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This paper is concerned with the large time behavior of the weak solutions for three-dimensional globally modified Navier-Stokes
equations. With the aid of energy methods and auxiliary decay estimates together with 𝐿𝑝 − 𝐿𝑞 estimates of heat semigroup, we
derive the optimal upper and lower decay estimates of the weak solutions for the globally modified Navier-Stokes equations as
𝐶1(1 + 𝑡)

−3/4
≤ ‖𝑢‖𝐿2 ≤ 𝐶2(1 + 𝑡)

−3/4
, 𝑡 > 1.The decay rate is optimal since it coincides with that of heat equation.

1. Introduction

It is well known that themotion of the viscous incompressible
fluids is governed by the following classic Navier-Stokes
equations [1]:

𝜕𝑡𝑢 + (𝑢 ⋅ ∇𝑢) − Δ𝑢 + ∇𝑝 = 0,

∇ ⋅ 𝑢 = 0.

(1)

Here𝑢 and𝜋denote the unknownvelocity andpressure of the
fluid motion, respectively. This motion essentially presumes
that the derivatives of the components of the velocity are
small.

In Leray’s pioneer work [2] in 1930’, for any initial data in
𝐿
2, Navier-Stokes equations (1) exits a global weak solution 𝑢

satisfying

𝑢 ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
) ∩ 𝐿
2
(0, 𝑇;𝐻

1
) , for any 𝑇 > 0. (2)

However, the question of global existence for smooth solu-
tions of the 3D Navier-Stokes equations is still a big open
problem. In order to overcome this large difficulty, many
efforts have been made to study some related modified
Navier-Stokes equations (see [3, 4]). Recently, Caraballo et al.
[5] (see also Kloeden et al. [6, 7]) introduced an interesting

and important mathematical model which is the so-called
global modification of the Navier-Stokes equations

𝜕𝑡𝑢 + 𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇𝑢) − ]Δ𝑢 + ∇𝑝 = 0,

∇ ⋅ 𝑢 = 0

(3)

associated with

𝑢 (𝑥, 0) = 𝑢0, (4)

where 𝐹𝑁 (for some𝑁 ∈ R+) is defined by

𝐹𝑁 (𝑟) = min {1, 𝑁
𝑟
} , 𝑟 ∈ R+. (5)

Let us give a profile analysis to this globally defined
model. The modifying factor 𝐹𝑁(‖∇𝑢‖𝐿2) is a function of
‖∇𝑢‖𝐿2 . Essentially, it prevents large gradients dominating
flux and leading to explosions. What is the most important
is that this model exhibits a unique global weak solution for
the system (1) in bounded domain (see [5]).

However, it should be mentioned that although the
presence of 𝐹𝑁(‖∇𝑢‖𝐿2) actually canceled some singularities
of the nonlinear term 𝑢 ⋅ ∇𝑢, it cannot increase the effect of
low frequency of the solutions of the system (3). Therefore, it
is interesting to consider the time decay issue of this model
which largely depended on the effect of low frequency of
the solutions. In this paper, we are focused on the 𝐿2 decay
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of weak solutions for the modified Navier-Stokes equations
(3). To carry out this issue, it is necessary to recall some
classic time decay results of the fluid dynamical models. 𝐿2
decay of weak solutions for the Navier-Stokes equations was
first studied by Schonbek [8] (see also [9]). She first posed
interesting methods the so-called Fourier splitting methods
and the finite energy weak solutions decay as

𝑐(1 + 𝑡)
−𝑛/4

≤ ‖𝑢 (𝑡)‖𝐿2 ≤ 𝑐1(1 + 𝑡)
−𝑛/4
. (6)

Later on there are large good results to develop the Fourier
splitting methods on the incompressible Navier-Stokes equa-
tions [10]. Onemay also refer to some interesting decay issues
of the related fluid models [11–13].

Motivated by the upper and lower decay estimates of non-
linear fluidmodels [14], in this study, we will develop another
technique to deal with the time decay problem of the weak
solutions for the globally modified Navier-Stokes equations
(3). Our trick ismainly based on the energymethods together
with the 𝐿𝑝 − 𝐿𝑞 estimates of heat semigroup in whole space
R3. We can get the optimal time decay rate, since it coincides
with that of linear equations.

2. Preliminaries and Main Result

In this paper, we denote by 𝐶 a generic positive constant
which may vary from line to line.
𝐿
𝑝
(R3) with 1 ≤ 𝑝 ≤ ∞ is denoted by the Lebesgue space

associated with the norm

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞
=

{{

{{

{

(∫
R3
󵄨󵄨󵄨󵄨𝑔 (𝑥)

󵄨󵄨󵄨󵄨

𝑞
𝑑𝑥)

1/𝑞

, 1 ≤ 𝑞 < ∞,

ess sup
𝑥∈R3

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 , 𝑞 = ∞.

(7)

𝐻
𝑠
(R3) with 𝑠 ∈ R is denoted by the fractional Sobolev

space with the norm

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻𝑠
= (∫

R3
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2𝑠󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨

2
𝑑𝜉)

1/2

, (8)

where 𝑔 is the Fourier transformation

F𝑔 (𝜉) = 𝑔 (𝜉) = ∫
R3
𝑒
−𝑖𝑥⋅𝜉
𝑔 (𝑥) 𝑑𝑥. (9)

𝐿
𝑞
(0, 𝑇;𝑋) is the space of all measurable functions 𝑢 :

(0, 𝑇) 󳨃→ 𝑋 with the norm

‖𝑢‖𝐿𝑞(0,𝑇;𝑋) = (∫

𝑇

0

‖𝑢‖
𝑞

𝑋
𝑑𝑡)

1/𝑞

, 1 ≤ 𝑞 < ∞, (10)

and when 𝑞 = ∞,

‖𝑢‖𝐿∞(0,𝑇;𝑋) = ess sup
𝑡∈[0,𝑇]

‖𝑢‖𝑋. (11)

To state the main results of this paper, we first give the
definition of the weak solutions of the three-dimensional
globally modified Navier-Stokes equations (3) [5].

Definition 1. 𝑢(𝑥, 𝑡) is called a weak solution for three-
dimensional globally modified Navier-Stokes equations (3)
associated with 𝑢0 ∈ 𝐿

2
(R3) if the following properties

(i) 𝑢 ∈ 𝐿∞(0, 𝑇; 𝐿2(R3)) ∩ 𝐿2(0, 𝑇;𝐻1(R3));
(ii) for any 𝜙 ∈ 𝐶∞

0
(R3 × [0, 𝑇)) with ∇ ⋅ 𝜙 = 0,

∫

𝑇

0

∫
R3
{𝑢 ⋅ 𝜕𝑡𝜙 − ∇𝑢 ⋅ ∇𝜙 + 𝐹𝑁 (‖∇𝑢‖𝐿2) ∇𝜙 :𝑢 ⊗ 𝑢} 𝑑𝑥 𝑑𝑡

= −∫
R3
𝑢0𝜙 (0) 𝑑𝑥;

(12)

(iii) the energy inequality

‖𝑢 (𝑡)‖
2

𝐿2
+ 2∫

𝑡

0

∫
R3
|∇𝑢 (𝑥, 𝑠)|

2
𝑑𝑥 𝑑𝑠 ≤

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

𝐿2
,

for 0 ≤ 𝑡 ≤ 𝑇
(13)

hold true.

Our results read as follows.

Theorem 2. Suppose that 𝑢(𝑥, 𝑡) is a weak solution for three-
dimensional globally modified Navier-Stokes equations (3).
Moreover, if the solution 𝑒Δ𝑡𝑢0 of the heat equation 𝜕𝑡𝑢−Δ𝑢 = 0
satisfies

𝐶1(1 + 𝑡)
−3/4

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶2(1 + 𝑡)

−3/4
, (14)

then the weak solution 𝑢(𝑥, 𝑡) of (1) possesses the following
optimal upper and lower decay rate:

𝐶1(1 + 𝑡)
−3/4

≤ ‖𝑢‖𝐿2 ≤ 𝐶2(1 + 𝑡)
−3/4
, 𝑡 > 1. (15)

Remark 3. The decay rate is optimal since it coincides with
that of heat equation. The finding is mainly based on energy
methods and auxiliary decay estimates together with 𝐿𝑝 − 𝐿𝑞
estimates of heat semigroup.

3. Auxiliary 𝐿2 Decay

In this section, we will first study auxiliary 𝐿2 decay of weak
solutions for three-dimensional globally modified Navier-
Stokes equations (3).

Lemma 4. Suppose that 𝑢(𝑡) is a weak solution of three-
dimensional globally modified Navier-Stokes equations (3);
then one has

𝑡
1/2
‖∇𝑢 (𝑡)‖𝐿2 󳨀→ 0, 𝑡 󳨀→ ∞. (16)

Proof of Lemma 4. Taking the inner product of (3) with −Δ𝑢
gives

𝑑

𝑑𝑡
‖∇𝑢 (𝑡)‖

2

𝐿2
+ 2‖Δ𝑢 (𝑡)‖

2

𝐿2

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫

R3
𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇) 𝑢Δ𝑢𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(17)
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where we have used the following properties:

∫
R3
∇𝑝Δ𝑢𝑑𝑥 = ∫

R3
𝑝Δ (div 𝑢) 𝑑𝑥 = 0 (18)

due to the divergence free of the velocity fields.
Since

𝐹𝑁 (‖∇𝑢‖𝐿2) = min{1, 𝑁

‖∇𝑢‖𝐿2
} ≤ 1, (19)

then the right hand side of inequality (17) can be estimated
after by applying Hölder inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫

R3
𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇) 𝑢Δ𝑢𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶‖Δ𝑢‖𝐿2‖𝑢‖𝐿∞‖∇𝑢‖𝐿2 .

(20)

With the aid of the Gagliardo-Nirenberg inequality,

‖𝑢‖𝐿∞ ≤ 𝐶‖Δ𝑢‖
3/4

𝐿2
‖𝑢‖
1/4

𝐿2
,

‖∇𝑢‖𝐿2 ≤ 𝐶‖𝑢‖
1/2

𝐿2
‖Δ𝑢‖
1/2

𝐿2
.

(21)

Plugging (21) into (20), one shows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫

R3
𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇) 𝑢Δ𝑢𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶‖Δ𝑢‖
7/4

𝐿2
‖𝑢‖
1/4

𝐿2
‖∇𝑢‖𝐿2

≤ 𝐶‖Δ𝑢‖
2

𝐿2
(‖𝑢‖
1/4

𝐿2
‖∇𝑢‖𝐿2‖Δ𝑢‖

−1/4

𝐿2
)

≤ 𝐶‖Δ𝑢‖
2
(‖𝑢‖
1/2

𝐿2
‖∇𝑢‖
1/2

𝐿2
) .

(22)

Then inserting the above inequality into (17), one gets

𝑑

𝑑𝑡
‖∇𝑢 (𝑡)‖

2

𝐿2
+ 2‖Δ𝑢 (𝑡)‖

2

𝐿2

≤ 𝐶‖Δ𝑢 (𝑡)‖
2

𝐿2‖𝑢‖
1/2

𝐿2
‖∇𝑢‖
1/2

𝐿2
.

(23)

Thus we rewrite inequality (23) as

𝑑

𝑑𝑡
‖∇𝑢 (𝑡)‖

2

𝐿2
≤ 2‖Δ𝑢 (𝑡)‖

2

𝐿2
(𝐶‖𝑢‖

1/2

𝐿2
‖∇𝑢‖
1/2

𝐿2
− 1) . (24)

Now for any small 𝜀 > 0, there exists a large𝑀 > 0, such that,
for 𝑡 ≥ 𝑀,

‖𝑢‖𝐿2‖∇𝑢‖𝐿2 ≤ 𝜀. (25)

Otherwise, there exists a positive constant 𝜀0, such that, for
all 𝑡 ≥ 0

‖𝑢‖𝐿2‖∇𝑢‖𝐿2 > 𝜀0 (26)

from which and together with energy inequality we have
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2‖
∇𝑢‖𝐿2 > 𝜀0 (27)

which implies that

‖∇𝑢‖𝐿2 > 𝐶𝜀0. (28)

On the other hand, from energy inequality we have

∫

∞

0

‖∇𝑢‖𝐿2𝑑𝑡 < ∞, (29)

which contradicts (28).
Hence, we have

‖𝑢‖𝐿2‖∇𝑢‖𝐿2 ≤ 𝜀, for large 𝑡. (30)

We now choose 𝜀 = 1/𝐶 in (24) and apply (30) to yield

𝑑

𝑑𝑡
‖∇𝑢 (𝑡)‖

2

𝐿2
≤ 0, (31)

from which and together with the energy inequality we have

(𝑡 − 𝑀) ‖∇𝑢 (𝑡)‖
2

𝐿2

≤ ∫

𝑡

𝑀

‖∇𝑢 (𝑠)‖
2

𝐿2
𝑑𝑠 ≤

1

2
‖𝑢 (𝑀)‖

2
≤
1

2

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2
= 𝐶

(32)

which implies that

𝑡‖∇𝑢 (𝑡)‖
2

𝐿2
󳨀→ 0, 𝑡 󳨀→ ∞. (33)

4. Optimal Upper and Lower Decay Estimates

4.1. Upper Decay Estimate. Consider the integral equations of
(3)

𝑢 (𝑡) = 𝑒
Δ𝑡
𝑢0 − ∫

𝑡

0

𝑒
Δ(𝑡−𝑠)

P𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇𝑢) 𝑑𝑠, (34)

where

P𝑔 = 𝑔 − ∇Δ
−1
∇ ⋅ 𝑔. (35)

Taking the 𝐿2 norm of the integral equation and applying
the 𝐿𝑝 −𝐿𝑞 estimates of heat equation, it follows that together
with Hölder inequality

‖𝑢 (𝑡)‖𝐿2

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2
+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
Δ(𝑡−𝑠)

P𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

≤ 𝐶(1 + 𝑡)
−3/4

+ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
−1/2
‖𝑢‖𝐿2‖∇𝑢‖𝐿2𝑑𝑠,

(36)

where we have used the properties

‖P‖ ≤ 1,

𝐹𝑁 (‖∇𝑢‖𝐿2) ≤ 1.

(37)
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According to Lemma 4, we let

𝜂 (𝑡) ≜ 𝑡
1/2
‖∇𝑢 (𝑡)‖𝐿2 (38)

and it is obvious that

𝜂 (𝑡) 󳨀→ 0, 𝑡 󳨀→ ∞. (39)

Thus we rewrite (36) as

‖𝑢 (𝑡)‖𝐿2

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2
+ 𝑐∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
Δ(𝑡−𝑠)

P𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

≤ 𝐶(1 + 𝑡)
−3/4

+ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
−1/2
(1 + 𝑠)

−1/2
‖𝑢‖𝐿2𝜂 (𝑠) 𝑑𝑠.

(40)

That is to say,

(1 + 𝑡)
3/4
‖𝑢 (𝑡)‖𝐿2 ≤ 𝐶 + 𝐶𝜃 (𝑡) sup

0≤𝑠≤𝑡

(1 + 𝑠)
3/4
‖𝑢(𝑠)‖𝐿2 (41)

with

𝜃 (𝑡) = (1 + 𝑡)
3/4
∫

𝑡

0

(𝑡 − 𝑠)
−1/2
(1 + 𝑠)

−5/4
𝜂 (𝑠) 𝑑𝑠. (42)

It is easy to check that

𝜃 (𝑡) 󳨀→ 0, as 𝑡 󳨀→ ∞, (43)

or for large 𝑡 > 0,

𝜃 (𝑡) ≤
1

2𝐶
. (44)

Thus we obtain the optimal upper decay estimates of
the weak solution for three-dimensional globally modified
Navier-Stokes equations (3) as

‖𝑢 (𝑡)‖𝐿2 ≤ 𝐶(1 + 𝑡)
−3/4
. (45)

4.2. Lower Decay Estimate. From the integral equations
(34), we will investigate the error estimates of solutions
between three-dimensional globally modified Navier-Stokes
equations (3) and the heat equation:

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡) − 𝑒

Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
Δ(𝑡−𝑠)

P𝐹𝑁 (‖∇𝑢‖𝐿2) (𝑢 ⋅ ∇𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
Δ(𝑡−𝑠)

(𝑢 ⋅ ∇𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

≤ ∫

𝑡/2

0

󵄩󵄩󵄩󵄩󵄩
∇𝑒
Δ(𝑡−𝑠)

(𝑢 ⊗ 𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

+ ∫

𝑡

𝑡/2

󵄩󵄩󵄩󵄩󵄩
∇𝑒
Δ(𝑡−𝑠)

(𝑢 ⊗ 𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

= 𝐼 + 𝐽.

(46)

For 𝐼, employing the 𝐿𝑝 −𝐿𝑞 estimates of heat semigroup and
upper decay estimates gives

𝐼 ≤ 𝐶∫

𝑡/2

0

(𝑡 − 𝑠)
−5/4
‖𝑢‖
2

𝐿2
𝑑𝑠

≤ 𝐶∫

𝑡/2

0

(𝑡 − 𝑠)
−5/4
(1 + 𝑠)

−3/2
𝑑𝑠

≤ 𝐶(1 + 𝑡)
−3/2
.

(47)

For 𝐽, similarly,

𝐽 ≤ ∫

𝑡

𝑡/2

󵄩󵄩󵄩󵄩󵄩
∇𝑒
Δ(𝑡−𝑠)

(𝑢 ⊗ 𝑢)
󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

≤ ∫

𝑡

𝑡/2

(𝑡 − 𝑠)
−7/8
‖𝑢 ⊗ 𝑢‖𝐿4/3𝑑𝑠

≤ ∫

𝑡

𝑡/2

(𝑡 − 𝑠)
−7/8
‖𝑢‖𝐿2‖𝑢‖𝐿4𝑑𝑠

≤ ∫

𝑡

𝑡/2

(𝑡 − 𝑠)
−7/8
‖𝑢‖
5/4

𝐿2
‖∇𝑢‖
3/4

𝐿2
𝑑𝑠

≤ ∫

𝑡

𝑡/2

(𝑡 − 𝑠)
−7/8
(1 + 𝑠)

−21/16
𝜂
3/4
(𝑡) 𝑑𝑠

= 𝑜 ((1 + 𝑡)
−19/16

) , 𝑡 󳨀→ ∞.

(48)

Thus we have from the estimates 𝐼 and 𝐽
󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡) − 𝑒

Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2
= 𝑜 ((1 + 𝑡)

−19/16
) , 𝑡 󳨀→ ∞. (49)

Hence by the triangle inequality, one shows that

‖𝑢 (𝑡)‖𝐿2 ≥
󵄩󵄩󵄩󵄩󵄩
𝑒
−Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2
−
󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡) − 𝑒

Δ𝑡
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐿2

≥ 𝐶(1 + 𝑡)
−3/4
, for large 𝑡.

(50)

Combination of the upper and lower decay estimates
for weak solutions of three-dimensional globally modi-
fied Navier-Stokes equations (3) completes the proof of
Theorem 2.
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