subsetD ofR𝑚.Then, the reciprocally
convex combination of ℎ

𝑖
overD satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝑖 𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

ℎ
𝑖
(𝜂) = ∑

𝑖

ℎ
𝑖
(𝜂) +max

𝑘𝑖,𝑗(𝜂)

∑

𝑖 ̸= 𝑗

𝑘
𝑖,𝑗
(𝜂) (17)

subject to

{𝑘
𝑖,𝑗
:R𝑚 → R, 𝑘

𝑗,𝑖
(𝜂) = 𝑘

𝑖,𝑗
(𝜂) ,

[

ℎ
𝑖
(𝜂) 𝑘

𝑖,𝑗
(𝜂)

𝑘
𝑖,𝑗
(𝜂) ℎ

𝑗
(𝜂)

] ≥ 0} .

(18)

3. Main Results

In this section, several theorems are presented of genetic
regulatory networks with both time-varying delays and
continuous distributed delays. Firstly, a globally exponential
stability result is developed for the genetic regulatory network
with time-varying delays.

Theorem 8. For system (10) with Assumptions 1 and 3, the
equilibrium point is globally exponentially stable (that is,
there are two positive constants 𝛼 and 𝜆 such that ‖𝑧(𝑡)‖ ≤

𝛼𝑒
−𝜆𝑡

‖𝑧(𝑡
0
)‖
𝐶1
, for all 𝑡 ≥ 𝑡

0
) if there exist positive definite

matrices 𝐻
2
, 𝐻
4
, 𝑃
1
, 𝑃
2
, 𝑄
𝑖
, 𝑖 = 1, . . . , 7,𝑊

𝑖
, 𝑖 = 1, . . . , 4, Γ

1
=

diag(𝛾
11
, . . . , 𝛾

1𝑛
), and Γ

2
= diag(𝛾

21
, 𝛾
22
, ..., 𝛾
2𝑛
), such that,

for any appropriate dimensions constantmatrices𝐻
1
, 𝐻
3
, 𝑋, 𝑌,

the following LMIs hold:

(

𝑊
2

𝑋

𝑋 𝑊
2

) ≥ 0, (

𝑊
4

𝑌

𝑌 𝑊
4

) ≥ 0, (19)

Ω
1
+ Ω
2
+ 𝑂
𝑇

3
[𝑒
−𝜆𝜏2

𝑄
2
+ 𝑒
−𝜆𝜏1

𝑄
3
]𝑂
3

+ 𝑂
𝑇

8
[𝑒
−𝜆𝜎2

𝑄
5
+ 𝑒
−𝜆𝜎1

𝑄
6
]𝑂
8
< 0,

(20)

where Ω
1
= diag(𝜆𝑃

1
+ 𝑄
1
− 𝑒
−𝜆𝜏1

𝑊
1
− 𝐻
𝑇

1
𝐴 − 𝐴

𝑇

𝐻
1
,

𝑒
−𝜆𝜏1

(𝑄
1
−𝑄
2
)−𝑒
−𝜆𝜏1

𝑊
1
−𝑒
−𝜆𝜏2

𝑊
2
, 𝑒−𝜆𝜏1(1−𝜏

4
)𝑄
3
−𝑒
−𝜆𝜏2

[(1−

𝜏
3
)𝑄
2
+2𝑊
2
−𝑋
𝑇

−𝑋],−𝑒−𝜆𝜏2𝑊
2
, 𝜏
2

1
𝑊
1
+(𝜏
2
−𝜏
1
)
2

𝑊
2
−𝐻
𝑇

2
−𝐻
2
,

𝜆𝑃
2
+𝑄
4
−𝑒
−𝜆𝜎1

𝑊
3
−2𝑀
𝑇

1
Γ
1
𝑀
0
−𝐻
𝑇

3
𝐶−𝐶
𝑇

𝐻
3
,−𝑒−𝜆𝜎1(𝑄

4
−𝑄
5
+

𝑊
3
)−𝑒
−𝜆𝜎2

𝑊
4
, 𝑒−𝜆𝜎1(1−𝜎

4
)𝑄
6
−𝑒
−𝜆𝜎2

[(1−𝜎
3
)𝑄
5
+2𝑊
4
−𝑌
𝑇

−

𝑌] −𝑀
𝑇

1
Γ
2
𝑀
0
, −𝑒−𝜆𝜎2(𝑄

4
+𝑊
4
), 𝜎2
1
𝑊
3
+ (𝜎
2
−𝜎
1
)
2

𝑊
4
−𝐻
𝑇

4
−

𝐻
4
, 𝑄
7
−2Γ
1
, −𝑒−𝜆𝜎2𝑄

7
(1−𝜎
𝑑
)−2Γ
2
),Ω
2
= sym(𝑂𝑇

1
𝑒
−𝜆𝜏1

𝑊
1
𝑂
2

+ 𝑂
𝑇

1
[𝑃
1
− 𝐻
𝑇

1
− 𝐻
𝑇

2
𝐴]𝑂
5
+ 𝑂
𝑇

1
𝐻
𝑇

1
𝐵𝑂
12

+ 𝑂
𝑇

2
𝑒
−𝜆𝜏2

(𝑊
2
−

𝑋)𝑂
3
+ 𝑂
𝑇

2
𝑒
−𝜆𝜏2

𝑋𝑂
4
+ 𝑂
𝑇

3
𝑒
−𝜆𝜏2

(𝑊
2
− 𝑋)𝑂

4
+ 𝑂
𝑇

3
𝐻
𝑇

3
𝐷𝑂
6
+

𝑂
𝑇

3
𝐻
𝑇

4
𝐷𝑂
10
+ 𝑂
𝑇

5
𝐻
𝑇

2
𝐵𝑂
12
+ 𝑂
𝑇

6
𝑒
−𝜆𝜎1

𝑊
3
𝑂
7
+ 𝑂
𝑇

6
[𝑃
2
− 𝐻
𝑇

3
−

𝐻
𝑇

4
𝐶]𝑂
10
+ 𝑂
𝑇

6
[Γ
1
𝑀
0
+ 𝑀
𝑇

1
Γ
1
]𝑂
11

+ 𝑂
𝑇

7
𝑒
−𝜆𝜎2

(𝑊
4
− 𝑌)𝑂

8
+

𝑂
𝑇

7
𝑒
−𝜆𝜎2

𝑌𝑂
9
+ 𝑂𝑇
8
𝑒
−𝜆𝜎2

(𝑊
4
− 𝑌)𝑂

9
+ 𝑂
𝑇

8
[Γ
2
𝑀
0
+𝑀
𝑇

1
Γ
2
]𝑂
12
),

and 𝑂
𝑖
= [0
𝑛×(𝑖−1)𝑛

, 𝐼
𝑛×𝑛

, 0
𝑛×(13−𝑖)𝑛

], 𝑖 = 1, . . . , 12.

Proof. Based on system (10), we construct the following
Lyapunov-Krasovskii functional:

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑉
1
(𝑥 (𝑡) , 𝑦 (𝑡)) + 𝑉

2
(𝑥 (𝑡) , 𝑦 (𝑡))

+ 𝑉
3
(𝑥 (𝑡) , 𝑦 (𝑡)) ,

(21)

where

𝑉
1
(𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑥

𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) + 𝑦

𝑇

(𝑡) 𝑃
2
𝑦 (𝑡) ,

𝑉
2
(𝑥 (𝑡) , 𝑦 (𝑡)) = ∫

𝑡

𝑡−𝜏1

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜎1

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠) 𝑄
4
𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜎1

𝑡−𝜎(𝑡)

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠) 𝑄
5
𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜎(𝑡)

𝑡−𝜎2

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠) 𝑄
6
𝑦 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜎(𝑡)

𝑒
𝜆(𝑠−𝑡)

𝑔
𝑇

(𝑦 (𝑠)) 𝑄
7
𝑔 (𝑦 (𝑠)) 𝑑𝑠,

𝑉
3
(𝑥 (𝑡) , 𝑦 (𝑡))

= ∫

0

−𝜏1

∫

𝑡

𝑡+𝜃

𝜏
1
𝑒
𝜆(𝑠−𝑡)

�̇�
𝑇

(𝑠)𝑊
1
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝜏1

−𝜏2

∫

𝑡

𝑡+𝜃

(𝜏
2
− 𝜏
1
) 𝑒
𝜆(𝑠−𝑡)

�̇�
𝑇

(𝑠)𝑊
2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜎1

∫

𝑡

𝑡+𝜃

𝜎
1
𝑒
𝜆(𝑠−𝑡)

̇𝑦
𝑇

(𝑠)𝑊
3
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝜎1

−𝜎2

∫

𝑡

𝑡+𝜃

(𝜎
2
− 𝜎
1
) 𝑒
𝜆(𝑠−𝑡)

̇𝑦
𝑇

(𝑠)𝑊
4
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃.

(22)

Taking the derivatives of 𝑉
𝑖
, 𝑖 = 1, 2, 3, we have

�̇�
1
(𝑥 (𝑡) , 𝑦 (𝑡)) = 2𝑥

𝑇

(𝑡) 𝑃
1
�̇� (𝑡) + 2𝑦

𝑇

(𝑡) 𝑃
2
̇𝑦 (𝑡) ,

�̇�
2
(𝑥 (𝑡) , 𝑦 (𝑡))

= −𝜆∫

𝑡

𝑡−𝜏1

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

− 𝜆∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

− 𝜆∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) 𝑑𝑠
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− 𝜆∫

𝑡

𝑡−𝜎1

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠) 𝑄
4
𝑦 (𝑠) 𝑑𝑠

− 𝜆∫

𝑡−𝜎1

𝑡−𝜎(𝑡)

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠) 𝑄
5
𝑦 (𝑠) 𝑑𝑠

− 𝜆∫

𝑡−𝜎(𝑡)

𝑡−𝜎2

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠) 𝑄
6
𝑦 (𝑠) 𝑑𝑠

− 𝜆∫

𝑡

𝑡−𝜎(𝑡)

𝑒
𝜆(𝑠−𝑡)

𝑔
𝑇

(𝑦 (𝑠)) 𝑄
7
𝑔 (𝑦 (𝑠)) 𝑑𝑠

+ 𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) − 𝑒

−𝜆𝜏1
𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑄
1
𝑥 (𝑡 − 𝜏

1
)

+ 𝑒
−𝜆𝜏1

𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑄
2
𝑥 (𝑡 − 𝜏

1
)

− 𝑒
−𝜆𝜏2

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑥 (𝑡 − 𝜏 (𝑡)) (1 − ̇𝜏 (𝑡))

− 𝑒
−𝜆𝜏2

𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑄
3
𝑥 (𝑡 − 𝜏

2
)

+ 𝑒
−𝜆𝜏1

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
3
𝑥 (𝑡 − 𝜏 (𝑡)) (1 − ̇𝜏 (𝑡))

+ 𝑦
𝑇

(𝑡) 𝑄
4
𝑦 (𝑡) − 𝑒

−𝜆𝜎1
𝑦
𝑇

(𝑡 − 𝜎
1
) 𝑄
4
𝑦 (𝑡 − 𝜎

1
)

+ 𝑒
−𝜆𝜎1

𝑦
𝑇

(𝑡 − 𝜎
1
) 𝑄
5
𝑦 (𝑡 − 𝜎

1
)

− 𝑒
−𝜆𝜎2

𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) 𝑄
5
𝑦 (𝑡 − 𝜎 (𝑡)) (1 − �̇� (𝑡))

− 𝑒
−𝜆𝜎2

𝑦
𝑇

(𝑡 − 𝜎
2
) 𝑄
6
𝑦 (𝑡 − 𝜎

2
)

+ 𝑒
−𝜆𝜎1

𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) 𝑄
6
𝑦 (𝑡 − 𝜎 (𝑡)) (1 − �̇� (𝑡))

+ 𝑔
𝑇

(𝑦 (𝑡)) 𝑄
7
𝑔 (𝑦 (𝑡)) − 𝑒

−𝜆𝜎2
𝑔
𝑇

× (𝑦 (𝑡 − 𝜎 (𝑡))) 𝑄
7
𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) (1 − �̇� (𝑡)) ,

�̇�
3
(𝑥 (𝑡) , 𝑦 (𝑡))

= −𝜆∫

0

−𝜏1

∫

𝑡

𝑡+𝜃

𝜏
1
𝑒
𝜆(𝑠−𝑡)

�̇�
𝑇

(𝑠)𝑊
1
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− 𝜆∫

−𝜏1

−𝜏2

∫

𝑡

𝑡+𝜃

(𝜏
2
− 𝜏
1
) 𝑒
𝜆(𝑠−𝑡)

�̇�
𝑇

(𝑠)𝑊
2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− 𝜆∫

0

−𝜎1

∫

𝑡

𝑡+𝜃

𝜎
1
𝑒
𝜆(𝑠−𝑡)

̇𝑦
𝑇

(𝑠)𝑊
3
̇𝑦 (𝑠) 𝑑𝑠𝑑𝜃

− 𝜆∫

−𝜎1

−𝜎2

∫

𝑡

𝑡+𝜃

(𝜎
2
− 𝜎
1
) 𝑒
𝜆(𝑠−𝑡)

̇𝑦
𝑇

(𝑠)𝑊
4
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜏
2

1
�̇�
𝑇

(𝑡)𝑊
1
�̇� (𝑡) − ∫

𝑡

𝑡−𝜏1

𝜏
1
𝑒
𝜆(𝜃−𝑡)

�̇�
𝑇

(𝜃)𝑊
1
�̇� (𝜃) 𝑑𝜃

+ (𝜏
2
− 𝜏
1
)
2

�̇�
𝑇

(𝑡)𝑊
2
�̇� (𝑡)

− ∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝜏
1
) 𝑒
𝜆(𝜃−𝑡)

�̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+ 𝜎
2

1
̇𝑦
𝑇

(𝑡)𝑊
3
̇𝑦 (𝑡) − ∫

𝑡

𝑡−𝜎1

𝜎
1
𝑒
𝜆(𝜃−𝑡)

̇𝑦
𝑇

(𝜃)𝑊
3
̇𝑦 (𝜃) 𝑑𝜃

+ (𝜎
2
− 𝜎
1
)
2

̇𝑦
𝑇

(𝑡)𝑊
4
̇𝑦 (𝑡)

− ∫

𝑡−𝜎1

𝑡−𝜎2

(𝜎
2
− 𝜎
1
) 𝑒
𝜆(𝜃−𝑡)

̇𝑦
𝑇

(𝜃)𝑊
4
̇𝑦 (𝜃) 𝑑𝜃.

(23)

From Lemma 6, we have

− ∫

𝑡

𝑡−𝜏1

𝜏
1
𝑒
𝜆(𝜃−𝑡)

�̇�
𝑇

(𝜃)𝑊
1
�̇� (𝜃) 𝑑𝜃

≤ −𝑒
−𝜆𝜏1

[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏
1
)]
𝑇

𝑊
1
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

1
)] ,

− ∫

𝑡

𝑡−𝜎1

𝜎
1
𝑒
𝜆(𝜃−𝑡)

̇𝑦
𝑇

(𝜃)𝑊
3
̇𝑦 (𝜃) 𝑑𝜃

≤ −𝑒
−𝜆𝜎1

[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜎
1
)]
𝑇

𝑊
3
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜎

1
)] .

(24)

Meanwhile,

− ∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝜏
1
) 𝑒
𝜆(𝜃−𝑡)

�̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

≤ −𝑒
−𝜆𝜏2

[∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

(𝜏
2
− 𝜏
1
) �̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

(𝜏
2
− 𝜏
1
) �̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃]

= −𝑒
−𝜆𝜏2

[∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

(𝜏
2
− 𝜏 (𝑡)) �̇�

𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+ ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

(𝜏 (𝑡) − 𝜏
1
) �̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

(𝜏 (𝑡) − 𝜏
1
) �̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

(𝜏
2
− 𝜏 (𝑡)) �̇�

𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃]

= −𝑒
−𝜆𝜏2

[∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

(𝜏
2
− 𝜏 (𝑡)) �̇�

𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+ ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

(𝜏 (𝑡) − 𝜏
1
) �̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+

𝜏 (𝑡) − 𝜏
1

𝜏
2
− 𝜏 (𝑡)

× ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

(𝜏
2
− 𝜏 (𝑡)) �̇�

𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

+

𝜏
2
− 𝜏 (𝑡)

𝜏 (𝑡) − 𝜏
1

×∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

(𝜏 (𝑡) − 𝜏
1
) �̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃] .

(25)
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By Lemma 6, we obtain that

− ∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝜏
1
) 𝑒
𝜆(𝜃−𝑡)

�̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

≤ −𝑒
−𝜆𝜏2

{

𝜏
2
− 𝜏
1

𝜏
2
− 𝜏 (𝑡)

[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
)]
𝑇

×𝑊
2
[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏

2
)]

+

𝜏
2
− 𝜏
1

𝜏 (𝑡) − 𝜏
1

[𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

×𝑊
2
[𝑥 (𝑡 − 𝜏

1
) − 𝑥 (𝑡 − 𝜏 (𝑡))] } .

(26)

And by Lemma 7, we get that

− ∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝜏
1
) 𝑒
𝜆(𝜃−𝑡)

�̇�
𝑇

(𝜃)𝑊
2
�̇� (𝜃) 𝑑𝜃

≤ −𝑒
−𝜆𝜏2

{[𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

×𝑊
2
[𝑥 (𝑡 − 𝜏

1
) − 𝑥 (𝑡 − 𝜏 (𝑡))]

+ [𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
)]
𝑇

×𝑊
2
[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏

2
)]

+ 2[𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

×𝑋 [𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
)] } .

(27)

Similar to (27),

− ∫

𝑡−𝜎1

𝑡−𝜎2

𝑒
𝜆(𝜃−𝑡)

̇𝑦
𝑇

(𝜃)𝑊
4
̇𝑦 (𝜃) 𝑑𝜃

≤ −𝑒
−𝜆𝜎2

{[𝑦 (𝑡 − 𝜎
1
) − 𝑦 (𝑡 − 𝜎 (𝑡))]

𝑇

×𝑊
4
[𝑦 (𝑡 − 𝜎

1
) − 𝑦 (𝑡 − 𝜎 (𝑡))]

+ [𝑦 (𝑡 − 𝜎 (𝑡)) − 𝑦 (𝑡 − 𝜎
2
)]
𝑇

×𝑊
4
[𝑦 (𝑡 − 𝜎 (𝑡)) − 𝑦 (𝑡 − 𝜎

2
)]

+ 2[𝑦 (𝑡 − 𝜎
1
) − 𝑦 (𝑡 − 𝜎 (𝑡))]

𝑇

×𝑌 [𝑦 (𝑡 − 𝜎 (𝑡)) − 𝑦 (𝑡 − 𝜎
2
)] } .

(28)

By Assumption 3, for any Γ
𝑖
= diag(𝛾

𝑖1
, . . . , 𝛾

𝑖𝑛
) ≥ 0, 𝑖 = 1, 2,

the following inequality is true:

− 2

𝑛

∑

𝑖=1

𝛾
𝑖1
[𝑔
𝑖
(𝑦
𝑖
(𝑡)) − 𝑚

+

𝑖
𝑦
𝑖
(𝑡)] [𝑔

𝑖
(𝑦
𝑖
(𝑡)) − 𝑚

−

𝑖
𝑦
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝛾
𝑖2
[𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑚

+

𝑖
𝑦
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑔
𝑖
(𝑦
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑚

−

𝑖
𝑦
𝑖
(𝑡 − 𝜏 (𝑡))] ≥ 0.

(29)

It can be rewritten as

− 2[𝑔 (𝑦 (𝑡)) − 𝑀
1
𝑦 (𝑡)]
𝑇

Γ
1
[𝑔 (𝑦 (𝑡)) − 𝑀

0
𝑦 (𝑡)]

− 2[𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) − 𝑀
1
𝑦 (𝑡 − 𝜎 (𝑡))]

𝑇

× Γ
2
[𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) − 𝑀

0
𝑦 (𝑡 − 𝜎 (𝑡))] ≥ 0.

(30)

For any constant matrices of appropriate dimensions𝐻
𝑖
, 𝑖 =

1, . . . , 4, and from (10), we can obtain that

0 = 2 [𝑥
𝑇

(𝑡)𝐻
𝑇

1
+ �̇�
𝑇

(𝑡)𝐻
𝑇

2
]

× [−�̇� (𝑡) − 𝐴𝑥 (𝑡) + 𝐵𝑔 (𝑦 (𝑡 − 𝜎 (𝑡)))] ,

0 = 2 [𝑦
𝑇

(𝑡)𝐻
𝑇

3
+ ̇𝑦
𝑇

(𝑡)𝐻
𝑇

4
]

× [− ̇𝑦 (𝑡) − 𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡))] .

(31)

Combining (21)–(31), we have

�̇� (𝑥 (𝑡) , 𝑦 (𝑡)) + 𝜆𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ 𝜉
T
(𝑡) {Ω + 𝑂

𝑇

3
[𝑒
−𝜆𝜏2

( ̇𝜏 (𝑡) − 𝜏
3
) 𝑄
2

+𝑒
−𝜆𝜏1

(𝜏
4
− ̇𝜏 (𝑡)) 𝑄

3
]𝑂
3

+ 𝑂
𝑇

8
[𝑒
−𝜆𝜎2

(�̇� (𝑡) − 𝜎
3
) 𝑄
5

+𝑒
−𝜆𝜎1

(𝜎
4
− �̇� (𝑡)) 𝑄

6
]𝑂
8
} 𝜉 (𝑡) ,

(32)

where

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏
1
) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , 𝑥
𝑇

(𝑡 − 𝜏
2
) ,

�̇�
𝑇

(𝑡) , 𝑦
𝑇

(𝑡) , 𝑦
𝑇

(𝑡 − 𝜎
1
) , 𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) ,

𝑦
𝑇

(𝑡 − 𝜎
2
) , ̇𝑦
𝑇

(𝑡) , 𝑔
𝑇

(𝑦 (𝑡)) , 𝑔
𝑇

(𝑦 (𝑡 − 𝜎 (𝑡)))] .

(33)

From (19) and (20), we can see that

�̇� (𝑥 (𝑡) , 𝑦 (𝑡)) + 𝜆𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) < 0, (34)

for all nonzero 𝜉(𝑡). Integrating the above inequality (34)
from 𝑡

0
to 𝑡 gives

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) ≤ 𝑒
−𝜆(𝑡−𝑡0)

𝑉 (𝑥 (𝑡
0
) , 𝑦 (𝑡

0
)) . (35)

From (21), we know that

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 𝑉
1
(𝑥 (𝑡) , 𝑦 (𝑡))

≥ min {𝜆min (𝑃1) , 𝜆min (𝑃2)} ‖𝑧 (𝑡)‖
2

,
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𝑉 (𝑥 (𝑡
0
) , 𝑦 (𝑡

0
))

≤ [𝜆max (𝑃1) + 𝜆max (𝑃2) + 𝜏1𝜆max (𝑄1)

+ (𝜏
2
− 𝜏
1
) [𝜆max (𝑄2) + 𝜆max (𝑄3)]

+ (𝜎
2
− 𝜎
1
) [𝜆max (𝑄5) + 𝜆max (𝑄6)]

+ 𝜎
1
𝜆max (𝑄4) + 𝜎2𝑚

2

𝜆max (𝑄7)

+

1

2

𝜏
3

1
𝜆max (𝑊1) +

1

2

(𝜏
2
− 𝜏
1
)
3

𝜆max (𝑊2)

+

1

2

𝜎
3

1
𝜆max (𝑊3) +

1

2

(𝜎
2
− 𝜎
1
)
3

𝜆max (𝑊4)]




𝑧(𝑡
0
)





2

𝐶1
.

(36)

Let

𝜆
1
= min {𝜆min (𝑃1) , 𝜆min (𝑃2)} ,

𝜆
2
= 𝜆max (𝑃1) + 𝜆max (𝑃2) + 𝜏1𝜆max (𝑄1)

+ (𝜏
2
− 𝜏
1
) [𝜆max (𝑄2) + 𝜆max (𝑄3)]

+ (𝜎
2
− 𝜎
1
) [𝜆max (𝑄5) + 𝜆max (𝑄6)]

+ 𝜎
1
𝜆max (𝑄4) + 𝜎2𝑚

2

𝜆max (𝑄7)

+

1

2

𝜏
3

1
𝜆max (𝑊1) +

1

2

(𝜏
2
− 𝜏
1
)
3

𝜆max (𝑊2)

+

1

2

𝜎
3

1
𝜆max (𝑊3) +

1

2

(𝜎
2
− 𝜎
1
)
3

𝜆max (𝑊4) .

(37)

Then, by (35) and (36), we have

𝜆
1
‖𝑧 (𝑡)‖

2

≤ 𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) ≤ 𝜆
2
𝑒
−𝜆(𝑡−𝑡0)



𝑧(𝑡
0
)





2

𝐶1
. (38)

By (38), we get that

‖𝑧 (𝑡)‖
2

≤

𝜆
2

𝜆
1

𝑒
−𝜆(𝑡−𝑡0)



𝑧(𝑡
0
)





2

𝐶1
. (39)

Let 𝛼 = (𝜆
2
/𝜆
1
)
1/2, and, by Definition 5, the genetic

regulatory networks in (10) are exponentially stable.
The proof is completed.

In the following, we consider the globally exponential
stability of the genetic regulatory networks with time-varying
delays and continuous distributed delays.

Theorem 9. For system (14) with Assumptions 1 and 3, the
equilibrium point is globally exponentially stable (that is, there
are two positive constants 𝛼

 and 𝜆 such that ‖𝑧(𝑡)‖ ≤

𝛼𝑒
−𝜆𝑡

‖𝑧(𝑡
0
)‖
𝐶1
, for all 𝑡 ≥ 𝑡

0
) if there exist positive definite

matrices 𝐻
2
, 𝐻
4
, 𝑃
1
, 𝑃
2
, 𝑆, 𝑄
𝑖
, 𝑖 = 1, . . . , 7,𝑊

𝑖
, 𝑖 = 1, . . . , 4,

Γ
1
= diag(𝛾

11
, . . . , 𝛾

1𝑛
), and Γ

2
= diag(𝛾

21
, . . . , 𝛾

2𝑛
), such that,

for any appropriate dimensions constantmatrices𝐻
1
, 𝐻
3
, 𝑋, 𝑌,

the following LMIs hold:

(

𝑊
2

𝑋

𝑋 𝑊
2

) ≥ 0, (

𝑊
4

𝑌

𝑌 𝑊
4

) ≥ 0, (40)

Ω


1
+ Ω


2
+ 𝐿
𝑇

3
[𝑒
−𝜆𝜏2

𝑄
2
+ 𝑒
−𝜆𝜏1

𝑄
3
] 𝐿
3

+ 𝐿
𝑇

8
[𝑒
−𝜆𝜎2

𝑄
5
+ 𝑒
−𝜆𝜎1

𝑄
6
] 𝐿
8
< 0,

(41)

whereΩ
1
= diag(𝜆𝑃

1
+𝑄
1
−𝑒
−𝜆𝜏1

𝑊
1
−𝐻
𝑇

1
𝐴−𝐴
𝑇

𝐻
1
, 𝑒−𝜆𝜏1(𝑄

1
−

𝑄
2
) − 𝑒
−𝜆𝜏1

𝑊
1
− 𝑒
−𝜆𝜏2

𝑊
2
, 𝑒−𝜆𝜏1(1 − 𝜏

4
)𝑄
3
− 𝑒
−𝜆𝜏2

[(1 − 𝜏
3
)𝑄
2
+

2𝑊
2
− 𝑋
𝑇

− 𝑋], −𝑒−𝜆𝜏2𝑊
2
, 𝜏
2

1
𝑊
1
+ (𝜏
2
− 𝜏
1
)
2

𝑊
2
− 𝐻
𝑇

2
− 𝐻
2
,

𝜆𝑃
2
+𝑄
4
− 𝑒
−𝜆𝜎1

𝑊
3
− 2𝑀
𝑇

1
Γ
1
𝑀
0
−𝐻
𝑇

3
𝐶−𝐶

𝑇

𝐻
3
, −𝑒−𝜆𝜎1(𝑄

4
−

𝑄
5
+ 𝑊
3
) − 𝑒
−𝜆𝜎2

𝑊
4
, 𝑒−𝜆𝜎1(1 − 𝜎

4
)𝑄
6
− 𝑒
−𝜆𝜎2

[(1 − 𝜎
3
)𝑄
5
+

2𝑊
4
− 𝑌
𝑇

− 𝑌] − 𝑀
𝑇

1
Γ
2
𝑀
0
, −𝑒−𝜆𝜎2(𝑄

4
+ 𝑊
4
), 𝜎2
1
𝑊
3
+ (𝜎
2
−

𝜎
1
)
2

𝑊
4
− 𝐻
𝑇

4
− 𝐻
4
, 𝑄
7
− 2Γ
1
+ 𝜗
2

1
𝑆, −𝑒
−𝜆𝜎2

𝑄
7
(1 − 𝜎

4
) − 2Γ

2
,

−𝑒
−𝜆𝜗1

𝑆, −𝑒
−𝜆𝜗1

𝑆), Ω
2
= sym(𝐿𝑇

1
𝑒
−𝜆𝜏1

𝑊
1
𝐿
2
+ 𝐿
𝑇

1
[𝑃
1
− 𝐻
𝑇

1
−

𝐻
𝑇

2
𝐴]𝐿
5
+ 𝐼𝑇
1
𝐻
𝑇

1
𝐵𝐿
12
+ 𝐿
𝑇

2
𝑒
−𝜆𝜏2

(𝑊
2
− 𝑋)𝐿

3
+ 𝐿
𝑇

2
𝑒
−𝜆𝜏2

𝑋𝐿
4
+

𝐿
𝑇

3
𝑒
−𝜆𝜏2

(𝑊
2
−𝑋)𝐿

4
+ 𝐿
𝑇

3
𝐻
𝑇

3
𝐷𝐿
6
+ 𝐿
𝑇

3
𝐻
𝑇

4
𝐷𝐿
10
+ 𝐼𝑇
5
𝐻
𝑇

2
𝐵𝐿
12
+

𝐿
𝑇

6
𝑒
−𝜆𝜎1

𝑊
3
𝐿
7
+ 𝐿𝑇
6
[𝑃
2
−𝐻
𝑇

3
−𝐻
𝑇

4
𝐶]𝐿
10
+𝐿
𝑇

6
[Γ
1
𝑀
0
+𝑀
𝑇

1
Γ
1
]𝐿
11

+ 𝐿
𝑇

7
𝑒
−𝜆𝜎2

(𝑊
4
− 𝑌)𝐿

8
+ 𝐿
𝑇

7
𝑒
−𝜆𝜎2

𝑌𝐿
9
+ 𝐿
𝑇

8
𝑒
−𝜆𝜎2

(𝑊
4
− 𝑌)𝐿

9
+

𝐿
𝑇

8
[Γ
2
𝑀
0
+𝑀
𝑇

1
Γ
2
]𝐿
12
), and 𝐿

𝑖
= [0
𝑛×(𝑖−1)𝑛

, 𝐼
𝑛×𝑛

, 0
𝑛×(15−𝑖)𝑛

], 𝑖 =
1, . . . , 12.

Proof. Based on system (14), we construct the following
Lyapunov-Krasovskii functional:

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑉
1
(𝑥 (𝑡) , 𝑦 (𝑡)) + 𝑉

2
(𝑥 (𝑡) , 𝑦 (𝑡))

+ 𝑉
3
(𝑥 (𝑡) , 𝑦 (𝑡)) + 𝑉

4
(𝑥 (𝑡) , 𝑦 (𝑡)) ,

(42)

where 𝑉
1
(𝑥(𝑡), 𝑦(𝑡)), 𝑉

2
(𝑥(𝑡), 𝑦(𝑡)), and 𝑉

3
(𝑥(𝑡), 𝑦(𝑡)) are

defined as inTheorem 8 and

𝑉
4
(𝑥 (𝑡) , 𝑦 (𝑡))

= ∫

0

−𝜗1

∫

𝑡

𝑡+𝜃

𝜗
1
𝑒
𝜆(𝑠−𝑡)

𝑔
𝑇

(𝑦 (𝑠)) 𝑆𝑔 (𝑦 (𝑠)) 𝑑𝑠 𝑑𝜃.

(43)

Taking the derivative of 𝑉
4
,

�̇�
4
(𝑥 (𝑡) , 𝑦 (𝑡))

≤ −𝜆∫

0

−𝜗1

∫

𝑡

𝑡+𝜃

𝜗
1
𝑒
𝜆(𝑠−𝑡)

𝑔
𝑇

(𝑦 (𝑠)) 𝑆𝑔 (𝑦 (𝑠)) 𝑑𝑠 𝑑𝜃

+ 𝜗
2

1
𝑔
T
(𝑦 (𝑡)) 𝑆𝑔 (𝑦 (𝑡))

− 𝑒
−𝜆𝜗1

∫

𝑡

𝑡−𝜗1

𝜗
1
𝑔
𝑇

(𝑦 (𝜃)) 𝑆𝑔 (𝑦 (𝜃)) 𝑑𝜃.

(44)
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By Lemma 6, we get that

�̇�
4
(𝑥 (𝑡) , 𝑦 (𝑡))

≤ −𝜆∫

0

−𝜗1

∫

𝑡

𝑡+𝜃

𝜗
1
𝑒
𝜆(𝑠−𝑡)

𝑔
𝑇

(𝑦 (𝑠)) 𝑆𝑔 (𝑦 (𝑠)) 𝑑𝑠 𝑑𝜃

+ 𝜗
2

1
𝑔
𝑇

(𝑦 (𝑡)) 𝑆𝑔 (𝑦 (𝑡)) − 𝑒
−𝜆𝜗1

𝜗
1

𝜗
1
− 𝜗 (𝑡)

× (∫

𝑡−𝜗(𝑡)

𝑡−𝜗1

𝑔(𝑦(𝜃))𝑑𝜃)

𝑇

𝑆(∫

𝑡−𝜗(𝑡)

𝑡−𝜗1

𝑔 (𝑦 (𝜃)) 𝑑𝜃)

− 𝑒
−𝜆𝜗1

𝜗
1

𝜗 (𝑡)

× (∫

𝑡

𝑡−𝜗(𝑡)

𝑔(𝑦(𝜃))𝑑𝜃)

𝑇

𝑆 (∫

𝑡

𝑡−𝜗(𝑡)

𝑔 (𝑦 (𝜃)) 𝑑𝜃)

≤ −𝜆∫

0

−𝜗1

∫

𝑡

𝑡+𝜃

𝜗
1
𝑒
𝜆(𝑠−𝑡)

𝑔
𝑇

(𝑦 (𝑠)) 𝑆𝑔 (𝑦 (𝑠)) 𝑑𝑠 𝑑𝜃

+ 𝜗
2

1
𝑔
𝑇

(𝑦 (𝑡)) 𝑆𝑔 (𝑦 (𝑡)) − 𝑒
−𝜆𝜗1

(1 +

𝜗 (𝑡)

𝜗
1

)

× (∫

𝑡−𝜗(𝑡)

𝑡−𝜗1

𝑔(𝑦(𝜃))𝑑𝜃)

𝑇

𝑆(∫

𝑡−𝜗(𝑡)

𝑡−𝜗1

𝑔 (𝑦 (𝜃)) 𝑑𝜃)

− 𝑒
−𝜆𝜗1

(1 +

𝜗
1
− 𝜗 (𝑡)

𝜗
1

)

× (∫

𝑡

𝑡−𝜗(𝑡)

𝑔(𝑦(𝜃))𝑑𝜃)

𝑇

𝑆 (∫

𝑡

𝑡−𝜗(𝑡)

𝑔 (𝑦 (𝜃)) 𝑑𝜃) .

(45)

Combining (23)–(31), (42), and (45), we get

�̇� (𝑥 (𝑡) , 𝑦 (𝑡)) + 𝜆𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ 𝜉
𝑇

1
(𝑡) {Ω + 𝐿

𝑇

3
[𝑒
−𝜆𝜏2

( ̇𝜏 (𝑡) − 𝜏
3
) 𝑄
2

+ 𝑒
−𝜆𝜏1

(𝜏
4
− ̇𝜏 (𝑡)) 𝑄

3
] 𝐿
3

+ 𝐿
𝑇

8
[𝑒
−𝜆𝜎2

(�̇� (𝑡) − 𝜎
3
) 𝑄
5

+𝑒
−𝜆𝜎1

(𝜎
4
− �̇� (𝑡)) 𝑄

6
] 𝐿
8
} 𝜉
1
(𝑡) ,

(46)

where

𝜉
𝑇

1
(𝑡) = [𝑥

𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏
1
) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) ,

𝑥
𝑇

(𝑡 − 𝜏
2
) , �̇�
𝑇

(𝑡) , 𝑦
𝑇

(𝑡) , 𝑦
𝑇

(𝑡 − 𝜎
1
) ,

𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) , 𝑦
𝑇

(𝑡 − 𝜎
2
) , ̇𝑦
𝑇

(𝑡) , 𝑔
𝑇

(𝑦 (𝑡)) ,

𝑔
𝑇

(𝑦 (𝑡 − 𝜎 (𝑡))) , (∫

𝑡−𝜗(𝑡)

𝑡−𝜗1

𝑔(𝑦(𝜃))𝑑𝜃)

𝑇

,

(∫

𝑡

𝑡−𝜗(𝑡)

𝑔(𝑦(𝜃))𝑑𝜃)

𝑇

] .

(47)

By (40) and (41), we get that �̇�(𝑥(𝑡), 𝑦(𝑡))+𝜆𝑉(𝑥(𝑡), 𝑦(𝑡)) < 0.
Similar to the proof of Theorem 8 we have

‖𝑧 (𝑡)‖
2

≤

𝜆


2

𝜆
1

𝑒
−𝜆(𝑡−𝑡0)



𝑧(𝑡
0
)





2

𝐶1
. (48)

where 𝜆
2
= 𝜆
2
+ (1/2)𝜗

3

1
𝑚
2

𝜆max(𝑆) and 𝜆1, 𝜆2 are defined
as Theorem 8. Let 𝛼 = (𝜆



2
/𝜆
1
)

1/2, and, by Definition 5, the
genetic regulatory network (14) is exponentially stable.

The proof is completed.

Remark 10. In the proof of Theorems 8 and 9, we use
convex combination and interactive convex combination
definition to estimate the upper bound of derivative function
of the Lyapunov-Krasovskii functional and obtain some new
conservative weaker sufficient conditions.

Remark 11. When the lower bound of derivatives
of time-varying delays is immeasurable, let
∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑒
𝜆(𝑠−𝑡)

𝑥
𝑇

(𝑠)𝑄
3
𝑥(𝑠)𝑑𝑠 = 0 and ∫

𝑡−𝜎(𝑡)

𝑡−𝜎2

𝑒
𝜆(𝑠−𝑡)

𝑦
𝑇

(𝑠)𝑄
6
𝑦(𝑠)𝑑𝑠 = 0 in Theorem 8 (20) or Theorem 9 (41);

our results are true still.

4. Numerical Examples

In this section, two examples are given to illustrate the
effectiveness of our theoretical results.

Example 1. Consider a genetic regulatory network model
reported by Elowitz and Leiber [24], which studied the
dynamics of repressilator which is cyclic negative-feedback
loop comprising three repressor genes (lacl, tetR, and cl) and
their promoters (cl, lacl, and tetR):

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
+

𝛼

1 + 𝑦
𝑛

𝑗

+ 𝛼
0
,

𝑑𝑦
𝑖

𝑑𝑡

= 𝛽 (𝑥
𝑖
− 𝑦
𝑖
) .

(49)

Taking time-varying delays into account and shifting the
equilibrium point to the origin, one gets the followingmodel:

�̇� (𝑡) = −𝐴𝑥 (𝑡) + 𝐵𝑔 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) ,

(50)

where 𝐴 = diag(2, 2, 2), 𝐶 = diag(3, 3, 3), 𝐷 = diag(1, 1, 1),
and the coupling matrix

𝐵 = 1.5 × (

0 0 −1

−1 0 0

0 −1 0

) . (51)
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Figure 1: (a) mRNA concentrations 𝑥(𝑡). (b) Protein concentrations 𝑦(𝑡).

The gene regulation function is taken as 𝑔(𝑥) = 𝑥
2

/(1 +

𝑥
2

),𝑀
0
= diag(0, 0, 0), and𝑀

1
= diag(0.65, 0.65, 0.65). The

time delays 𝜎(𝑡) and 𝜏(𝑡) are assumed to be

𝜎 (𝑡) = 1 + 2sin2𝑡, 𝜏 (𝑡) = 1 + cos2𝑡. (52)

We can get the parameters as follows:

𝜎
1
= 1, 𝜎

2
= 3, 𝜎

3
= −2, 𝜎

4
= 2,

𝜏
1
= 1, 𝜏

2
= 2, 𝜏

3
= −1, 𝜏

4
= 1,

(53)

and choose 𝜆 = 0.5. In accordance with the condition in
Theorem 8, system (50) is exponentially stable. By using the
MATLAB LMI toolbox, we can get the feasible solutions. Due
to the space limitation, we only list matrices 𝑃

1
and 𝑃
2
here as

follows:

𝑃
1
= (

17.1041 7.9997 7.9997

7.9997 17.1041 7.9997

7.9997 7.9997 17.1041

) ,

𝑃
2
= (

13.8943 0.5573 0.5573

0.5573 13.8943 0.5573

0.5573 0.5573 13.8943

) .

(54)

The initial condition is 𝑥(0) = (0.3, 0.5, 0.4)
𝑇 and 𝑦(0) =

(0.2, 0.4, 0.6)
𝑇. The simulation results of the trajectories are

shown in Figure 1.

Example 2. In this example, we consider the genetic regula-
tory network (14) with time-varying delays and continuous
distributed delays, in which the parameters are listed as
follows:

𝐴 = diag (1, 2, 3) , 𝐶 = diag (5, 4, 5) ,

𝐷 = diag (0.3, 0.2, 0.4) , 𝐵 = (

0 0.8 0

0 0 0.8

0.8 0 0

) ,

(55)

and 𝑔(𝑥) = 𝑥
2

/(1 + 𝑥
2

), 𝑀
0
= diag(0, 0, 0), and 𝑀

1
=

diag(0.65, 0.65, 0.65). The time delays 𝜎(𝑡), 𝜏(𝑡), and 𝜗(𝑡) are
assumed to be

𝜎 (𝑡) = 0.5 + 0.3sin2𝑡, 𝜏 (𝑡) = 0.4 + 0.1cos2𝑡,

𝜗 (𝑡) = 2sin2 (𝑡) .
(56)

We can get the parameters as follows:

𝜎
1
= 0.5, 𝜎

2
= 0.8, 𝜎

3
= −0.3, 𝜎

4
= 0.3,

𝜏
1
= 0.4, 𝜏

2
= 0.5, 𝜏

3
= −0.1,

(57)

𝜏
4
= 0.1, 𝜗

1
= 2 (58)

and choose 𝜆 = 0.2. By using the MATLAB LMI toolbox, we
can get the feasible solutions. Due to the space limitation, we
only list matrices 𝑃

1
and 𝑃
2
here as follows:

𝑃
1
= (

7.1735 −0.4713 −0.2152

−0.4713 7.2143 −0.3071

−0.2152 −0.3071 6.9607

) ,

𝑃
2
= (

7.9363 0 0

0 8.0199 0

0 0 7.9001

) .

(59)

5. Concluding Remarks

This paper has investigated the exponential stability of
genetic regulatory networks with time-varying delays and
continuous distributed delays. By using the novel Lyapunov-
Krasovskii functions and employing the Jensen inequality
and the interactive convex combination method, some suffi-
cient criteria are given to ensure the exponential stability with
less conservative. All the obtained conditions are dependent
on the delays and on linearmatrix inequalities. Two examples
are provided to illustrate the effectiveness of our results.
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