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This paper addresses the finite-time bounded control problem of linear stochastic systems with state, control input, and external
disturbance-dependent noise ((𝑥, 𝑢, V)-dependent noise for short). The notion of finite-time boundedness of linear stochastic
systems is first introduced. Then a different quadratic function approach is proposed to give a sufficient condition for finite-time
boundedness of such a class of systems, and its superiority to common quadratic approach is shown. Moreover, the finite-time
bounded controller design problem is studied and two sufficient conditions for the existence of state and output feedback controllers
are presented in terms of nonlinearmatrix inequalities. An algorithm is given for solving the obtained nonlinearmatrix inequalities.
Finally, an example is employed to illustrate the effectiveness of our obtained results.

1. Introduction

It is well known that finite-time control has become one of the
important robust control methods, which has been studied
extensively both in theory and practical applications; see
linear systems [1–9], nonlinear systems [10–12], and the in-
press book [13]. Recently, based on analysis on some practical
problems, [14] introduced a newfinite-time stability for linear
stochastic Itô systemswith state and control-dependent noise.
Roughly speaking, a stochastic Itô system is said to be finite-
time stable if, given a bound on the initial state of the system,
its state trajectories do not exceed an upper bound 𝑐

2
and are

not less than a lower bound 𝑐
1
(𝑐
1
< 𝑐
2
) in the mean square

sense during a specific time interval.
On the other hand, the model of stochastic Itô sys-

tems with state, control input, and external disturbance
dependent-noise ((𝑥, 𝑢, V)-dependent noise for short) ismore
general than stochastic Itô systems with state and control
input-dependent noise ((𝑥, 𝑢)-dependent noise for short).
For this class of model, some results have been obtained.

For example, [15, 16] studied the finite/infinite horizonmixed
𝐻
2
/𝐻
∞
control problem for the Itô-type nonlinear stochastic

systems with (𝑥, 𝑢, V)-dependent noise, respectively.
Motivated by aforementioned discussions, we extend

the results in [14] to stochastic Itô systems with (𝑥, 𝑢, V)-
dependent noise. Here, we consider finite-time stochastic
boundedness and finite-time bounded control problems for
such class of systems. More precisely, a system is said to be
finite-time bounded if, given a bound both on the initial state
of the system and the disturbance input, the state trajectories
of the system do not exceed an upper bound 𝑐

2
and are not

less than a lower bound 𝑐
1
(𝑐
1
< 𝑐
2
) in the mean square

sense during a prespecified time interval for all admissible
disturbances. By stochastic analysis technology, Gronwall’s
inequality, andmatrix transformation, a finite-time stochastic
boundedness criterion and some sufficient conditions for the
existence of finite-time bounded controller are derived. The
contributions of this paper lie in the following two aspects: (1)
a new concept of finite-time stochastic boundedness is intro-
duced, which generalizes the finite time stochastic stability in
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[14] to stochastic Itô systems with (𝑥, 𝑢, V)-dependent noise
and (2) a different quadratic function approach is introduced
and its superiority to common quadratic function approach
is shown. By different quadratic function approach, two new
conditions for the existence of state and output feedback
finite-time bounded controller are obtained.

The paper is organized as follows. In Section 2, a concept
of finite-time stochastic boundedness and somepreliminaries
are presented. Section 3 provides a sufficient condition for
finite-time stochastic boundedness. In Section 4, state and
output finite-time bounded controllers are given, respec-
tively. Section 5 employs an example to illustrate the results
of the paper. Section 6 gives the conclusion.

Notation. 𝐴𝑇 is a transpose of a matrix or vector 𝐴.
𝐴 > 0 (𝐴 ≥ 0): 𝐴 is positive definite (positive semidefinite)
symmetric matrix. 𝐿2F(R+,R

𝑙
) is a space of nonanticipative

stochastic process 𝑦(𝑡) ∈ R𝑙 with respect to an increasing 𝜎-
algebraF

𝑡
(𝑡 ≥ 0) satisfying E∫∞

0
‖𝑦(𝑡)‖

2
𝑑𝑡 < ∞. E[⋅] stands

for themathematical expectation operator with respect to the
given probability measure. 𝐼

𝑛×𝑛
is 𝑛 × 𝑛 identity matrix. tr(𝐴)

is trace of a matrix 𝐴. 𝜆max(𝐴)(𝜆min(𝐴)) is the maximum
(minimum) eigenvalue of a real matrix 𝐴.

2. Preliminaries and Problem Statement

Consider the following linear time-invariant stochastic Itô
system with (𝑥, 𝑢, V)-dependent noise:

𝑑𝑥 (𝑡) = (𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐺V (𝑡)) 𝑑𝑡

+ (𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) + 𝐺

1
V (𝑡)) 𝑑𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) , 𝑥 (0) = 𝑥
0
∈ R𝑛,

(1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚, V(𝑡) ∈ R𝑙, and 𝑦(𝑡) ∈ R𝑝 are
called the system state, control input, exogenous disturbance,
and measurement output, respectively. 𝐴, 𝐴

1
∈ R𝑛×𝑛, 𝐵, 𝐵

1
∈

R𝑛×𝑚, 𝐺, 𝐺
1
∈ R𝑛×𝑙, and 𝐶 ∈ R𝑝×𝑛 are constant matrices.

𝑥
0
is the initial state. Without loss of generality, throughout

this paper, we assume 𝑤(𝑡) to be one-dimensional standard
Wiener process defined on the probability space (Ω, F, F

𝑡
,

𝑃) withF
𝑡
=𝜎{𝑤(𝑠): 0 ≤ 𝑠 ≤ 𝑡}.

To illustrate clearly the concept of finite-time stochastic
boundedness presented below, we first introduce finite-time
stochastic stability from [14].

Definition 1. Given positive real scalars 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇 with

0 < 𝑐
1
< 𝑐
3
< 𝑐
4
< 𝑐
2
, and a positive definite matrix 𝑅, the

following linear stochastic system

𝑑𝑥 (𝑡) = 𝐴𝑥 (𝑡) 𝑑𝑡 + 𝐴
1
𝑥 (𝑡) 𝑑𝑤 (𝑡)

𝑥 (0) = 𝑥
0
,

(2)

is said to be finite-time stochastically stable with respect to
(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅), if

𝑐
3
≤ E [𝑥

𝑇
(0) 𝑅𝑥 (0)] ≤ 𝑐

4

⇒ 𝑐
1
< E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] < 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] .

(3)

Based on Definition 1, a new concept of finite-time
stochastic boundedness for linear stochastic Itô systems is
introduced.

Definition 2. Given some positive scalars 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
,

𝑇 with 0 < 𝑐
1
< 𝑐
3
< 𝑐
4
< 𝑐
2
, a positive definite matrix

𝑅, and a class of exogenous signals W, the following linear
stochastic system

𝑑𝑥 (𝑡) = (𝐴𝑥 (𝑡) + 𝐺V (𝑡)) 𝑑𝑡

+ (𝐴
1
𝑥 (𝑡) + 𝐺

1
V (𝑡)) 𝑑𝑤 (𝑡)

𝑥 (0) = 𝑥
0

(4)

is said to be finite-time stochastically bounded with respect
to (𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
,W, 𝑇, 𝑅), if

𝑐
3
≤ E [𝑥

𝑇
(0) 𝑅𝑥 (0)] ≤ 𝑐

4

⇒ 𝑐
1
< E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] < 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] ,

(5)

for all V(⋅) ∈W.

Remark 3. Definition 2 is more general than Definition 1,
which concerns the behavior of the state in the presence of
both given initial conditions and external disturbance.

Remark 4. It is clear that finite-time stochastic boundedness
implies finite-time stochastic stability, but the converse is not
true.

In the next assumption, we characterize a class of signals
W considered in this paper.

Assumption 5. The classW is defined as follows:

W = {V (𝑡) : 𝑑V (𝑡) = 𝐻V (𝑡) 𝑑𝑡 + 𝐻
1
V (𝑡) 𝑑𝑤 (𝑡) ,

V (0) = V
0
∈ R𝑙, V𝑇

0
𝑅
1
V
0
≤ ℎ
1
, E [V𝑇 (𝑡) 𝑅

1
V (𝑡)] < ℎ} ,

(6)

where𝐻,𝐻
1
, and 𝑅

1
≥ 0 are constant matrices and ℎ and ℎ

1

are any given positive scalars.

Remark 6. In Assumption 5, ℎ and ℎ
1
are any given positive

scalars, soW actually includes a big class of signals.

Before proceeding further, we give some lemmas which
will be used in the next section.

Lemma 7 (Itô-type formula). For given 𝑉(𝑥) ∈ 𝐶
2
(R𝑛),

associated with the following stochastic system

𝑑𝑥 (𝑡) = 𝑓 (𝑥) 𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤 (𝑡) , (7)

the infinitesimal generator operator is defined by

L𝑉 (𝑥) =

𝜕𝑉 (𝑥)

𝜕𝑥

𝑓 (𝑥) +

1

2

Tr[𝑔𝑇 (𝑥) 𝜕
2
𝑉 (𝑥)

𝜕𝑥
2

𝑔 (𝑥)] . (8)
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Lemma 8 (Gronwall Inequality). Let 𝜃(𝑡) be a nonnegative
function such that

𝜃 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

0

𝜃 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (9)

for some constants 𝑎, 𝑏 ≥ 0; then one has

𝜃 (𝑡) ≤ 𝑎 exp (𝑏𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (10)

Lemma 9 (see [14]). Let 𝜃(𝑡) be a nonnegative function such
that

𝜃 (𝑡) ≥ 𝑎 + 𝑏∫

𝑡

0

𝜃 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (11)

for some constants 𝑎, 𝑏 ≥ 0; then one has

𝜃 (𝑡) ≥ 𝑎 exp (𝑏𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (12)

3. Finite-Time Stochastic Boundedness

This section is dedicated to proposing a different quadratic
function approach to the finite-time stochastic boundedness
problem of the system (4). The comparison on different
quadratic function approach and common quadratic func-
tion approach is first given.

In [14], the key approach of obtaining main results is as
follows. Let𝑉(𝑆state) be a positive quadratic function; then by
the following inequalities

L𝑉 (𝑆state (𝑡)) < 𝛼𝑉 (𝑆state (𝑡)) , (13)

L𝑉 (𝑆state (𝑡)) > 𝛽𝑉 (𝑆state (𝑡)) , (14)

themain results are derived.We call the above approach to be
common quadratic function approach, because the quadratic
functions in (13) and (14) are the same. But we find that
𝑉(𝑆state(𝑡)) satisfying (13) may not satisfy (14), which results
in the a relatively small range of the option of 𝑉(𝑆state(𝑡)).
So the main results obtained by common quadratic function
approach are of conservativeness.

The key idea of different quadratic function approach
is as follows. Let 𝑉

1
(𝑆state(𝑡)) and 𝑉2(𝑆state(𝑡)) be a positive

quadratic function; then by the following inequalities

L𝑉
1
(𝑆state (𝑡)) < 𝛼𝑉1 (𝑆state (𝑡)) , (15)

L𝑉
2
(𝑆state (𝑡)) > 𝛽𝑉2 (𝑆state (𝑡)) , (16)

the main results of this paper will be derived. Because the
quadratic functions𝑉

1
(𝑆state(𝑡)) in (15) and𝑉2(𝑆state(𝑡)) in (16)

are not the same, the main results obtained by this approach
are of less conservativeness than the results obtained by
common quadratic function approach.

Theorem 10. If there exist 𝛼 ≥ 0, 𝛽 ≥ 0, symmetric positive
definite matrices 𝑄

1
∈ R𝑛×𝑛, 𝑄

2
∈ R𝑙×𝑙, 𝑄

3
∈ R𝑙×𝑙 and some

scalars 𝜆
𝑖
> 0, 𝑖 = 1, 2, 3 such that the following inequalities

hold

[

[

𝑄
1
𝐴
𝑇
+ 𝐴𝑄
1
− 𝛼𝑄
1

𝐺 𝑄
1
𝐴
𝑇

1

∗ Γ − 𝛼𝑄
2

𝐺
𝑇

1

∗ ∗ −𝑄
1

]

]

< 0, (17)

[

[

𝛽𝑄
1
− 𝑄
1
𝐴
𝑇
− 𝐴𝑄
1

𝐺 𝑄
1
𝐴
𝑇

1

∗ 𝛽𝑄
3
− Γ 𝐺

𝑇

1

∗ ∗ −𝑄
1

]

]

< 0, (18)

[
𝜆
2
ℎ
1
− 𝑐
2
𝑒
−𝛼𝑇

√𝑐4

∗ −𝜆
1

] < 0, (19)

[

ℎ𝜆
3
− 𝑐
3 √

𝑐
1

∗ −𝜆
1

] < 0, (20)

𝜆
1
𝐼 < 𝑄

1
< 𝐼, 0 < 𝑄

2
< 𝜆
2
𝐼, (21)

0 < 𝑄
3
< 𝜆
3
𝐼, (22)

then system (4) is finite-time stochastically bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, W, 𝑇, 𝑅), where 𝑄

1
= 𝑅
−1/2

𝑄
1
𝑅
−1/2,

𝑄
2
= 𝑅
1/2

1
𝑄
2
𝑅
1/2

1
, 𝑄
3
= 𝑅
1/2

1
𝑄
3
𝑅
1/2

1
, Γ = 𝐻

𝑇
𝑄
2
+ 𝑄
2
𝐻 +

𝐻
𝑇

1
𝑄
2
𝐻
1
, Γ = 𝐻𝑇𝑄

3
+ 𝑄
3
𝐻 +𝐻

𝑇

1
𝑄
3
𝐻
1
.

Proof.

Step 1. E[𝑥𝑇(0)𝑅𝑥(0)] < 𝑐
4
⇒ E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] < 𝑐

2
.

Take a quadratic function

𝑉
1
(𝑥 (𝑡) , V (𝑡)) = 𝑥𝑇 (𝑡) 𝑄−1

1
𝑥 (𝑡) + V𝑇 (𝑡) 𝑄

2
V (𝑡) , (23)

where 𝑄
1
= 𝑅
−1/2

𝑄
1
𝑅
−1/2, 𝑄

2
= 𝑅
1/2

1
𝑄
2
𝑅
1/2

1
with 𝑄

1
> 0,

𝑄
2
> 0 being solutions (17)–(22). Applying Itô formula for

𝑉
1
(𝑥(𝑡), V(𝑡)) along the trajectory of the following system

𝑑 [

𝑥 (𝑡)

V (𝑡)] = [
𝐴 𝐺

0 𝐻
][

𝑥 (𝑡)

V (𝑡)] 𝑑𝑡

+ [

𝐴
1
𝐺
1

0 𝐻
1

] [

𝑥 (𝑡)

V (𝑡)] 𝑑𝑤 (𝑡) ,

[

𝑥 (0)

V (0)] = [
𝑥
0

V
0

] ∈ R𝑛+𝑙,

(24)

it follows

L𝑉
1
(𝑥 (𝑡) , V (𝑡))

= (𝐴𝑥 (𝑡) + 𝐺V (𝑡))𝑇𝑄−1
1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
−1

1
(𝐴𝑥 (𝑡) + 𝐺V (𝑡))

+ (𝐴
1
𝑥 (𝑡) + 𝐺

1
V (𝑡))𝑇𝑄−1

1
(𝐴
1
𝑥 (𝑡) + 𝐺

1
V (𝑡))

+ (𝐻V (𝑡))𝑇𝑄
2
V (𝑡) + V𝑇 (𝑡) 𝑄

2
𝐻V (𝑡)

+ (𝐻
1
V (𝑡))𝑇𝑄

2
𝐻
1
V (𝑡) ,

(25)
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which leads to

L𝑉
1
(𝑥 (𝑡) , V (𝑡)) − 𝛼𝑉

1
(𝑥 (𝑡) , V (𝑡))

= 𝑥
𝑇
(𝑡) [𝐴

𝑇
𝑄
−1

1
+ 𝑄
−1

1
𝐴 + 𝐴

𝑇

1
𝑄
−1

1
𝐴
1
− 𝛼𝑄
−1

1
] 𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) [𝑄

−1

1
𝐺 + 𝐴

𝑇

1
𝑄
−1

1
𝐺
1
] V (𝑡)

+ V𝑇 (𝑡) [𝐺𝑇𝑄−1
1
+ 𝐺
𝑇

1
𝑄
−1

1
𝐴
1
] 𝑥 (𝑡)

+ V𝑇 (𝑡) [𝐺𝑇
1
𝑄
−1

1
𝐺
1
+ 𝐻
𝑇
𝑄
2
+ 𝑄
2
𝐻

+𝐻
𝑇

1
𝑄
2
𝐻
1
− 𝛼𝑄
2
] V (𝑡) .

(26)

Pre- and postmultiplying (17) by diag{𝑄−1
1
𝐼 𝑄
−1

1
}, according

to Schur complement, it is easy to obtain that (17) is equivalent
to

[

Ω + 𝐴
𝑇

1
𝑄
−1

1
𝐴
1
𝑄
−1

1
𝐺 + 𝐴

𝑇

1
𝑄
−1

1
𝐺
1

∗ Ω + 𝐺
𝑇

1
𝑄
−1

1
𝐺
1

] < 0, (27)

where Ω = 𝐴
𝑇
𝑄
−1

1
+ 𝑄
−1

1
𝐴 − 𝛼𝑄

−1

1
, Ω = 𝐻

𝑇
𝑄
2
+ 𝑄
2
𝐻 +

𝐻
𝑇

1
𝑄
2
𝐻
1
− 𝛼𝑄
2
.

By (26) and (27), we obtain

L𝑉
1
(𝑥 (𝑡) , V (𝑡)) < 𝛼𝑉

1
(𝑥 (𝑡) , V (𝑡)) . (28)

Integrating both sides of (28) from 0 to 𝑡 with 𝑡 ∈ [0, 𝑇]
and then taking mathematical expectation, it yields

E𝑉
1
(𝑥 (𝑡) , V (𝑡)) < E𝑉

1
(𝑥 (0) , V (0))

+ 𝛼∫

𝑡

0

E𝑉
1
(𝑥 (𝑠) , V (𝑠)) 𝑑𝑠.

(29)

By Lemma 9, we conclude that

E𝑉
1
(𝑥 (𝑡) , V (𝑡)) < E𝑉

1
(𝑥 (0) , V (0)) 𝑒𝛼𝑡. (30)

By given conditions, it follows

E𝑉
1
(𝑥 (0) , V (0)) 𝑒𝛼𝑡

= E [𝑥
𝑇
(0) 𝑄
−1

1
𝑥 (0) + V𝑇 (0) 𝑄

2
V (0)] 𝑒𝛼𝑡

= E [𝑥
𝑇
(0) 𝑅
1/2
𝑄
−1

1
𝑅
1/2
𝑥 (0)

+V𝑇 (0) 𝑅1/2
1
𝑄
2
𝑅
1/2

1
V (0)] 𝑒𝛼𝑡

≤ E [𝜆max (𝑄
−1

1
) 𝑐
4
+ 𝜆max (𝑄2) ℎ1] 𝑒

𝛼𝑇

= [

1

𝜆min (𝑄1)
𝑐
4
+ 𝜆max (𝑄2) ℎ1] 𝑒

𝛼𝑇

< [

1

𝜆
1

𝑐
4
+ 𝜆
2
ℎ
1
] 𝑒
𝛼𝑇
,

E𝑉
1
(𝑥 (𝑡) , V (𝑡))

= E [𝑥
𝑇
(𝑡) 𝑄
−1

1
𝑥 (𝑡) + V𝑇 (𝑡) 𝑄

2
V (𝑡)]

= E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
−1

1
𝑅
1/2
𝑥 (𝑡) + V𝑇 (𝑡) 𝑅1/2

1
𝑄
2
𝑅
1/2

1
V (𝑡)]

≥ E [𝜆min (𝑄
−1

1
) 𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡) + 𝜆min (𝑄2) V

𝑇
(𝑡) 𝑅
1
V (𝑡)]

= E[
1

𝜆max (𝑄1)
𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡) + 𝜆min (𝑄2) V

𝑇
(𝑡) 𝑅
1
V (𝑡)]

> E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] .

(31)

According to (30) and (31),

E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] < (

1

𝜆
1

𝑐
4
+ 𝜆
2
ℎ
1
) 𝑒
𝛼𝑇
. (32)

From (19), we have

(

1

𝜆
1

𝑐
4
+ 𝜆
2
ℎ
1
) 𝑒
𝛼𝑇
< 𝑐
2
. (33)

From (32) and (33), it is easy to obtain

E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] < 𝑐

2
. (34)

Step 2. 𝑐
3
< E[𝑥𝑇(0)𝑅𝑥(0)] ⇒ 𝑐

1
< E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)].

Take a quadratic function different from 𝑉
1
(𝑥(𝑡), V(𝑡))

𝑉
2
(𝑥 (𝑡) , V (𝑡)) = 𝑥𝑇 (𝑡) 𝑄−1

1
𝑥 (𝑡) + V𝑇 (𝑡) 𝑄

3
V (𝑡) , (35)

where 𝑄
1
= 𝑅
−1/2

𝑄
1
𝑅
−1/2, 𝑄

3
= 𝑅
1/2

1
𝑄
3
𝑅
1/2

1
with 𝑄

1
> 0,

𝑄
3
> 0 being solutions (17)–(22). Applying Itô formula for

𝑉
2
(𝑥(𝑡), V(𝑡)) along the trajectory of the system of (24), it

follows
L𝑉
2
(𝑥 (𝑡) , V (𝑡))

= (𝐴𝑥 (𝑡) + 𝐺V (𝑡))𝑇𝑄−1
1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
−1

1
(𝐴𝑥 (𝑡) + 𝐺V (𝑡))

+ (𝐴
1
𝑥 (𝑡) + 𝐺

1
V (𝑡))𝑇𝑄−1

1
(𝐴
1
𝑥 (𝑡) + 𝐺

1
V (𝑡))

+ (𝐻V (𝑡))𝑇𝑄
3
V (𝑡) + V𝑇 (𝑡) 𝑄

3
𝐻V (𝑡)

+ (𝐻
1
V (𝑡))𝑇𝑄

3
𝐻
1
V (𝑡) ,

(36)

which leads to
𝛽𝑉
2
(𝑥 (𝑡) , V (𝑡)) −L𝑉

2
(𝑥 (𝑡) , V (𝑡))

= 𝑥
𝑇
(𝑡) [𝛽𝑄

−1

1
− 𝐴
𝑇
𝑄
−1

1
− 𝑄
−1

1
𝐴 − 𝐴

𝑇

1
𝑄
−1

1
𝐴
1
] 𝑥 (𝑡)

− 𝑥
𝑇
(𝑡) [𝑄

−1

1
𝐺 + 𝐴

𝑇

1
𝑄
−1

1
𝐺
1
] V (𝑡)

− V𝑇 (𝑡) [𝐺𝑇𝑄−1
1
+ 𝐺
𝑇

1
𝑄
−1

1
𝐴
1
] 𝑥 (𝑡)

+ V𝑇 (𝑡) [𝛽𝑄
3
− 𝐺
𝑇

1
𝑄
−1

1
𝐺
1
− 𝐻
𝑇
𝑄
3

−𝑄
3
𝐻 −𝐻

𝑇

1
𝑄
3
𝐻
1
] V (𝑡) .

(37)
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Pre- and postmultiplying (18) by diag{𝑄−1
1
𝐼 𝑄
−1

1
}, by Schur

complement, it is easily obtained that (18) is equivalent to

[

Σ + 𝐴
𝑇

1
𝑄
−1

1
𝐴
1
𝑄
−1

1
𝐺 + 𝐴

𝑇

1
𝑄
−1

1
𝐺
1

∗ Σ + 𝐺
𝑇

1
𝑄
−1

1
𝐺
1

] < 0, (38)

where Σ = 𝛽𝑄−1
1
−𝐴
𝑇
𝑄
−1

1
−𝑄
−1

1
𝐴, Σ = 𝛽𝑄

3
−𝐻
𝑇
𝑄
3
−𝑄
3
𝐻−

𝐻
𝑇

1
𝑄
3
𝐻
1
.

Considering (37) and (38), we obtain

L𝑉
2
(𝑥 (𝑡) , V (𝑡)) > 𝛽𝑉

2
(𝑥 (𝑡) , V (𝑡)) . (39)

Integrating both sides of (39) from 0 to 𝑡 with 𝑡 ∈ [0, 𝑇] and
then taking the mathematical expectation, it yields

E𝑉
2
(𝑥 (𝑡) , V (𝑡)) > E𝑉

2
(𝑥 (0) , V (0))

+ 𝛽∫

𝑡

0

E𝑉
2
(𝑥 (𝑠) , V (𝑠)) 𝑑𝑠.

(40)

By Lemma 9, we conclude that

E𝑉
2
(𝑥 (𝑡) , V (𝑡)) > E𝑉

2
(𝑥 (0) , V (0)) 𝑒𝛽𝑡. (41)

By given conditions, it follows

E𝑉
2
(𝑥 (0) , V (0)) 𝑒𝛽𝑡

= [𝑥
𝑇
(0) 𝑄
−1

1
𝑥 (0) + V𝑇 (0) 𝑄

3
V (0)] 𝑒𝛽𝑡

= [𝑥
𝑇
(0) 𝑅
1/2
𝑄
−1

1
𝑅
1/2
𝑥 (0)

+V𝑇 (0) 𝑅1/2
1
𝑄
3
𝑅
1/2

1
V (0)] 𝑒𝛽𝑡

≥ 𝜆min (𝑄
−1

1
) 𝑐
3
=

1

𝜆max (𝑄1)
𝑐
3
> 𝑐
3
,

E𝑉
2
(𝑥 (𝑡) , V (𝑡))

= E [𝑥
𝑇
(𝑡) 𝑄
−1

1
𝑥 (𝑡) + V𝑇 (𝑡) 𝑄

3
V (𝑡)]

= E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
−1

1
𝑅
1/2
𝑥 (𝑡) + V𝑇 (𝑡) 𝑅1/2

1
𝑄
3
𝑅
1/2

1
V (𝑡)]

≤ E [𝜆max (𝑄
−1

1
) 𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡) + 𝜆max (𝑄3) V

𝑇
(𝑡) 𝑅
1
V (𝑡)]

= E[
1

𝜆min (𝑄1)
𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡) + 𝜆max (𝑄3) V

𝑇
(𝑡) 𝑅
1
V (𝑡)]

<

1

𝜆
1

E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] + 𝜆

3
ℎ.

(42)

By (41) and (42),

𝑐
3
<

1

𝜆
1

E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] + 𝜆

3
ℎ. (43)

From (20), we have

𝑐
1
− 𝑐
3
𝜆
1
+ ℎ𝜆
3
𝜆
1
< 0; (44)

that is,

𝑐
1
< [𝑐
3
− 𝜆
3
ℎ] 𝜆
1
. (45)

From (43) and (45), it is easy to obtain

𝑐
1
< E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] . (46)

Therefore, the proof of the theorem is completed.

Remark 11. Theorem 10 can be employed for testing finite-
time stochastic boundedness of system (1).

4. Finite-Time Stochastic Bounded
Controller Design

In this section, we use different quadratic function approach
to design state and output feedback finite-time bounded
controller such that the closed-loop system of system (1) is
finite-time stochastically bounded over a finite-time interval
[0, 𝑇], respectively.

4.1. State Feedback Finite-Time Bounded Controller Design.
For system (1), we first consider a state feedback controller

𝑢 (𝑡) = 𝐾𝑥 (𝑡) ; (47)

then the closed-loop system of (1) is as follows:

𝑑𝑥 (𝑡) = [(𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝐺V (𝑡)] 𝑑𝑡

+ [(𝐴
1
+ 𝐵
1
𝐾)𝑥 (𝑡) + 𝐺

1
V (𝑡)] 𝑑𝑤 (𝑡) .

(48)

Next, a sufficient condition of the existence for state feedback
finite-time bounded controller is presented byTheorem 10.

Theorem 12. If there exist 𝛼 ≥ 0, 𝛽 ≥ 0, positive definite
matrices 𝑄

1
∈ R𝑛×𝑛, 𝑄

2
∈ R𝑙×𝑙, 𝑄

3
∈ R𝑙×𝑙, and a matrix

𝑀 ∈ R𝑚×𝑛, and some scalars 𝜆
𝑖
> 0, 𝑖 = 1, 2, 3 such that

(19)–(22) and the following inequalities hold

[

[

Λ
1

𝐺 𝑄
1
𝐴
𝑇

1
+𝑀
𝑇
𝐵
𝑇

1

∗ Γ − 𝛼𝑄
2

𝐺
𝑇

1

∗ ∗ −𝑄
1

]

]

< 0, (49)

[

[

Λ
2

𝐺 𝑄
1
𝐴
𝑇

1
+𝑀
𝑇
𝐵
𝑇

1

∗ 𝛽𝑄
3
− Γ 𝐺

𝑇

1

∗ ∗ −𝑄
1

]

]

< 0, (50)

then system (48) is finite-time stochastically bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, W, 𝑇, 𝑅), where 𝑄

1
= 𝑅
−1/2

𝑄
1
𝑅
−1/2,

𝑄
2
= 𝑅
1/2

1
𝑄
2
𝑅
1/2

1
, 𝑄
3
= 𝑅
1/2

1
𝑄
3
𝑅
1/2

1
, Λ
1
= 𝑄
1
𝐴
𝑇
+ 𝐴𝑄

1
+

𝑀
𝑇
𝐵
𝑇
+𝐵𝑀−𝛼𝑄

1
,Λ
2
= 𝛽𝑄
1
−𝑄
1
𝐴
𝑇
−𝐴𝑄
1
−𝑀
𝑇
𝐵
𝑇
−𝐵𝑀.

In this case, a desired controller gain is given by 𝐾 = 𝑀𝑄
−1

1
.
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Proof. We can replace 𝐴 by 𝐴 + 𝐵𝐾 and 𝐴
1
by 𝐴
1
+ 𝐵
1
𝐾 in

Theorem 10. As a result, conditions (17) and (18)

[

[

[

Λ
∗

1
𝐺 𝑄

1
(𝐴
1
+ 𝐵
1
𝐾)
𝑇

∗ Γ − 𝛼𝑄
2

𝐺
𝑇

1

∗ ∗ −𝑄
1

]

]

]

< 0, (51)

[

[

[

Λ
∗

2
𝐺 𝑄

1
(𝐴
1
+ 𝐵
1
𝐾)
𝑇

∗ 𝛽𝑄
3
− Γ 𝐺

𝑇

1

∗ ∗ −𝑄
1

]

]

]

< 0 (52)

hold, where Λ∗
1
= −𝛼𝑄

1
+𝑄
1
(𝐴 + 𝐵𝐾)

𝑇
+ (𝐴 + 𝐵𝐾)𝑄

1
, Λ∗
2
=

𝛽𝑄
1
− 𝑄
1
(𝐴 + 𝐵𝐾)

𝑇
− (𝐴 + 𝐵𝐾)𝑄

1
. Letting 𝑀 = 𝐾𝑄

1
, it

can be seen that (49) and (50) are derived from (51) and (52),
respectively. This completes the proof.

4.2. Dynamic Output Feedback Finite-Time Bounded Con-
troller Design. When the system states are not completely
accessible, state feedback controllers may become invalid.
This motivates us to propose an output-feedback controller.
Without loss of generality, we can assume the following.

Assumption 13. There exists a state feedback controller
𝑢(𝑡) = 𝐾𝑥(𝑡) which has been designed using the results of
Theorem 12.

We choose, as usual, a finite-dimensional observer-based
controller as follows:
𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐿 (𝑦 (𝑡) − 𝐶𝑥 (𝑡))] 𝑑𝑡

+ [𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) + 𝐿 (𝑦 (𝑡) − 𝐶𝑥 (𝑡))] 𝑑𝑤 (𝑡) ,

𝑢 (𝑡) = 𝐾𝑥 (𝑡) , 𝑥 (0) = 𝑥
0
∈ R𝑛,

(53)

where 𝑥(𝑡) ∈ R𝑛 is the the estimate of the state of 𝑥(𝑡) and
𝐿 is the estimator gain matrix with appropriate dimensions,
which is to be determined.

Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡); then we obtain the error system

𝑑𝑒 (𝑡) = [(𝐴 − 𝐿𝐶) 𝑒 (𝑡) + 𝐺V (𝑡)] 𝑑𝑡

+ [(𝐴
1
− 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)] 𝑑𝑤 (𝑡) .

(54)

In practice, we hope the error 𝑒(𝑡) is as small as possible.
As usual, it is required to satisfyE[𝑒𝑇(𝑡)𝑅𝑒(𝑡)] < 1, 𝑡 ∈ [0, 𝑇].

Let 𝑧(𝑡) = [𝑥
𝑇
(𝑡) 𝑒
𝑇
(𝑡) V𝑇(𝑡)]𝑇; then the resulting

argument system becomes

𝑑𝑧 (𝑡) = 𝐴𝑧 (𝑡) 𝑑𝑡 + 𝐴
1
𝑧 (𝑡) 𝑑𝑤 (𝑡) ,

𝑧 (0) = [𝑥
𝑇

0
𝑒
𝑇

0
V𝑇
0
]

𝑇

∈ R2𝑛+𝑙,
(55)

where

𝐴 =
[

[

𝐴 + 𝐵𝐾 −𝐵𝐾 𝐺

0 𝐴 − 𝐿𝐶 𝐺

0 0 𝐻

]

]

,

𝐴
1
=
[

[

𝐴
1
+ 𝐵
1
𝐾 −𝐵

1
𝐾 𝐺

1

0 𝐴
1
− 𝐿𝐶 𝐺

1

0 0 𝐻
1

]

]

.

(56)

Now, on the basis of Assumption 13, the following theo-
rem gives a sufficient condition of the existence of 𝐿.

Theorem 14. If there exist 𝛼 ≥ 0, 𝛽 ≥ 0, positive matrices
𝑄
𝑘
(𝑘 = 1, . . . , 5), a matrix 𝑁, and positive scalars 𝜆

𝑖
(𝑖 =

1, . . . , 7), such that the following inequalities hold

[

[

Π
11
− 𝛼𝑄
1

Π
12

Π
13

∗ Π
22
− 𝛼𝑄
2
Π
23
+ 𝐴
𝑇
𝑄
2
− 𝐶
𝑇
𝑁
𝑇

∗ ∗ Π
33
− 𝑄
2
− 𝛼𝑄
3

]

]

< 0, (57)

[

[

𝛽𝑄
4
− ϝ
11

−ϝ
12

ϝ
13

∗ 𝛽𝑄
2
− ϝ
22

−ϝ
23

∗ ∗ 𝛽𝑄
5
− ϝ
33

]

]

< 0, (58)

𝜆
4
𝐼 < 𝑄

1
< 𝜆
1
𝐼, 0 < 𝑄

2
< 𝜆
2
𝐼, 0 < 𝑄

3
< 𝜆
3
𝐼, (59)

𝜆
6
𝐼 < 𝑄

4
< 𝜆
5
𝐼, (60)

0 < 𝑄
5
< 𝜆
7
𝐼, (61)

𝜆
1
𝑐
4
+ 𝜆
2
+ 𝜆
3
ℎ
1
≤ 𝑐
2
exp (−𝛼𝑇) 𝜆

4
, (62)

𝑐
1
𝜆
5
− 𝑐
3
𝜆
6
+ 𝜆
2
+ 𝜆
7
ℎ < 0, (63)

then the closed-loop system (55) is finite-time stochastically
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, W, 𝑇, 𝑅). In this case,

𝐿 = 𝑄
−1

2
𝑁, where

𝑄
1
= 𝑅
1/2
𝑄
1
𝑅
1/2
, 𝑄
2
= 𝑅
1/2
𝑄
2
𝑅
1/2
, 𝑄
3
= 𝑅
1/2

1
𝑄
3
𝑅
1/2

1

𝑄
4
= 𝑅
1/2
𝑄
4
𝑅
1/2
, 𝑄

5
= 𝑅
1/2

1
𝑄
5
𝑅
1/2

1
,

Π
11
= (𝐴 + 𝐵𝐾)

𝑇
𝑄
1
+ 𝑄
1
(𝐴 + 𝐵𝐾)

+ (𝐴
1
+ 𝐵
1
𝐾)
𝑇

𝑄
1
(𝐴
1
+ 𝐵
1
𝐾
1
) ,

Π
12
= (𝐴
1
+ 𝐵
1
𝐾)
𝑇

𝑄
1
𝐵
1
𝐾 + 𝑄

1
𝐵𝐾,

Π
13
= 𝑄
1
𝐺 + (𝐴

1
+ 𝐵
1
𝐾)
𝑇

𝑄
1
𝐺
1
,

Π
22
= 𝐾
𝑇
𝐵
𝑇

1
𝑄
1
𝐵
1
𝐾 + 𝐴

𝑇
𝑄
2
+ 𝑄
2
𝐴 − 𝐶

𝑇
𝑁 −𝑁

𝑇
𝐶,

Π
23
= −𝐾
𝑇
𝐵
𝑇

1
𝑄
1
𝐺
1
+ 𝑄
2
𝐺
1
+ 𝐴
𝑇
𝑄
2
𝐺
1
− 𝐶
𝑇
𝑁
𝑇
𝐺
1
,

Π
33
= 𝐻
𝑇
𝑄
3
+ 𝑄
3
𝐻 +𝐻

𝑇

1
𝑄
3
𝐻
1
+ 𝐺
𝑇

1
𝑄
1
𝐺
1
,

ϝ
11
= (𝐴 + 𝐵𝐾)

𝑇
𝑄
4
+ 𝑄
4
(𝐴 + 𝐵𝐾)

+ (𝐴
1
+ 𝐵
1
𝐾)
𝑇

𝑄
4
(𝐴
1
+ 𝐵
1
𝐾
1
) ,

ϝ
12
= (𝐴
1
+ 𝐵
1
𝐾)
𝑇

𝑄
4
𝐵
1
𝐾 + 𝑄

4
𝐵𝐾,

ϝ
13
= 𝑄
4
𝐺 + (𝐴

1
+ 𝐵
1
𝐾)
𝑇

𝑄
4
𝐺
1
,

ϝ
22
= 𝐾
𝑇
𝐵
𝑇

1
𝑄
4
𝐵
1
𝐾 + 𝐴

𝑇
𝑄
2
+ 𝑄
2
𝐴 − 𝐶

𝑇
𝑁 −𝑁

𝑇
𝐶,

ϝ
23
= 𝐾
𝑇
𝐵
𝑇

1
𝑄
4
𝐺
1
+ 𝑄
2
𝐺
1
+ 𝐴
𝑇
𝑄
2
𝐺
1
− 𝐶
𝑇
𝑁
𝑇
𝐺
1
,

ϝ
33
= 𝐻
𝑇
𝑄
5
+ 𝑄
5
𝐻 +𝐻

𝑇

1
𝑄
5
𝐻
1
+ 𝐺
𝑇

1
𝑄
4
𝐺
1
.

(64)
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Proof.

Step 1. E[𝑥𝑇(0)𝑅𝑥(0)] < 𝑐
4
⇒ E[𝑥(𝑡)

𝑇
𝑅𝑥(𝑡)] < 𝑐

2
.

Let 𝑃 = diag{𝑄
1
, 𝑄
2
, 𝑄
3
} with 𝑄

1
> 0, 𝑄

2
> 0, 𝑄

3
> 0

being solutions to (57)–(63), and 𝑧(𝑡) = [𝑥𝑇(𝑡) 𝑒𝑇(𝑡) V𝑇(𝑡)]𝑇;
we have

𝑉
3
(𝑧 (𝑡)) = 𝑧

𝑇
(𝑡) 𝑃𝑧 (𝑡)

= 𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑒

𝑇
(𝑡) 𝑄
2
𝑒 (𝑡) + V𝑇 (𝑡) 𝑄

3
V (𝑡)

= 𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
1
𝑅
1/2
𝑥 (𝑡) + 𝑒

𝑇
(𝑡) 𝑅
1/2
𝑄
2
𝑅
1/2
𝑒 (𝑡)

+ V𝑇 (𝑡) 𝑅1/2
1
𝑄
3
𝑅
1/2

1
V (𝑡) .

(65)

Applying Itô formula for 𝑉
3
(𝑧(𝑡)) along with the state trajec-

tory of (55), we obtain

L𝑉
3
(𝑧 (𝑡))

= [(𝐴 + 𝐵𝐾) 𝑥 (𝑡) − 𝐵𝐾𝑒 (𝑡) + 𝐺V (𝑡)]𝑇𝑄1𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
1 [(
𝐴 + 𝐵𝐾) 𝑥 (𝑡) − 𝐵𝐾𝑒 (𝑡) + 𝐺V (𝑡)]

+ [(𝐴
1
+ 𝐵
1
𝐾)𝑥 (𝑡) − 𝐵

1
𝐾𝑒 (𝑡) + 𝐺

1
V (𝑡)]𝑇𝑄

1

× [(𝐴
1
+ 𝐵
1
𝐾)𝑥 (𝑡) − 𝐵

1
𝐾𝑒 (𝑡) + 𝐺

1
V (𝑡)]

+ [(𝐴 − 𝐿𝐶) 𝑒 (𝑡) + 𝐺
1
V (𝑡)]𝑇𝑄

2
𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡) 𝑄
2
[(𝐴 − 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)]

+ [(𝐴
1
− 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)]𝑇𝑄

2

× [(𝐴
1
− 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)]

+ V𝑇 (𝑡)𝐻𝑇𝑄
3
V (𝑡) + V𝑇 (𝑡) 𝑄

3
𝐻V (𝑡)

+ V𝑇 (𝑡)𝐻𝑇
1
𝑄
3
𝐻
1
V (𝑡)

= [𝑥
𝑇
(𝑡) 𝑒
𝑇
(𝑡) V𝑇(𝑡)]

𝑇

𝑍 [𝑥 (𝑡) 𝑒 (𝑡) V (𝑡)] ,

(66)

where

𝑍 =
[

[

Π
11

Π
12

Π
13

∗ Ξ
22

Ξ
23

∗ ∗ Ξ
33

]

]

,

Ξ
22
= 𝐾
𝑇
𝐵
𝑇

1
𝑄
1
𝐵
1
𝐾 + 𝐴

𝑇
𝑄
2
+ 𝑄
2
𝐴 − 𝐶

𝑇
𝐿
𝑇
𝑄
2
− 𝑄
2
𝐿𝐶,

Ξ
23
= −𝐾
𝑇
𝐵
𝑇

1
𝑄
1
𝐺
1
+ 𝑄
2
𝐺
1
+ 𝐴
𝑇
𝑄
2
𝐺
1
− 𝐶
𝑇
𝐿
𝑇
𝑄
2
𝐺
1

+ (𝐴 − 𝐿𝐶)
𝑇
𝑄
2
(𝐴 − 𝐿𝐶) ,

Ξ
33
= 𝐻
𝑇
𝑄
3
+ 𝑄
3
𝐻 +𝐻

𝑇

1
𝑄
3
𝐻
1
+ 𝐺
𝑇

1
𝑄
1
𝐺
1
.

(67)

According to Schur complement, by letting 𝑁 = 𝑄
2
𝐿,

condition (57) can be rewritten as

[

[

Π
11

Π
12

Π
13

∗ Ξ
22

Ξ
23

∗ ∗ Ξ
33

]

]

<
[

[

𝛼𝑄
1

0 0

0 𝛼𝑄
2

0

0 0 𝛼𝑄
3

]

]

. (68)

It is obvious that (68) gives

L𝑉
3
(𝑧 (𝑡)) < 𝛼𝑉

3
(𝑧 (𝑡)) , 𝑡 ∈ [0, 𝑇] . (69)

By integrating inequality (69) between 0 and 𝑡, and taking the
mathematical expectation, it follows that

E𝑉
3
(𝑧 (𝑡)) < E𝑉

3
(𝑧 (0)) + 𝛼∫

𝑡

0

E𝑉
3
(𝑧 (𝑠)) 𝑑𝑠. (70)

By Lemma 8, we have

E𝑉
3
(𝑧 (𝑡)) < E𝑉

3
(𝑧 (0)) 𝑒

𝛼𝑡
. (71)

Considering (59), we obtain

E𝑉
3
(𝑧 (𝑡))

= E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
1
𝑅
1/2
𝑥 (𝑡) + 𝑒

𝑇
(𝑡) 𝑅
1/2
𝑄
2
𝑅
1/2
𝑒 (𝑡)

+V𝑇 (𝑡) 𝑅1/2
1
𝑄
3
𝑅
1/2

1
V (𝑡)]

≥ E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
1
𝑅
1/2
𝑥 (𝑡)]

≥ 𝜆min (𝑄1)E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)]

> 𝜆
4
E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] ,

𝑉
3
(𝑧 (0)) 𝑒

𝛼𝑡

= (𝑥
𝑇
(0) 𝑅
1/2
𝑄
1
𝑅
1/2
𝑥 (0) + 𝑒

𝑇
(0) 𝑅
1/2
𝑄
2
𝑅
1/2
𝑒 (0)

+V𝑇 (0) 𝑅1/2
1
𝑄
3
𝑅
1/2

1
V (0)) 𝑒𝛼𝑡

≤ (𝜆max (𝑄1) 𝑥
𝑇
(0) 𝑅𝑥 (0) + 𝜆max (𝑄2) 𝑒

𝑇
(0) 𝑅𝑒 (0)

+𝜆max (𝑄3) V
𝑇
(0) 𝑅
1
V (0)) 𝑒𝛼𝑇

≤ (𝜆max (𝑄1) 𝑐4 + 𝜆max (𝑄2) + 𝜆max (𝑄3) ℎ2) 𝑒
𝛼𝑇

< (𝜆
1
𝑐
4
+ 𝜆
2
+ 𝜆
3
ℎ
1
) 𝑒
𝛼𝑇
.

(72)

According to (72), it follows

E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] <

1

𝜆
4

(𝜆
1
𝑐
4
+ 𝜆
2
+ 𝜆
3
ℎ
2
) 𝑒
𝛼𝑇
. (73)

By (73) and condition (62), it follows E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] < 𝑐
2
for

all 𝑡 ∈ [0, 𝑇].

Step 2. 𝑐
3
< E[𝑥𝑇(0)𝑅𝑥(0)] ⇒ 𝑐

1
< E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)].
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Let 𝑃 = diag{𝑄
4
𝑄
2
𝑄
5
} with 𝑄

4
> 0, 𝑄

2
> 0, 𝑄

5
> 0

being solutions to (57)–(63), and 𝑧(𝑡) = [𝑥𝑇(𝑡) 𝑒𝑇(𝑡) V𝑇(𝑡)]𝑇;
we have

𝑉
4
(𝑧 (𝑡)) = 𝑧

𝑇
(𝑡) 𝑃𝑧 (𝑡)

= 𝑥
𝑇
(𝑡) 𝑄
4
𝑥 (𝑡) + 𝑒

𝑇
(𝑡) 𝑄
2
𝑒 (𝑡) + V𝑇 (𝑡) 𝑄

5
V (𝑡)

= 𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
4
𝑅
1/2
𝑥 (𝑡) + 𝑒

𝑇
(𝑡) 𝑅
1/2
𝑄
2
𝑅
1/2
𝑒 (𝑡)

+ V𝑇 (𝑡) 𝑅1/2
1
𝑄
5
𝑅
1/2

1
V (𝑡) .

(74)

Applying Itô formula for 𝑉
4
(𝑧(𝑡)) along with the state trajec-

tory of (55), we obtain

L𝑉
4
(𝑧 (𝑡))

= [(𝐴 + 𝐵𝐾) 𝑥 (𝑡) − 𝐵𝐾𝑒 (𝑡) + 𝐺V (𝑡)]𝑇𝑄4𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
4 [(
𝐴 + 𝐵𝐾) 𝑥 (𝑡) − 𝐵𝐾𝑒 (𝑡) + 𝐺V (𝑡)]

+ [(𝐴
1
+ 𝐵
1
𝐾)𝑥 (𝑡) − 𝐵

1
𝐾𝑒 (𝑡) + 𝐺

1
V (𝑡)]𝑇𝑄

4

× [(𝐴
1
+ 𝐵
1
𝐾)𝑥 (𝑡) − 𝐵

1
𝐾𝑒 (𝑡) + 𝐺

1
V (𝑡)]

+ [(𝐴 − 𝐿𝐶) 𝑒 (𝑡) + 𝐺
1
V (𝑡)]𝑇𝑄

2
𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡) 𝑄
2
[(𝐴 − 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)]

+ [(𝐴
1
− 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)]𝑇𝑄

2

× [(𝐴
1
− 𝐿𝐶) 𝑒 (𝑡) + 𝐺

1
V (𝑡)] + V𝑇 (𝑡)𝐻𝑇𝑄

5
V (𝑡)

+ V𝑇 (𝑡) 𝑄
5
𝐻V (𝑡) + V𝑇 (𝑡)𝐻𝑇

1
𝑄
5
𝐻
1
V (𝑡)

= [𝑥
𝑇
(𝑡) 𝑒
𝑇
(𝑡) V𝑇 (𝑡)]

𝑇

𝑍 [𝑥 (𝑡) 𝑒 (𝑡) V (𝑡)] ,

(75)

where

𝑍 =
[

[

ϝ
11

ϝ
12

ϝ
13

∗ ϝ
22

ϝ
23

∗ ∗ ϝ
33

]

]

,

ϝ
22
= 𝐾
𝑇
𝐵
𝑇

1
𝑄
4
𝐵
1
𝐾 + 𝐴

𝑇
𝑄
2
+ 𝑄
2
𝐴 − 𝐶

𝑇
𝐿
𝑇
𝑄
2
− 𝑄
2
𝐿𝐶,

ϝ
23
= −𝐾
𝑇
𝐵
𝑇

1
𝑄
4
𝐺
1
+ 𝑄
2
𝐺
1
+ 𝐴
𝑇
𝑄
2
𝐺
1
− 𝐶
𝑇
𝐿
𝑇
𝑄
2
𝐺
1

+ (𝐴 − 𝐿𝐶)
𝑇
𝑄
2
(𝐴 − 𝐿𝐶) ,

ϝ
33
= 𝐻
𝑇
𝑄
5
+ 𝑄
5
𝐻 +𝐻

𝑇

1
𝑄
5
𝐻
1
+ 𝐺
𝑇

1
𝑄
4
𝐺
1
.

(76)

Note that (58) implies

𝛽𝑉
4
(𝑧 (𝑡)) <L𝑉

4
(𝑧 (𝑡)) . (77)

Integrating both sides of (77) from 0 to 𝑡 with 𝑡 ∈ [0, 𝑇] and
then taking the mathematical expectation, it yields

E𝑉
4
(𝑧 (0)) + 𝛽∫

𝑡

0

E𝑉
4
(𝑧 (𝑠)) 𝑑𝑠 < E𝑉

4
(𝑧 (𝑡)) . (78)

By Lemma 9,

E𝑉
4
(𝑧 (0)) 𝑒

𝛽𝑡
< E𝑉
4
(𝑧 (𝑡)) . (79)

Considering (59), we obtain

E𝑉
4
(𝑧 (𝑡))

= E [𝑥
𝑇
(𝑡) 𝑅
1/2
𝑄
4
𝑅
1/2
𝑥 (𝑡) + 𝑒

𝑇
(𝑡) 𝑅
1/2
𝑄
2
𝑅
1/2
𝑒 (𝑡)

+V𝑇 (𝑡) 𝑅1/2
1
𝑄
5
𝑅
1/2

1
V (𝑡)]

≤ 𝜆max (𝑄4)E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] + 𝜆max (𝑄2)E [𝑒

𝑇
(𝑡) 𝑅𝑒 (𝑡)]

+ 𝜆max (𝑄5)E [V
𝑇
(𝑡) 𝑅V (𝑡)]

< 𝜆
5
E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] + 𝜆

2
+ 𝜆
7
ℎ,

𝑉
4
(𝑧 (0)) 𝑒

𝛼𝑡

= (𝑥
𝑇
(0) 𝑅
1/2
𝑄
4
𝑅
1/2
𝑥 (0) + 𝑒

𝑇
(0) 𝑅
1/2
𝑄
2
𝑅
1/2
𝑒 (0)

+ V𝑇 (0) 𝑅1/2
1
𝑄
5
𝑅
1/2

1
V (0)) 𝑒𝛼𝑡

≥ 𝜆min (𝑄4) 𝑥
𝑇
(0) 𝑅𝑥 (0) + 𝜆min (𝑄2) 𝑒

𝑇
(0) 𝑅𝑒 (0)

+ 𝜆min (𝑄5) V
𝑇
(0) 𝑅
1
V (0) > 𝜆

6
𝑐
3
.

(80)

From (79) and (80), we have

𝑐
3
𝜆
6
− 𝜆
2
− 𝜆
7
ℎ

𝜆
5

< E [𝑥
𝑇
(𝑡) 𝑅𝑥 (𝑡)] . (81)

Equation (63) gives

𝑐
1
<

𝑐
3
𝜆
6
− 𝜆
2
− 𝜆
7
ℎ

𝜆
5

. (82)

So we easily obtain

𝑐
1
< E [𝑥

𝑇
(𝑡) 𝑅𝑥 (𝑡)] (83)

for all 𝑡 ∈ [0, 𝑇]. This ends the proof.

Remark 15. It is easy to see that the values of 𝛼 and 𝛽 deter-
mine the feasibility of the aboveTheorems. The procedure of
how to choose 𝛼 and 𝛽 is given in the next section.

5. Numerical Algorithm

This section gives an algorithm for the results of the
paper. The following algorithm is used to solve the matrix
inequalities inTheorem 10. Similar algorithms can be used in
Theorem 12 andTheorem 14.

Algorithm 16.
Step 1. Given 𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑅, 𝑇,W.
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Figure 1: A region by 𝛼 and 𝛽.

Step 2. Take a series of 𝛼
𝑖
(𝑖 = 1, . . . , 𝑛) by a step size 𝑑

1
and a

series of 𝛽
𝑗
(𝑗 = 1, . . . , 𝑚) by a step size 𝑑

2
.

Step 3. Set 𝑖 = 1; take a 𝛼
𝑖
.

Step 4. Set 𝑗 = 1; take a 𝛽
𝑗
.

Step 5. If (𝛼
𝑖
, 𝛽
𝑗
) makes (17)–(22) have feasible solutions, then

store (𝛼
𝑖
, 𝛽
𝑗
) into (𝑋(𝑖), 𝑌(𝑗)) and 𝛽

𝑗
= 𝛽
𝑗+1

; go to Step 5;
otherwise go to Step 6.

Step 6. If 𝑖 + 1 < 𝑛, then 𝛼
𝑖
= 𝛼
𝑖+1

and takes 𝛽
1
; go to Step 5.

Otherwise, go to Step 7.

Step 7. Stop. If (𝑋, 𝑌) = (0, 0), then we cannot find (𝛼, 𝛽)
making (17)–(22) have feasible solution; otherwise, there
exists (𝛼, 𝛽)making (17)–(22) have feasible solution.

Remark 17. By Algorithm 16, we can obtain a region sur-
rounded by 𝛼 and 𝛽, if it exists, which is used to select 𝛼 and
𝛽 for appropriate conditions.

6. Examples

In this section, an example is given to illustrate the results we
have obtained.

Example 1. Applying Algorithm 16 to Theorem 12, we obtain
a region surrounded by 𝛼 and 𝛽, which is illustrated by
Figure 1.

Let us consider system (1) with

𝐴 = [

1.21 −2.27

3.57 −0.82
] , 𝐵 = [

2 1.2

1.5 −0.1
] ,

𝐺 = [

1.1 0.05

0.06 0.2
] , 𝐴

1
= [

0.16 0.45

0.12 0.17
] ,

𝐵
1
= [

0.9 1

−1 1.5
] , 𝐺

1
= [

−0.01 0.03

0.02 −0.12
] ,

𝐻 = [

0.5 −0.3

−0.6 0.5
] , 𝐻

1
= [

0.13 0.5

0.15 0.18
] ,

𝐶 = [1 2] , 𝑥 (0) = [1.5 −1.5]

𝑇

.

(84)
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Figure 2: The evolution of E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] of the closed-loop system
of (1) in Case 1.
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Figure 3: The evolution of 𝑢(𝑡).

The parameters are given as 𝑐
1
= 1, 𝑐

2
= 30, 𝑐

3
= 4, 𝑐

4
= 5,

ℎ = 0.5, ℎ
1
= 0.1, 𝑇 = 0.25, and 𝑅 = 𝑅

1
= 𝐼.

Case 1 (state feedback finite-time bounded controller design).
By Figure 1, selecting 𝛼 = 3 and 𝛽 = 0.05, and solving (19)–
(22) and (49)-(50), we obtain

𝜆
1
= 0.4967, 𝜆

2
= 0.8062, 𝜆

3
= 3.8605,

𝑄
1
= [

0.6544 0.2262

0.2262 0.8412
] , 𝑄

2
= [

0.7743 −0.0438

−0.0438 0.3914
] ,

𝑄
3
= [

3.6867 0.3789

0.3789 1.8994
] , 𝑀 = [

0.0764 0.0293

−0.0007 −0.3221
] .

(85)

Hence, the feedback gain matrix is given by

𝐾 = 𝑀𝑄
−1

1
= [

0.1155 0.0038

0.1447 −0.4218
] . (86)

The evolution of E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] of the closed-loop system of
(1) is illustrated by Figure 2, which shows that the closed-
loop system of (1) is finite-time stochastically bounded with
respect to (1, 30, 4, 5, 0.25, 𝐼,W). The corresponding control
curves are illustrated by Figure 3.

Case 2 (dynamic output feedback finite-time bounded con-
troller design). Based on state feedback controller design,
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Figure 4: A region by 𝛼 and 𝛽.
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Figure 5: The evolution of E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] of the closed-loop system
of (1) in Case 2.

the feedback controller 𝑢(𝑡) = 𝐾𝑥(𝑡) is chosen. Applying
Algorithm 16 to Theorem 14, we obtain a region surrounded
by 𝛼 and 𝛽, which is illustrated by Figure 4. By Figure 4,
selecting 𝛼 = 4, 𝛽 = 0, and solving (57)–(63), we obtain

𝜆
1
= 181.9, 𝜆

2
= 74.9, 𝜆

3
= 238.8, 𝜆

4
= 96.3,

𝜆
5
= 245.7, 𝜆

6
= 129.7, 𝜆

7
= 369.1,

𝑄
1
= [

140.6 −16.4

−16.4 120.2
] , 𝑄

2
= [

27.1 −28.9

−28.9 34.2
] ,

𝑄
3
= [

111.4 −13.3

−13.3 92.6
] , 𝑄

4
= [

207.1 −42.9

−42.9 −158.4
] ,

𝑄
5
= [

331.6 62.9

62.9 105.1
] , 𝑁 = [−31.7 91.9]

𝑇

.

(87)

Hence, the observer gain matrix is given by

𝐿 = 𝑄
−1

2
𝑁 = [17.01 17.06]

𝑇

. (88)

The evolution of E[𝑥𝑇(𝑡)𝑅𝑥(𝑡)] of the closed-loop system of
(1) is illustrated by Figure 5, which shows that the closed-
loop system of (1) is finite-time stochastically bounded with
respect to (1, 30, 4, 5, 0.25, 𝐼,W). The corresponding control
curves are illustrated by Figure 6. Figure 7 illustrates the
evolution of E[𝑒𝑇(𝑡)𝑅𝑒(𝑡)] of the error system (54), which
shows that E[𝑒𝑇(𝑡)𝑅𝑒(𝑡)] < 1.
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Figure 6: The evolution of 𝑢(𝑡).
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Figure 7: The evolution of E[𝑒𝑇(𝑡)𝑅𝑒(𝑡)].

7. Conclusion

In this study, finite-time stochastically bounded control linear
stochastic Itô systemswith (𝑥, 𝑢, V)-dependent noise has been
investigated. Applying different quadratic function approach,
state and output feedback finite-time bounded controllers
have been obtained, respectively. One example is presented to
illustrate the effectiveness of the proposed results. In addition,
we can also refer to [17–19] and extend the results of this paper
to Takagi-Sugeno fuzzy systems, networked systems, linear
parameter varying systems, and so on.
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