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A nonautonomous discrete two-species Lotka-Volterra competition system with infinite delays and single feedback control is
considered in this paper. By applying the discrete comparison theorem, a set of sufficient conditions which guarantee the
permanence of the system is obtained. Also, by constructing some suitable discrete Lyapunov functionals, some sufficient conditions
for the global attractivity and extinction of the system are obtained. It is shown that if the the discrete Lotka-Volterra competitive
system with infinite delays and without feedback control is permanent, then, by choosing some suitable feedback control variable,
the permanent species will be driven to extinction. That is, the feedback control variable, which represents the biological control
or some harvesting procedure, is the unstable factor of the system. Such a finding overturns the previous scholars’ recognition on
feedback control variables.

1. Introduction

During the last decade, the study of the dynamic behaviors
of discrete time models governed by difference equation has
become one of the most important topics in mathematics
biology; many interesting results concerned with perma-
nence, extinction, and existence of positive periodic solution
(almost periodic solution) and so forth have been extensively
studied by many scholars; see [1–30] and the references cited
therein.

As far as two-species discrete competition model is con-
cerned, Chen and Zhou [1] proposed and studied the follow-
ing discrete two-species Lotka-Volterra system:
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where 𝐾
𝑖
(𝑛), 𝑖 = 1, 2 represent the environmental carrying

capacity of species 𝑥
1
and 𝑥

2
, respectively; 𝑟

𝑖
(𝑛), 𝑖 = 1, 2

are the intrinsic growth rate of two species; and 𝑥
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𝑛th generation, respectively. The authors obtained a set of
sufficient conditions which ensure the persistence of system
(1). Also, for the periodic case, they gave a set of sufficient
conditions which guarantee the existence of a globally stable
periodic solution of the system. Chen [2] argued that it is
more realistic to incorporate delays into system (1), and he
proposed and investigated the following model:
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Concerned with the persistent property of system (2), the
author obtained the following result.

Throughout this paper, given a bounded nonnegative
sequence𝑓(𝑛) defined on𝑍, let𝑓𝐿 and𝑓𝑀 denote inf

𝑛∈𝑍
𝑓(𝑛)

and sup
𝑛∈𝑍

𝑓(𝑛), respectively.
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hold; then system (2) is permanent.

However, the author did not investigate the stability and
extinction property of the system (2), which are two of the
most important topics on the study of population dynamics.

On the other hand, it is well known that, in the real world,
ecosystems are continuously disturbed by unpredictable
forces which can result in some changes of the biological
parameters such as survival rates ([3]). For having a more
accurate description of such a system, scholars introduced
feedback controls into ecosystems and studied a variety of
systems with feedback controls. Based on the work of Chen
and Zhou [1], X. X. Chen and F. D. Chen [4] proposed and
studied the following nonautonomous two-species discrete
competitive system with feedback controls:
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Some sufficient conditions for the persistence and global
stability of system (3) were obtained. Xu et al. [5] further
considered the following two-species nonautonomous Lotka-
Volterra competitive system with delays and feedback con-
trols:
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By using the comparison theorem of discrete differential
equation and constructing a suitable discrete type Lyapunov
functional, they obtained new sufficient conditions on the
permanence of species and global attractivity for system
(4). Their results show that feedback controls are harmless
to the permanence of system (4); that is, feedback controls
have no influence on the permanence of system (4). X. Chen
and F. Chen [29] and Liao et al. [30] also proposed a
discrete time periodic 𝑛-species Lotka-Volterra competition
system with feedback controls and deviating arguments;
some sufficient conditions which ensure the existence of
unique globally asymptotically stable periodic solution were
obtained. Recently, Wu and Zhang [19] proposed a discrete
autonomous Lotka-Volterra competition system with infinite
delays and feedback controls; by using the iterative method,
sufficient conditions which ensure the global attractivity of
the system were obtained.

As we can see, thosemodels considered in [4, 5, 19, 29, 30]
contain two ormore feedback control variables, whichmeans
that, for the different species, different control strategy is
adopted. But, in the real world, the strategy adopted for one
species may also affect the other species; in other words,
such a strategy has influence on both species. For instance,
in the agricultural system, spraying pesticide can reduce the
number of weeds, but pesticide can also have a negative
impact on the growth of crops or beneficial animals [6, 7].
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In the medical system, when doctor takes chemotherapeutic
drugs as tools to cure the cancer patients, cancer cells will
decrease rapidly, but at the same time, drugs also do harm to
normal cells and body’s regulatory immune function. Yao et
al. [8] studied the effect of chemotherapeutic drugs on cellular
immunity in patients with lung cancer; they found that cell
immunity is inhibited in patients with lung cancer; moreover,
it is impaired considerably by chemotherapy. So how to keep
the negative effect caused by the single strategy adopted for
the weeds or cancer cells to a minimum?

The above phenomenons motivated us to propose and
study the discrete Lotka-Volterra competition system with
infinite delays and single feedback control variable as follows:
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In system (5), 𝑥
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(𝑛) (𝑖 = 1, 2) is the density of 𝑥
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at the 𝑛th generation and 𝑢(𝑛) is the single feedback control
variable.

Throughout this paper, we assume the following.
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According to the biological background of system (5), we
only consider the solution of system (5) with the following
initial conditions:
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where 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛+1, . . . , −1, 0. It is easy to prove that the
solution of system (5) which satisfies initial conditions (8) is
positive.

We mention here that this is the first time such kind of
model is proposed and studied, and, as far as system (5) is
concerned, whether the single feedback control variable has
influence on the persistent property of the system or not is an
interesting problem. The aim of this paper is to investigate
the dynamic behaviors of the system (5); in particular, we will
find out the answer to the above problem.

The organization of this paper is as follows. We introduce
some useful lemmas in the next section and then state and
prove the main results in Sections 3, 4, and 5, respectively.
Three examples together with their numeric simulations
are presented to show the feasibility of the main results in
Section 6. We end this paper by a brief discussion.

2. Lemmas

Now, let us consider the following difference equation:
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3. Permanence

Concerned with the persistent property of the system (5), we
have the following result.
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Proof. From the first and second equations of system (5), we
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According to Lemma 5, from the above inequality we have
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such that

∞

∑

𝑠=0

𝑙
𝑖
(𝑠) 𝑥
𝑖
(𝑛 − 𝑠) ≤ 𝑀

𝑖
+ 𝜀 ∀𝑛 > 𝑛

1
. (24)

By the third equation of system (5), we have

𝑢 (𝑛 + 1) ≤ (1 − 𝑒
𝐿
) 𝑢 (𝑛) + 𝑐

𝑀

1
(𝑀
1
+ 𝜀) + 𝑐

𝑀

2
(𝑀
2
+ 𝜀) .

(25)

Hence, by applying Lemmas 1 and 2 to (25), we obtain

lim sup
𝑛→+∞

𝑢 (𝑛) ≤

𝑐
𝑀

1
(𝑀
1
+ 𝜀) + 𝑐

𝑀

2
(𝑀
2
+ 𝜀)

𝑒
𝐿

. (26)

Setting 𝜀 → 0, it follows that

lim sup
𝑛→+∞

𝑢 (𝑛) ≤

𝑐
𝑀

1
𝑀
1
+ 𝑐
𝑀

2
𝑀
2

𝑒
𝐿

def
= 𝐵. (27)

Condition (18) implies that, for enough small positive con-
stant 𝜀

1
, the following inequalities hold:

𝑎
𝐿

𝑖
− 𝑏
𝑀

𝑖𝑗
(𝑀
𝑗
+ 𝜀
1
) − 𝑑
𝑀

𝑖
(𝐵 + 𝜀

1
) > 0, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗.

(28)
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For the above 𝜀
1
, it follows from (22) and (27) that there exists

a positive integer 𝑛
2
≥ 𝑛
1
such that

∞

∑

𝑠=0

ℎ
𝑖
(𝑠) 𝑢 (𝑛 − 𝑠) ≤ 𝐵 + 𝜀

1
,

∞

∑

𝑠=0

𝑘
𝑖𝑗
(𝑠) 𝑥
𝑖
(𝑛 − 𝑠) ≤ 𝑀

𝑖
+ 𝜀
1

∀𝑛 > 𝑛
2
.

(29)

Thus, for all 𝑛 > 𝑛
2
, from (28), (29), and the first two

equations of system (5), we have

𝑥
𝑖
(𝑛 + 1) ≥ 𝑥

𝑖
(𝑛) exp {(𝑎𝐿

𝑖
− 𝑏
𝑀

𝑖𝑗
(𝑀
𝑗
+ 𝜀
1
) 𝑑
𝑀

𝑖
(𝐵 + 𝜀

1
))

× (1 − 𝐷
𝜀

𝑖
𝑥
𝑖
(𝑛))} ,

(30)

where𝐷𝜀
𝑖
= 𝑏
𝑀

𝑖𝑖
/(𝑎
𝐿

𝑖
−𝑏
𝑀

𝑖𝑗
(𝑀
𝑗
+𝜀
1
)−𝑑
𝑀

𝑖
(𝐵+𝜀
1
)) for 𝑖, 𝑗 = 1, 2,

𝑖 ̸= 𝑗.
Noticing that

𝑏
𝑀

𝑖𝑖

𝑏
𝐿

𝑖𝑖

≥ 1,

exp (𝑎𝑀
𝑖
− 1)

𝑎
𝐿

𝑖
− 𝑏
𝑀

𝑖𝑗
(𝑀
𝑗
+ 𝜀
1
) − 𝑑
𝑀

𝑖
(𝐵 + 𝜀

1
)

> 1, (31)

then

𝐷
𝜀

𝑖
⋅ 𝑀
𝑖
=

𝑏
𝑀

𝑖𝑖

𝑎
𝐿

𝑖
− 𝑏
𝑀

𝑖𝑗
(𝑀
𝑗
+ 𝜀
1
) − 𝑑
𝑀

𝑖
(𝐵 + 𝜀

1
)

⋅

1

𝑏
𝐿

𝑖𝑖

exp (𝑎𝑀
𝑖
− 1) > 1.

(32)

Hence, according to Lemma 4, we have

lim inf
𝑛→+∞

𝑥
𝑖
(𝑛)

≥

1

𝐷
𝜀

𝑖

⋅ exp (𝑎𝐿
𝑖
− 𝑏
𝑀

𝑖𝑗
(𝑀
𝑗
+ 𝜀
1
) − 𝑑
𝑀

𝑖
(𝐵 + 𝜀

1
) − 𝑏
𝑀

𝑖𝑖
𝑀
𝑖
) .

(33)

Setting 𝜀
1
→ 0, it follows that

lim inf
𝑛→+∞

𝑥
𝑖
(𝑛)

≥

1

𝐷
𝑖

⋅ exp (𝑎𝐿
𝑖
− 𝑏
𝑀

𝑖𝑗
𝑀
𝑗
− 𝑑
𝑀

𝑖
𝐵 − 𝑏
𝑀

𝑖𝑖
𝑀
𝑖
)

def
= 𝑚
𝑖
,

(34)

where𝐷
𝑖
= 𝑏
𝑀

𝑖𝑖
/(𝑎
𝐿

𝑖
− 𝑏
𝑀

𝑖𝑗
𝑀
𝑗
− 𝑑
𝑀

𝑖
𝐵), 𝑖 = 1, 2.

According to Lemma 5, from (34) we have that, for any
𝜀
2
> 0 small enough (without loss of generality, assume that

𝜀 < (1/2)min
𝑖
{𝑚
𝑖
}), there exists an 𝑛

3
> 𝑛
2
, such that

∞

∑

𝑠=0

𝑙
𝑖
(𝑠) 𝑥
𝑖
(𝑛 − 𝑠) ≥ 𝑚

𝑖
− 𝜀
2

∀𝑛 ≥ 𝑛
3
. (35)

For 𝑛 ≥ 𝑛
3
, from (35) and the last equation of system (5), we

have

𝑢 (𝑛 + 1) ≥ (1 − 𝑒
𝑀
) 𝑢 (𝑛) + 𝑐

𝐿

1
(𝑚
1
− 𝜀
2
) + 𝑐
𝐿

2
(𝑚
2
− 𝜀
2
) .

(36)

Hence, by applying Lemmas 1 and 2 to (36), we obtain

lim sup
𝑛→+∞

𝑢 (𝑛) ≥

𝑐
𝐿

1
(𝑚
1
− 𝜀
2
) + 𝑐
𝐿

2
(𝑚
2
− 𝜀
2
)

𝑒
𝑀

. (37)

Setting 𝜀
2
→ 0, it follows that

lim sup
𝑛→+∞

𝑢 (𝑛) ≥

𝑐
𝐿

1
𝑚
1
+ 𝑐
𝐿

2
𝑚
2

𝑒
𝑀

def
= 𝐴. (38)

This ends the proof Theorem 6.

4. Global Attractivity

Concerned with the stability property of the system (5), we
have the following result.

Theorem 7. Assume that there exist positive constants 𝛼
1
, 𝛼
2
,

and 𝛼
3
such that

𝛼
1
𝐴
11
− 𝛼
2
𝑏
𝑀

21
− 𝛼
3
𝑐
𝑀

1
> 0,

𝛼
2
𝐴
22
− 𝛼
1
𝑏
𝑀

12
− 𝛼
3
𝑐
𝑀

2
> 0,

𝛼
3
𝑒
𝐿
− 𝛼
1
𝑑
𝑀

1
− 𝛼
2
𝑑
𝑀

2
> 0

(39)

hold; then, for any two positive solutions (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛))

and (𝑥∗
1
(𝑛), 𝑥
∗

2
(𝑛), 𝑢
∗
(𝑛)) of system (5), we have

lim
𝑛→+∞

(𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)) = 0, lim

𝑛→+∞
(𝑢 (𝑛) − 𝑢

∗
(𝑛)) = 0,

(40)

where

𝐴
𝑖𝑖
= min{𝑏𝐿

𝑖𝑖
,

2

𝑀
𝑖

− 𝑏
𝑀

𝑖𝑖
} , 𝑖 = 1, 2. (41)

Proof. By (39), we can choose enough small positive con-
stants 𝛿 and 𝜀 such that

𝛼
1
𝐴
𝜀

11
− 𝛼
2
𝑏
𝑀

21
− 𝛼
3
𝑐
𝑀

1
> 𝛿,

𝛼
2
𝐴
𝜀

22
− 𝛼
1
𝑏
𝑀

12
− 𝛼
3
𝑐
𝑀

2
> 𝛿,

𝛼
3
𝑒
𝐿
− 𝛼
1
𝑑
𝑀

1
− 𝛼
2
𝑑
𝑀

2
> 𝛿,

(42)

where

𝐴
𝜀

𝑖𝑖
= min{𝑏𝐿

𝑖𝑖
,

2

𝑀
𝑖
+ 𝜀

− 𝑏
𝑀

𝑖𝑖
} , 𝑖 = 1, 2. (43)

Let (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛)) be any positive solution of system

(5). For the above 𝜀, from (22) and (27), there exists an enough
large 𝑛∗ > 𝑛

1
, such that

𝑥
𝑖
(𝑛) < 𝑀

𝑖
+ 𝜀, 𝑢 (𝑛) < 𝐵 + 𝜀 ∀𝑛 ≥ 𝑛

∗
, 𝑖 = 1, 2.

(44)

Now, let us define a Lyapunov functional

𝑉 (𝑛) = 𝛼
1
𝑉
1
(𝑛) + 𝛼

2
𝑉
2
(𝑛) + 𝛼

3
𝑉
3
(𝑛) , (45)
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where 𝛼
𝑖
, 𝑖 = 1, 2, 3, are positive constants:

𝑉
1
(𝑛) =





ln𝑥
1
(𝑛) − ln𝑥∗

1
(𝑛)





+

∞

∑

𝑠=0

𝑘
12
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
12
(𝑞 + 𝑠)





𝑥
2
(𝑞) − 𝑥

∗

2
(𝑞)





+

∞

∑

𝑠=0

ℎ
1
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
1
(𝑞 + 𝑠)





𝑢 (𝑞) − 𝑢

∗
(𝑞)





;

𝑉
2
(𝑛) =





ln𝑥
2
(𝑛) − ln𝑥∗

2
(𝑛)





+

∞

∑

𝑠=0

𝑘
21
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
21
(𝑞 + 𝑠)





𝑥
1
(𝑞) − 𝑥

∗

1
(𝑞)






+

∞

∑

𝑠=0

ℎ
2
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
2
(𝑞 + 𝑠)





𝑢 (𝑞) − 𝑢

∗
(𝑞)





;

𝑉
3
(𝑛) =





𝑢 (𝑛) − 𝑢

∗
(𝑛)





+

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑐
𝑖
(𝑞 + 𝑠)





𝑥
𝑖
(𝑞) − 𝑥

∗

𝑖
(𝑞)





.

(46)

Then, from the definition of𝑉
𝑖
(𝑛), 𝑖 = 1, 2, 3, one could easily

see that 𝑉(𝑛) ≥ 0 for all 𝑛 ∈ 𝑍
+. Also, for any fixed 𝑛∗ ∈ 𝑍

+,

𝑉 (𝑛
∗
)

= 𝛼
1
(




ln𝑥
1
(𝑛
∗
) − ln𝑥∗

1
(𝑛
∗
)





+

∞

∑

𝑠=0

𝑘
12
(𝑠)

𝑛
∗
−1

∑

𝑞=𝑛
∗
−𝑠

𝑏
12
(𝑞 + 𝑠)





𝑥
2
(𝑞) − 𝑥

∗

2
(𝑞)






+

∞

∑

𝑠=0

ℎ
1
(𝑠)

𝑛
∗
−1

∑

𝑞=𝑛
∗
−𝑠

𝑑
1
(𝑞 + 𝑠)





𝑢 (𝑞) − 𝑢

∗
(𝑞)





)

+ 𝛼
2
(




ln𝑥
2
(𝑛
∗
) − ln𝑥∗

2
(𝑛
∗
)





+

∞

∑

𝑠=0

𝑘
21
(𝑠)

𝑛
∗
−1

∑

𝑞=𝑛
∗
−𝑠

𝑏
21
(𝑞 + 𝑠)





𝑥
1
(𝑞) − 𝑥

∗

1
(𝑞)






+

∞

∑

𝑠=0

ℎ
2
(𝑠)

𝑛
∗
−1

∑

𝑞=𝑛
∗
−𝑠

𝑑
2
(𝑞 + 𝑠)





𝑢 (𝑞) − 𝑢

∗
(𝑞)





)

+ 𝛼
3
(




𝑢 (𝑛
∗
) − 𝑢
∗
(𝑛
∗
)





+

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)

𝑛
∗
−1

∑

𝑞=𝑛
∗
−𝑠

𝑐
𝑖
(𝑞 + 𝑠)





𝑥
𝑖
(𝑞) − 𝑥

∗

𝑖
(𝑞)





)

≤ 𝛼
1
(




ln𝑥
1
(𝑛
∗
) − ln𝑥∗

1
(𝑛
∗
)





+ 𝑏
𝑀

12
sup
𝑞∈𝑍, 𝑞≤𝑛

∗





𝑥
2
(𝑞) − 𝑥

∗

2
(𝑞)






∞

∑

𝑠=0

𝑘
12
(𝑠) 𝑠

+ 𝑑
𝑀

1
sup
𝑞∈𝑍, 𝑞≤𝑛

∗





𝑢 (𝑞) − 𝑢

∗
(𝑞)






∞

∑

𝑠=0

ℎ
1
(𝑠) 𝑠)

+ 𝛼
2
(




ln𝑥
2
(𝑛
∗
) − ln𝑥∗

2
(𝑛
∗
)





+ 𝑏
𝑀

21
sup
𝑞∈𝑍, 𝑞≤𝑛

∗





𝑥
1
(𝑞) − 𝑥

∗

1
(𝑞)






×

∞

∑

𝑠=0

𝑘
21
(𝑠) 𝑠 + 𝑑

𝑀

2
sup
𝑞∈𝑍, 𝑞≤𝑛

∗





𝑢 (𝑞) − 𝑢

∗
(𝑞)






×

∞

∑

𝑠=0

ℎ
2
(𝑠) 𝑠)

+ 𝛼
3
(




𝑢 (𝑛
∗
) − 𝑢
∗
(𝑛
∗
)





+ 𝑐
𝑀

𝑖
sup
𝑞∈𝑍, 𝑞≤𝑛

∗





𝑥
𝑖
(𝑞) − 𝑥

∗

𝑖
(𝑞)






×

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠) 𝑠) < +∞.

(47)

Also, from the first equation of system (5) and using the
Mean ValueTheorem, we can obtain

Δ𝑉
1
(𝑛) ≤





ln𝑥
1
(𝑛) − ln𝑥∗

1
(𝑛) − 𝑏

11
(𝑛) (𝑥

1
(𝑛) − 𝑥

∗

1
(𝑛))






−




ln𝑥
1
(𝑛) − ln𝑥∗

1
(𝑛)





+ 𝑏
12
(𝑛)

×

∞

∑

𝑠=0

𝑘
12
(𝑠)





𝑥
2
(𝑛 − 𝑠) − 𝑥

∗

2
(𝑛 − 𝑠)






+ 𝑑
1
(𝑛)

∞

∑

𝑠=0

ℎ
1
(𝑠)





𝑢 (𝑛 − 𝑠) − 𝑢

∗
(𝑛 − 𝑠)






+

∞

∑

𝑠=0

𝑘
12
(𝑠) (𝑏
12
(𝑛 + 𝑠)





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






− 𝑏
12
(𝑛)





𝑥
2
(𝑛 − 𝑠) − 𝑥

∗

2
(𝑛 − 𝑠)





)
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+

∞

∑

𝑠=0

ℎ
1
(𝑠) (𝑑
1
(𝑛 + 𝑠)





𝑢 (𝑛) − 𝑢

∗
(𝑛)






− 𝑑
1
(𝑛)





𝑢 (𝑛 − 𝑠) − 𝑢

∗
(𝑛 − 𝑠)





)

≤ −(

1

𝜑
1
(𝑛)

−










1

𝜑
1
(𝑛)

− 𝑏
11
(𝑛)










)




𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)






+

∞

∑

𝑠=0

𝑘
12
(𝑠) 𝑏
12
(𝑛 + 𝑠)





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+

∞

∑

𝑠=0

ℎ
1
(𝑠) 𝑑
1
(𝑛 + 𝑠)





𝑢 (𝑛) − 𝑢

∗
(𝑛)






≤ −(

1

𝜑
1
(𝑛)

−










1

𝜑
1
(𝑛)

− 𝑏
11
(𝑛)










)




𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)






+ 𝑏
𝑀

12





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)





+ 𝑑
𝑀

1





𝑢 (𝑛) − 𝑢

∗
(𝑛)





,

(48)

where 𝜑
1
(𝑛) lies between 𝑥

1
(𝑛) and 𝑥∗

1
(𝑛).

Similarly to the analysis of (48), we can obtain

Δ𝑉
2
(𝑛)

≤ −(

1

𝜑
2
(𝑛)

−










1

𝜑
2
(𝑛)

− 𝑏
22
(𝑛)










)




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+ 𝑏
𝑀

21





𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)





+ 𝑑
𝑀

2





𝑢 (𝑛) − 𝑢

∗
(𝑛)





,

(49)

where 𝜑
2
(𝑛) lies between 𝑥

2
(𝑛) and 𝑥∗

2
(𝑛):

Δ𝑉
3
(𝑛) = 𝑉

3
(𝑛 + 1) − 𝑉

3
(𝑛)

≤ −𝑒 (𝑛)




𝑢 (𝑛) − 𝑢

∗
(𝑛)





+

2

∑

𝑖=1

𝑐
𝑖
(𝑛)

×

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)





𝑥
𝑖
(𝑛 − 𝑠) − 𝑥

∗

𝑖
(𝑛 − 𝑠)






+

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠) (𝑐
𝑖
(𝑛 + 𝑠)

×




𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)





− 𝑐
𝑖
(𝑛)

×




𝑥
𝑖
(𝑛 − 𝑠) − 𝑥

∗

𝑖
(𝑛 − 𝑠)





)

= −𝑒 (𝑛)




𝑢 (𝑛) − 𝑢

∗
(𝑛)






+

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠) 𝑐
𝑖
(𝑛 + 𝑠)





𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)






≤ −𝑒
𝐿 



𝑢 (𝑛) − 𝑢

∗
(𝑛)






+

2

∑

𝑖=1

𝑐
𝑀

𝑖





𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)





.

(50)

From (42)–(44) and (48)–(50), for any 𝑛 ≥ 𝑛
∗, we have

Δ𝑉 (𝑛) ≤ 𝛼
1
{−(

1

𝜑
1
(𝑛)

−










1

𝜑
1
(𝑛)

− 𝑏
11
(𝑛)










)

×




𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)






+ 𝑏
𝑀

12





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+ 𝑑
𝑀

1





𝑢 (𝑛) − 𝑢

∗
(𝑛)





}

+ 𝛼
2
{−(

1

𝜑
2
(𝑛)

−










1

𝜑
2
(𝑛)

− 𝑏
22
(𝑛)










)

×




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+ 𝑏
𝑀

21





𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)






+ 𝑑
𝑀

2





𝑢 (𝑛) − 𝑢

∗
(𝑛)





}

+ 𝛼
3
{ − 𝑒
𝐿 



𝑢 (𝑛) − 𝑢

∗
(𝑛)






+

2

∑

𝑖=1

𝑐
𝑀

𝑖





𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)





}

≤ −{𝛼
1
min [𝑏𝐿

11
,

2

𝑀
1
+ 𝜀

− 𝑏
𝑀

11
] − 𝛼
2
𝑏
𝑀

21
− 𝛼
3
𝑐
𝑀

1
}

×




𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)






− {𝛼
2
min [𝑏𝐿

22
,

2

𝑀
2
+ 𝜀

− 𝑏
𝑀

22
] − 𝛼
1
𝑏
𝑀

12
− 𝛼
3
𝑐
𝑀

2
}

×




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






− {𝛼
3
𝑒
𝐿
− 𝛼
1
𝑑
𝑀

1
− 𝛼
2
𝑑
𝑀

2
}




𝑢 (𝑛) − 𝑢

∗
(𝑛)






= − {𝛼
1
𝐴
𝜀

11
− 𝛼
2
𝑏
𝑀

21
− 𝛼
3
𝑐
𝑀

1
}




𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)






− {𝛼
2
𝐴
𝜀

22
− 𝛼
1
𝑏
𝑀

12
− 𝛼
3
𝑐
𝑀

2
}




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






− {𝛼
3
𝑒
𝐿
− 𝛼
1
𝑑
𝑀

1
− 𝛼
2
𝑑
𝑀

2
}




𝑢 (𝑛) − 𝑢

∗
(𝑛)






≤ −𝛿(

2

∑

𝑖=1





𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)





+




𝑢 (𝑛) − 𝑢

∗
(𝑛)





) .

(51)

Summating both sides of the above inequalities from 𝑛
∗ to 𝑛,

we have
𝑛

∑

𝑝=𝑛
∗

(𝑉 (𝑝 + 1) − 𝑉 (𝑝))

≤ −𝛿

𝑛

∑

𝑝=𝑛
∗

(

2

∑

𝑖=1





𝑥
𝑖
(𝑝) − 𝑥

∗

𝑖
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





) .

(52)
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Hence

𝑉 (𝑛 + 1) + 𝛿

𝑛

∑

𝑝=𝑛
∗

(

2

∑

𝑖=1





𝑥
𝑖
(𝑝) − 𝑥

∗

𝑖
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





)

≤ 𝑉 (𝑛
∗
) < +∞.

(53)

Then, we have

𝑛

∑

𝑝=𝑛
∗

(

2

∑

𝑖=1





𝑥
𝑖
(𝑝) − 𝑥

∗

𝑖
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





) ≤

𝑉 (𝑛
∗
)

𝛿

.

(54)

Therefore

∞

∑

𝑝=𝑛
∗

(

2

∑

𝑖=1





𝑥
𝑖
(𝑝) − 𝑥

∗

𝑖
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





) < +∞, (55)

which means that

lim
𝑛→+∞

(

2

∑

𝑖=1





𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)





+




𝑢 (𝑛) − 𝑢

∗
(𝑛)





) = 0. (56)

Consequently

lim
𝑛→+∞

(𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)) = 0, 𝑖 = 1, 2,

lim
𝑛→+∞

(𝑢 (𝑛) − 𝑢
∗
(𝑛)) = 0.

(57)

This completes the proof of Theorem 7

5. Extinction

Concerned with the extinction property of the system (5),
when the coefficients of the third equation are all constants,
we could establish the following results.

Theorem 8. Assume that

𝑎
𝑀

1

𝑎
𝐿

2

<

𝑏
𝐿

11
𝑒 + 𝑑
𝐿

1
𝑐
1

𝑏
𝑀

21
𝑒 + 𝑑
𝑀

2
𝑐
1

,

𝑎
𝑀

1

𝑎
𝐿

2

<

𝑏
𝐿

12
𝑒 + 𝑑
𝐿

1
𝑐
2

𝑏
𝑀

22
𝑒 + 𝑑
𝑀

2
𝑐
2

(58)

hold; let (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛)) be any positive solution of system

(5); then

lim
𝑛→+∞

𝑥
1
(𝑛) = 0. (59)

Theorem 9. Assume that

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑏
𝑀

11
𝑒 + 𝑑
𝑀

1
𝑐
1

𝑏
𝐿

21
𝑒 + 𝑑
𝐿

2
𝑐
1

,

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑏
𝑀

12
𝑒 + 𝑑
𝑀

1
𝑐
2

𝑏
𝐿

22
𝑒 + 𝑑
𝐿

2
𝑐
2

(60)

hold; let (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛)) be any positive solution of system

(5); then

lim
𝑛→+∞

𝑥
2
(𝑛) = 0. (61)

Proof of Theorem 8. By conditions (58), we can choose posi-
tive constants 𝛼

𝑛1
, 𝛼
𝑛2
such that

𝑎
𝑀

1

𝑎
𝐿

2

<

𝛼
𝑛2

𝛼
𝑛1

<

𝑏
𝐿

11
𝑒 + 𝑑
𝐿

1
𝑐
1

𝑏
𝑀

21
𝑒 + 𝑑
𝑀

2
𝑐
1

,

𝑎
𝑀

1

𝑎
𝐿

2

<

𝛼
𝑛2

𝛼
𝑛1

<

𝑏
𝐿

12
𝑒 + 𝑑
𝐿

1
𝑐
2

𝑏
𝑀

22
𝑒 + 𝑑
𝑀

2
𝑐
2

.

(62)

Thus, there exists a positive constant 𝜂 such that

𝛼
𝑛1
𝑎
𝑀

1
− 𝛼
𝑛2
𝑎
𝐿

2
< −𝜂 < 0,

𝛼
𝑛2
𝑏
𝑀

21
− 𝛼
𝑛1
𝑏
𝐿

11
+

(𝛼
𝑛2
𝑑
𝑀

2
− 𝛼
𝑛1
𝑑
𝐿

1
) 𝑐
1

𝑒

< 0,

𝛼
𝑛2
𝑏
𝑀

22
− 𝛼
𝑛1
𝑏
𝐿

12
+

(𝛼
𝑛2
𝑑
𝑀

2
− 𝛼
𝑛1
𝑑
𝐿

1
) 𝑐
2

𝑒

< 0.

(63)

There exists a constant 𝛼
𝑛3
such that

𝛼
𝑛2
𝑑
𝑀

2
− 𝛼
𝑛1
𝑑
𝐿

1

𝑒

< 𝛼
𝑛3
⇒ 𝛼
𝑛2
𝑑
𝑀

2
− 𝛼
𝑛1
𝑑
𝐿

1
− 𝛼
𝑛3
𝑒 < 0,

𝛼
𝑛2
𝑏
𝑀

21
− 𝛼
𝑛1
𝑏
𝐿

11
+ 𝛼
𝑛3
𝑐
1
< 0,

𝛼
𝑛2
𝑏
𝑀

22
− 𝛼
𝑛1
𝑏
𝐿

12
+ 𝛼
𝑛3
𝑐
2
< 0.

(64)

Consider the following discrete Lyapunov functional:

𝑉
4
(𝑛) = 𝑥

𝛼
𝑛1

1
(𝑛) 𝑥
−𝛼
𝑛2

2
(𝑛)

× exp{𝛼
𝑛3
𝑢 (𝑛) − 𝛼

𝑛1

∞

∑

𝑠=0

𝑘
12
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
12
(𝑞 + 𝑠) 𝑥

2
(𝑞)

− 𝛼
𝑛1

∞

∑

𝑠=0

ℎ
1
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
1
(𝑞 + 𝑠) 𝑢 (𝑞)

+ 𝛼
𝑛2

∞

∑

𝑠=0

𝑘
21
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
21
(𝑞 + 𝑠) 𝑥

1
(𝑞)

+ 𝛼
𝑛2

∞

∑

𝑠=0

ℎ
2
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
2
(𝑞 + 𝑠) 𝑢 (𝑞)

+ 𝛼
𝑛3

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑐
𝑖
𝑥
𝑖
(𝑞)} .

(65)
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From (65), we obtain

𝑉
4
(𝑛 + 1)

𝑉
4
(𝑛)

= exp{𝛼
𝑛1
(𝑎
1
(𝑛) − 𝑏

11
(𝑛) 𝑥
1
(𝑛)

− 𝑏
12
(𝑛)

∞

∑

𝑠=0

𝑘
12
(𝑠) 𝑥
2
(𝑛 − 𝑠)

− 𝑑
1
(𝑛)

∞

∑

𝑠=0

ℎ
1
(𝑠) 𝑢 (𝑛 − 𝑠))

− 𝛼
𝑛2
(𝑎
2
(𝑛) − 𝑏

22
(𝑛) 𝑥
2
(𝑛)

− 𝑏
21
(𝑛)

∞

∑

𝑠=0

𝑘
21
(𝑠) 𝑥
1
(𝑛 − 𝑠)

− 𝑑
2
(𝑛)

∞

∑

𝑠=0

ℎ
2
(𝑠) 𝑢 (𝑛 − 𝑠))

+ 𝛼
𝑛3
(−𝑒𝑢 (𝑛) + 𝑐

1

∞

∑

𝑠=0

𝑙
1
(𝑠) 𝑥
1
(𝑛 − 𝑠)

+ 𝑐
2

∞

∑

𝑠=0

𝑙
2
(𝑠) 𝑥
2
(𝑛 − 𝑠))

− 𝛼
𝑛1

∞

∑

𝑠=0

𝑘
12
(𝑠) (𝑏
12
(𝑛 + 𝑠) 𝑥

2
(𝑛)

− 𝑏
12
(𝑛) 𝑥
2
(𝑛 − 𝑠))

− 𝛼
𝑛1

∞

∑

𝑠=0

ℎ
1
(𝑠) (𝑑
1
(𝑛 + 𝑠) 𝑢 (𝑛)

− 𝑑
1
(𝑛) 𝑢 (𝑛 − 𝑠))

+ 𝛼
𝑛2

∞

∑

𝑠=0

𝑘
21
(𝑠) (𝑏
21
(𝑛 + 𝑠) 𝑥

1
(𝑛)

− 𝑏
21
(𝑛) 𝑥
1
(𝑛 − 𝑠))

+ 𝛼
𝑛2

∞

∑

𝑠=0

ℎ
2
(𝑠) (𝑑
2
(𝑛 + 𝑠) 𝑢 (𝑛)

− 𝑑
2
(𝑛) 𝑢 (𝑛 − 𝑠))

+ 𝛼
𝑛3

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)

× (𝑐
𝑖
𝑥
𝑖
(𝑛) − 𝑐

𝑖
𝑥
𝑖
(𝑛 − 𝑠))}

≤ exp {(𝛼
𝑛1
𝑎
𝑀

1
− 𝛼
𝑛2
𝑎
𝐿

2
)

+ (𝛼
𝑛2
𝑏
𝑀

21
− 𝛼
𝑛1
𝑏
𝐿

11
+ 𝛼
𝑛3
𝑐
1
) 𝑥
1
(𝑛)

+ (𝛼
𝑛2
𝑏
𝑀

22
− 𝛼
𝑛1
𝑏
𝐿

12
+ 𝛼
𝑛3
𝑐
2
) 𝑥
2
(𝑛)

+ (𝛼
𝑛2
𝑑
𝑀

2
− 𝛼
𝑛1
𝑑
𝐿

1
− 𝛼
𝑛3
𝑒) 𝑢 (𝑛)} .

(66)

From inequalities (63) and (64), we can obtain

𝑉
4
(𝑛 + 1) ≤ 𝑉

4
(𝑛) exp (−𝜂) . (67)

Therefore

𝑉
4
(𝑛) ≤ 𝑉

4
(0) exp (−𝑛𝜂) . (68)

From (22) and (27) we know that there exists an𝑀 > 0 such
that

𝑥
𝑖
(𝑘) < 𝑀, 𝑢 (𝑘) < 𝑀 ∀𝑘 ∈ 𝑍, (69)

and so

𝑉
4
(0)

= 𝑥
𝛼
𝑛1

1
(0) 𝑥
−𝛼
𝑛2

2
(0)

× exp{𝛼
𝑛3
𝑢 (0) − 𝛼

𝑛1

∞

∑

𝑠=0

𝑘
12
(𝑠)

×

−1

∑

𝑞=−𝑠

𝑏
12
(𝑞 + 𝑠) 𝑥

2
(𝑞)

− 𝛼
𝑛1

∞

∑

𝑠=0

ℎ
1
(𝑠)

−1

∑

𝑞=−𝑠

𝑑
1
(𝑞 + 𝑠) 𝑢 (𝑞)

+ 𝛼
𝑛2

∞

∑

𝑠=0

𝑘
21
(𝑠)

−1

∑

𝑞=−𝑠

𝑏
21
(𝑞 + 𝑠) 𝑥

1
(𝑞)

+ 𝛼
𝑛2

∞

∑

𝑠=0

ℎ
2
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
2
(𝑞 + 𝑠) 𝑢 (𝑞)

+ 𝛼
𝑛3

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)

−1

∑

𝑞=−𝑠

𝑐
𝑖
𝑥
𝑖
(𝑞)}

< 𝑥
𝛼
𝑛1

1
(0) 𝑥
−𝛼
𝑛2

2
(0)

× exp{ 



𝛼
𝑛3





𝑀 + 𝛼

𝑛2
𝑀𝑏
𝑀

21

∞

∑

𝑠=0

𝑘
21
(𝑠) 𝑠

+ 𝛼
𝑛2
𝑀𝑑
𝑀

2

∞

∑

𝑠=0

ℎ
2
(𝑠) 𝑠

+ 𝛼
𝑛3
𝑀𝑐
𝑖

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠) 𝑠}
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= 𝑥
𝛼
𝑛1

1
(0) 𝑥
−𝛼
𝑛2

2
(0)

× exp{𝑀(




𝛼
𝑛3





+ 𝛼
𝑛2
𝑏
𝑀

21
Θ
21
+ 𝛼
𝑛2
𝑑
𝑀

2
Λ
2

+ 𝛼
𝑛3

2

∑

𝑖=1

𝑐
𝑖
Υ
𝑖
)} < +∞.

(70)

On the other hand, we also have

𝑉
4
(𝑛)

≥ 𝑥
𝛼
𝑛1

1
(𝑛) 𝑥
−𝛼
𝑛2

2
(𝑛)

× exp{−𝛼
𝑛1

∞

∑

𝑠=0

𝑘
12
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
12
(𝑞 + 𝑠) 𝑥

2
(𝑞)

− 𝛼
𝑛1

∞

∑

𝑠=0

ℎ
1
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
1
(𝑞 + 𝑠) 𝑢 (𝑞)}

≥ 𝑥
𝛼
𝑛1

1
(𝑛)𝑀

−𝛼
𝑛2

× exp{−𝛼
𝑛1
𝑀𝑏
𝑀

12

∞

∑

𝑠=0

𝑘
12
(𝑠) 𝑠

− 𝛼
𝑛1
𝑀𝑑
𝑀

1

∞

∑

𝑠=0

ℎ
1
(𝑠) 𝑠}

= 𝑥
𝛼
𝑛1

1
(𝑛)𝑀

−𝛼
𝑛2

× exp {−𝛼
𝑛1
𝑀(𝑏
𝑀

12
Θ
12
+ 𝑑
𝑀

1
Λ
1
)} .

(71)

Combining inequalities (68), (70), and (71), we have

𝑥
1
(𝑛) ≤ 𝜆 exp{−

𝜂

𝛼
𝑛1

𝑛} , (72)

where

𝜆 = (𝑉
4
(0))
1/𝛼
𝑛1

𝑀
𝛼
𝑛2
/𝛼
𝑛1 exp {𝑀(𝑏

𝑀

12
Θ
12
+ 𝑑
𝑀

1
Λ
1
)}

< +∞.

(73)

Hence we obtain that

lim
𝑛→+∞

𝑥
1
(𝑛) = 0. (74)

This ends the proof of Theorem 8.

Proof of Theorem 9. By (60), we can choose positive constants
𝛽
𝑛1
, 𝛽
𝑛2
, and 𝛽

𝑛3
and constant 𝛾 such that

𝑎
𝑀

1

𝑎
𝐿

2

>

𝛽
𝑛2

𝛽
𝑛1

>

𝑏
𝑀

11
𝑒 + 𝑑
𝑀

1
𝑐
1

𝑏
𝐿

21
𝑒 + 𝑑
𝐿

2
𝑐
1

,

𝑎
𝑀

1

𝑎
𝐿

2

>

𝛽
𝑛2

𝛽
𝑛1

>

𝑏
𝑀

12
𝑒 + 𝑑
𝑀

1
𝑐
2

𝑏
𝐿

22
𝑒 + 𝑑
𝐿

2
𝑐
2

.

𝛽
𝑛2
𝑎
𝑀

2
− 𝛽
𝑛1
𝑎
𝐿

1
< −𝛾 < 0,

𝛽
𝑛1
𝑏
𝑀

11
− 𝛽
𝑛2
𝑏
𝐿

21
+ 𝛽
𝑛3
𝑐
1
< 0,

𝛽
𝑛1
𝑏
𝑀

12
− 𝛽
𝑛2
𝑏
𝐿

22
+ 𝛽
𝑛3
𝑐
2
< 0,

𝛽
𝑛1
𝑑
𝑀

1
− 𝛽
𝑛2
𝑑
𝐿

2
− 𝛽
𝑛3
𝑒 < 0.

(75)

Define the following Lyapunov functional:
𝑉
5
(𝑛)

= 𝑥
−𝛽
𝑛1

1
(𝑛) 𝑥
𝛽
𝑛2

2
(𝑛)

× exp{𝛽
𝑛3
𝑢 (𝑛) + 𝛽

𝑛1

∞

∑

𝑠=0

𝑘
12
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
12
(𝑞 + 𝑠) 𝑥

2
(𝑞)

+ 𝛽
𝑛1

∞

∑

𝑠=0

ℎ
1
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
1
(𝑞 + 𝑠) 𝑢 (𝑞)

− 𝛽
𝑛2

∞

∑

𝑠=0

𝑘
21
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
21
(𝑞 + 𝑠) 𝑥

1
(𝑞)

− 𝛽
𝑛2

∞

∑

𝑠=0

ℎ
2
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
2
(𝑞 + 𝑠) 𝑢 (𝑞)

+ 𝛽
𝑛3

2

∑

𝑖=1

∞

∑

𝑠=0

𝑙
𝑖
(𝑠)

𝑛−1

∑

𝑞=𝑛−𝑠

𝑐
𝑖
𝑥
𝑖
(𝑞)} .

(76)

From (76), we have
𝑉
5
(𝑛 + 1)

𝑉
5
(𝑛)

≤ exp {(𝛽
𝑛2
𝑎
𝑀

2
− 𝛽
𝑛1
𝑎
𝐿

1
)

+ (𝛽
𝑛1
𝑏
𝑀

11
− 𝛽
𝑛2
𝑏
𝐿

21
+ 𝛽
𝑛3
𝑐
1
) 𝑥
1
(𝑛)

+ (𝛽
𝑛1
𝑏
𝑀

12
− 𝛽
𝑛2
𝑏
𝐿

22
+ 𝛽
𝑛3
𝑐
2
) 𝑥
2
(𝑛)

+ (𝛽
𝑛1
𝑑
𝑀

1
− 𝛽
𝑛2
𝑑
𝐿

2
− 𝛽
𝑛3
𝑒) 𝑢 (𝑛)}

≤ exp {−𝛾} .

(77)

Similarly to the analysis of (68)–(73), we have
lim
𝑛→+∞

𝑥
2
(𝑛) = 0. (78)

This ends the proof of Theorem 9.
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From Theorems 8 and 9 we know that, under some suit-
able assumption, one of the species in the system may be
driven to extinction; in this case, one interesting problem is
to investigate the stability property of the rest of the species.

Consider the following discrete equations:

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{𝑎

2
(𝑛) − 𝑏

22
(𝑛) 𝑥
2
(𝑛)

− 𝑑
2
(𝑛)

∞

∑

𝑠=0

ℎ
2
(𝑠) 𝑢 (𝑛 − 𝑠)} ,

𝑢 (𝑛 + 1) = 𝑢 (𝑛) (1 − 𝑒) + 𝑐
2

∞

∑

𝑠=0

𝑙
2
(𝑠) 𝑥
2
(𝑛 − 𝑠) .

(79)

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp{𝑎

1
(𝑛) − 𝑏

11
(𝑛) 𝑥
1
(𝑛)

− 𝑑
1
(𝑛)

∞

∑

𝑠=0

ℎ
1
(𝑠) 𝑢 (𝑛 − 𝑠)} ,

𝑢 (𝑛 + 1) = 𝑢 (𝑛) (1 − 𝑒) + 𝑐
1

∞

∑

𝑠=0

𝑙
1
(𝑠) 𝑥
1
(𝑛 − 𝑠) .

(80)

Theorem 10. Assume that (58) holds and also

𝑑
𝑀

2
<

𝐴
22
𝑒

𝑐
2

(81)

holds; then, for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛)) of

system (5) and any positive solution (𝑥
∗

2
(𝑛), 𝑢
∗
(𝑛)) of system

(79), we have

lim
𝑛→+∞

𝑥
1
(𝑛) = 0, lim

𝑛→+∞
(𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)) = 0,

lim
𝑛→+∞

(𝑢 (𝑛) − 𝑢
∗
(𝑛)) = 0,

(82)

where 𝐴
22
is defined in Theorem 7.

Theorem 11. Assume that (60) holds and also

𝑑
𝑀

1
<

𝐴
11
𝑒

𝑐
1

(83)

holds; then, for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛)) of

system (5) and any positive solution (𝑥
∗

1
(𝑛), 𝑢
∗
(𝑛)) of system

(80), we have

lim
𝑛→+∞

(𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)) = 0, lim

𝑛→+∞
𝑥
2
(𝑛) = 0,

lim
𝑛→+∞

(𝑢 (𝑛) − 𝑢
∗
(𝑛)) = 0,

(84)

where 𝐴
11
is defined in Theorem 7.

Proof of Theorem 10. By conditions (81), we can choose posi-
tive constants 𝛽

1
, 𝛽
2
such that

𝑒

𝑑
𝑀

2

>

𝛽
1

𝛽
2

>

𝑐
2

𝐴
22

. (85)

Thus, there exist enough small positive constants 𝛿 and 𝜀 such
that

𝛽
1
𝐴
𝜀

22
− 𝛽
2
𝑐
2
> 𝛿,

𝛽
2
𝑒 − 𝛽
1
𝑑
𝑀

2
> 𝛿,

(86)

where 𝐴𝜀
22
is defined in(43)

Now, we define a Lyapunov functional

𝑄
1
(𝑛) = 𝛽

1
𝐺
1
(𝑛) + 𝛽

2
𝐻
1
(𝑛) , (87)

where

𝐺
1
(𝑛) =





ln𝑥
2
(𝑛) − ln𝑥∗

2
(𝑛)





+

∞

∑

𝑠=0

𝑘
21
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑏
21
(𝑞 + 𝑠) 𝑥

1
(𝑞) +

∞

∑

𝑠=0

ℎ
2
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑑
2
(𝑞 + 𝑠)





𝑢 (𝑞) − 𝑢

∗
(𝑞)





;

𝐻
1
(𝑛) =





𝑢 (𝑛) − 𝑢

∗
(𝑛)





+

∞

∑

𝑠=0

𝑙
1
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑐
1
𝑥
1
(𝑞) +

∞

∑

𝑠=0

𝑙
2
(𝑠)

×

𝑛−1

∑

𝑞=𝑛−𝑠

𝑐
2





𝑥
2
(𝑞) − 𝑥

∗

2
(𝑞)





.

(88)

Then, from the definition of 𝐺
1
(𝑛), 𝐻

1
(𝑛), one could easily

see that 𝑄
1
(𝑛) ≥ 0 for all 𝑛 ∈ 𝑍

+. Also, for any fixed 𝑛∗ ∈ 𝑍
+,

from (69) one could see that

𝑄
1
(𝑛
∗
) = 𝛽
1





ln𝑥
2
(𝑛
∗
) − ln𝑥∗

2
(𝑛
∗
)





+ 𝛽
1
𝑀𝑏
𝑀

21

∞

∑

𝑠=0

𝑘
21
(𝑠) 𝑠

+ 𝛽
1
𝑑
𝑀

2
sup
𝑞∈𝑍
+
, 𝑞≤𝑛
∗





𝑢 (𝑞) − 𝑢

∗
(𝑞)






∞

∑

𝑠=0

ℎ
2
(𝑠) 𝑠

+ 𝛽
2





𝑢 (𝑛
∗
) − 𝑢
∗
(𝑛
∗
)




+ 𝛽
2
𝑀𝑐
1

∞

∑

𝑠=0

𝑙
1
(𝑠) 𝑠

+ 𝛽
2
𝑐
2

sup
𝑞∈𝑍
+
, 𝑞≤𝑛
∗





𝑥
2
(𝑞) − 𝑥

∗

2
(𝑞)






∞

∑

𝑠=0

𝑙
2
(𝑠) 𝑠

< +∞.

(89)
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It follows from the second equation of system (5) and the
Mean Value Theorem that

Δ𝐺
1
(𝑛)

≤




ln𝑥
2
(𝑛) − ln𝑥∗

2
(𝑛) − 𝑏

22
(𝑛) (𝑥

2
(𝑛) − 𝑥

∗

2
(𝑛))






−




ln𝑥
2
(𝑛) − ln𝑥∗

2
(𝑛)






+ 𝑏
21
(𝑛)

∞

∑

𝑠=0

𝑘
21
(𝑠) 𝑥
1
(𝑛 − 𝑠) + 𝑑

2
(𝑛)

×

∞

∑

𝑠=0

ℎ
2
(𝑠)





𝑢 (𝑛 − 𝑠) − 𝑢

∗
(𝑛 − 𝑠)






+

∞

∑

𝑠=0

𝑘
21
(𝑠) (𝑏
21
(𝑛 + 𝑠) 𝑥

1
(𝑛)

−𝑏
21
(𝑛) 𝑥
1
(𝑛 − 𝑠))

+

∞

∑

𝑠=0

ℎ
2
(𝑠) (𝑑
2
(𝑛 + 𝑠)





𝑢 (𝑛) − 𝑢

∗
(𝑛)






− 𝑑
2
(𝑛)





𝑢 (𝑛 − 𝑠) − 𝑢

∗
(𝑛 − 𝑠)





)

≤ −(

1

𝜑
2
(𝑛)

−










1

𝜑
2
(𝑛)

− 𝑏
22
(𝑛)










)




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+

∞

∑

𝑠=0

𝑘
21
(𝑠) 𝑏
21
(𝑛 + 𝑠) 𝑥

1
(𝑛)

+

∞

∑

𝑠=0

ℎ
2
(𝑠) 𝑑
2
(𝑛 + 𝑠)





𝑢 (𝑛) − 𝑢

∗
(𝑛)






≤ −(

1

𝜑
2
(𝑛)

−










1

𝜑
2
(𝑛)

− 𝑏
22
(𝑛)










)




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+ 𝑏
𝑀

12
𝑥
1
(𝑛) + 𝑑

𝑀

2





𝑢 (𝑛) − 𝑢

∗
(𝑛)





.

(90)

Also, from the third equation of system (5) we have

Δ𝐻
1
(𝑛) = 𝐻

1
(𝑛 + 1) − 𝐻

1
(𝑛)

≤ −𝑒




𝑢 (𝑛) − 𝑢

∗
(𝑛)






+ 𝑐
1

∞

∑

𝑠=0

𝑙
1
(𝑠) 𝑥
1
(𝑛 − 𝑠)

+ 𝑐
2

∞

∑

𝑠=0

𝑙
2
(𝑠)





𝑥
2
(𝑛 − 𝑠) − 𝑥

∗

2
(𝑛 − 𝑠)






+

∞

∑

𝑠=0

𝑙
1
(𝑠) (𝑐
1
𝑥
1
(𝑛) − 𝑐

1
𝑥
1
(𝑛 − 𝑠))

+

∞

∑

𝑠=0

𝑙
2
(𝑠) (𝑐
2





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






− 𝑐
2





𝑥
2
(𝑛 − 𝑠) − 𝑥

∗

2
(𝑛 − 𝑠)





)

= −𝑒




𝑢 (𝑛) − 𝑢

∗
(𝑛)





+

∞

∑

𝑠=0

𝑙
1
(𝑠) 𝑐
1
𝑥
1
(𝑛)

+

∞

∑

𝑠=0

𝑙
2
(𝑠) 𝑐
2





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






≤ −𝑒




𝑢 (𝑛) − 𝑢

∗
(𝑛)





+ 𝑐
1
𝑥
1
(𝑛)

+ 𝑐
2





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)





.

(91)

From (70), we have
∞

∑

𝑝=𝑛
∗

𝑥
1
(𝑝) ≤

∞

∑

𝑝=𝑛
∗

𝜆 exp{−
𝜂

𝛼
𝑛1

𝑝} < +∞. (92)

Therefore, from (44), (88), and (90), for all 𝑛 > 𝑛
∗, we have

Δ𝑄
1
(𝑛)

≤ 𝛽
1
{−(

1

𝜑
2
(𝑛)

−










1

𝜑
2
(𝑛)

− 𝑏
22
(𝑛)










)




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






+ 𝑏
𝑀

21
𝑥
1
(𝑛) + 𝑑

𝑀

2





𝑢 (𝑛) − 𝑢

∗
(𝑛)





}

+ 𝛽
2
{−𝑒





𝑢 (𝑛) − 𝑢

∗
(𝑛)





+ 𝑐
1
𝑥
1
(𝑛) + 𝑐

2





𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)





}

≤ −{𝛽
1
min [𝑏𝐿

22
,

2

𝑀
2
+ 𝜀

− 𝑏
𝑀

22
] − 𝛽
2
𝑐
2
}




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






− {𝛽
2
𝑒 − 𝛽
1
𝑑
𝑀

2
}




𝑢 (𝑛) − 𝑢

∗
(𝑛)





+ (𝛽
1
𝑏
𝑀

21
+ 𝛽
2
𝑐
1
) 𝑥
1
(𝑛)

= − {𝛽
1
𝐴
𝜀

22
− 𝛽
2
𝑐
2
}




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)






− {𝛽
2
𝑒 − 𝛽
1
𝑑
𝑀

2
}




𝑢 (𝑛) − 𝑢

∗
(𝑛)





+ (𝛽
1
𝑏
𝑀

21
+ 𝛽
2
𝑐
1
) 𝑥
1
(𝑛)

≤ −𝛿 (




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)





+




𝑢 (𝑛) − 𝑢

∗
(𝑛)





) + 𝜌𝑥

1
(𝑛) ,

(93)

where 𝜌 = 𝛽
1
𝑏
𝑀

21
+ 𝛽
2
𝑐
1
.

Summating both sides of the above inequality from 𝑛
∗ to

𝑛, we have
𝑛

∑

𝑝=𝑛
∗

(𝑄
1
(𝑝 + 1) − 𝑄

1
(𝑝))

≤ −𝛿

𝑛

∑

𝑝=𝑛
∗

(




𝑥
2
(𝑝) − 𝑥

∗

2
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





)

+ 𝜌

𝑛

∑

𝑝=𝑛
∗

𝑥
1
(𝑝) .

(94)

Hence

𝑄
1
(𝑛 + 1) + 𝛿

𝑛

∑

𝑝=𝑛
∗

(




𝑥
2
(𝑝) − 𝑥

∗

2
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





)

≤ 𝑄
1
(𝑛
∗
) + 𝜌

𝑛

∑

𝑝=𝑛
∗

𝑥
1
(𝑝) .

(95)
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Then, from (89) and (92) we have
𝑛

∑

𝑝=𝑛
∗

(




𝑥
2
(𝑝) − 𝑥

∗

2
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





)

≤

𝑄
1
(𝑛
∗
) + 𝜌∑

𝑛

𝑝=𝑛
∗ 𝑥1

(𝑝)

𝛿

< +∞.

(96)

Therefore
∞

∑

𝑝=𝑛
∗

(




𝑥
2
(𝑝) − 𝑥

∗

2
(𝑝)





+




𝑢 (𝑝) − 𝑢

∗
(𝑝)





) < +∞, (97)

which means that

lim
𝑛→+∞

(




𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)





+




𝑢 (𝑛) − 𝑢

∗
(𝑛)





) = 0. (98)

Consequently

lim
𝑛→+∞

(𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)) = 0,

lim
𝑛→+∞

(𝑢 (𝑛) − 𝑢
∗
(𝑛)) = 0.

(99)

This completes the proof of Theorem 10.

Proof of Theorem 11. Theproof ofTheorem 11 is similar to that
of Theorem 10, and we omit the details here.

Remark 12. One of the purposes of this paper is to find out
the influence of feedback control variable on the persistent
property of the system. Obviously, the answer lies in the
relations among conditions (A

1
), (58), and (60). Now let

us consider conditions (A
1
) and (60); there may exist the

following subcase:

𝑏
𝐿

11

𝑏
𝑀

21

>

exp (𝑎𝑀
1
− 1)

𝑎
𝐿

2

>

𝑎
𝑀

1

𝑎
𝐿

2

>

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑏
𝑀

11
𝑒 + 𝑑
𝑀

1
𝑐
1

𝑏
𝐿

21
𝑒 + 𝑑
𝐿

2
𝑐
1

. (100)

If 𝑏𝑀
12
/𝑏
𝐿

22
> 𝑑
𝑀

1
/𝑑
𝐿

2
, then we have

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑎
𝐿

1

exp (𝑎𝑀
2
− 1)

>

𝑏
𝑀

12

𝑏
𝐿

22

>

𝑏
𝑀

12
𝑒 + 𝑑
𝑀

1
𝑐
2

𝑏
𝐿

22
𝑒 + 𝑑
𝐿

2
𝑐
2

. (101)

If 𝑏𝑀
12
/𝑏
𝐿

22
< 𝑑
𝑀

1
/𝑑
𝐿

2
, then there may exist the following two

subcases:

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑎
𝐿

1

exp (𝑎𝑀
2
− 1)

>

𝑏
𝑀

12
𝑒 + 𝑑
𝑀

1
𝑐
2

𝑏
𝐿

22
𝑒 + 𝑑
𝐿

2
𝑐
2

>

𝑏
𝑀

12

𝑏
𝐿

22

,

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑏
𝑀

12
𝑒 + 𝑑
𝑀

1
𝑐
2

𝑏
𝐿

22
𝑒 + 𝑑
𝐿

2
𝑐
2

>

𝑎
𝐿

1

exp (𝑎𝑀
2
− 1)

>

𝑏
𝑀

12

𝑏
𝐿

22

.

(102)

(101) and (100) (or (102) and (100)) show that conditions (A
1
)

and (60) could be satisfied together; that is, for the original
permanent system (2), by choosing suitable feedback control
variable, species 𝑥

2
will be driven to extinction.

Remark 13. Similarly to the above analysis, if system (2) is
permanent, by choosing suitable feedback control variable,
the first species 𝑥

1
will be driven to extinction.

Remark 14. From Theorem 7, we can find that feedback
control variable has influence on the global attractivity of
system (5); that is, only the feedback control variable is very
low such that the third inequality of (39) holds; in other
words, when inequality 𝑑 = max{𝑑𝑀

1
, 𝑑
𝑀

2
} < 𝛼
3
𝑒
𝐿
/(𝛼
1
+ 𝛼
2
)

holds, the two species can be coexist.

6. Examples

In this sectionwewill give three examples to illustrate the fea-
sibility of main results.

Example 1. Consider the following equations:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp{0.9 + 0.1 sin (√2𝑛)

− (0.25 + 0.05 cos (√3𝑛)) 𝑥
1
(𝑛)

− (0.08 + 0.02 cos (√3𝑛))

×

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
2
(𝑛 − 𝑠)

− (0.45 + 0.03 sin (√2𝑛))

×

∞

∑

𝑠=0

𝑒
2
− 1

𝑒
2

𝑒
−2𝑠

𝑢 (𝑛 − 𝑠)} ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{0.9 + 0.1 sin (√2𝑛)

− (0.6 + 0.1 cos (√3𝑛)) 𝑥
2
(𝑛)

− (0.15 + 0.05 cos (√3𝑛))

×

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
1
(𝑛 − 𝑠)

− (0.42 + 0.04 sin (√2𝑛))

×

∞

∑

𝑠=0

𝑒
2
− 1

𝑒
2

𝑒
−2𝑠

𝑢 (𝑛 − 𝑠)} ,

𝑢 (𝑛 + 1) = 𝑢 (𝑛) (1 − (0.92 + 0.03 cos (√3𝑛)))

+ (0.01 + 0.005 cos (2𝑛))

×

∞

∑

𝑠=0

𝑒
3
− 1

𝑒
3

𝑒
−3𝑠

𝑥
1
(𝑛 − 𝑠)

+ (0.008 + 0.002 cos (√3𝑛))

×

∞

∑

𝑠=0

𝑒
3
− 1

𝑒
3

𝑒
−3𝑠

𝑥
2
(𝑛 − 𝑠) .

(103)
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Figure 1: Numeric simulations of the solutions (𝑥
1
(𝑛), 𝑥

2
(𝑛), 𝑢(𝑛)) of system (103), with the initial conditions (𝑥

1
(𝑠), 𝑥
2
(𝑠), 𝑢(𝑠)) = (1.8, 1,

0.005), (2.3, 1.5, 0.01), and (3.7, 0.8, 0.015), 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛 + 1, . . . , −1, 0, respectively.

One could easily see that conditions (H
1
) and (H

2
) are sat-

isfied. Also, by calculating, one has

𝐴
11
= min{𝑏𝐿

11
,

2

𝑀
1

− 𝑏
𝑀

11
} = 0.1,

𝐴
22
= min{𝑏𝐿

22
,

2

𝑀
2

− 𝑏
𝑀

22
} = 0.3.

(104)

Now, let us take 𝛼
1
= 1.3, 𝛼

2
= 0.5, and 𝛼

3
= 1; then

𝛼
1
𝐴
11
− 𝛼
2
𝑏
𝑀

21
− 𝛼
3
𝑐
𝑀

1
= 0.015 > 0,

𝛼
2
𝐴
22
− 𝛼
1
𝑏
𝑀

12
− 𝛼
3
𝑐
𝑀

2
= 0.01 > 0,

𝛼
3
𝑒
𝐿
− 𝛼
1
𝑑
𝑀

1
− 𝛼
2
𝑑
𝑀

2
= 0.046 > 0.

(105)

Clearly, condition (39) is satisfied, and so fromTheorem 7 we
have lim

𝑛→+∞
(𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)) = 0, lim

𝑛→+∞
(𝑢(𝑛) − 𝑢

∗
(𝑛)) =

0, where (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑢(𝑛)) and (𝑥∗

1
(𝑛), 𝑥
∗

2
(𝑛), 𝑢
∗
(𝑛)) are any

two positive solutions of system (103).

Figure 1 shows the dynamic behaviors of system (103),
which strongly supports the above assertions.

Example 2. Consider the following equations:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp{0.8 + 0.2 sin (√2𝑛) − 3𝑥

1
(𝑛)

− 1.5

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
2
(𝑛 − 𝑠)

− 0.1

∞

∑

𝑠=0

𝑒
2
− 1

𝑒
2

𝑒
−2𝑠

𝑢 (𝑛 − 𝑠)} ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{1.8 + 0.2 sin (√2𝑛) − 𝑥

2
(𝑛)

− 3

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
1
(𝑛 − 𝑠)

− 0.2

∞

∑

𝑠=0

𝑒
2
− 1

𝑒
2

𝑒
−2𝑠

𝑢 (𝑛 − 𝑠)} ,

𝑢 (𝑛 + 1) = 𝑢 (𝑛) (1 − 0.8)

+ 1.2

∞

∑

𝑠=0

𝑒
3
− 1

𝑒
3

𝑒
−3𝑠

𝑥
1
(𝑛 − 𝑠)

+ 3

∞

∑

𝑠=0

𝑒
3
− 1

𝑒
3

𝑒
−3𝑠

𝑥
2
(𝑛 − 𝑠) .

(106)

One could easily see that conditions (H
1
) and (H

2
) are satis-

fied. Also, by calculating, one has

𝑎
𝑀

1

𝑎
𝐿

2

=

5

8

,

𝑏
𝐿

11
𝑒 + 𝑑
𝐿

1
𝑐
1

𝑏
𝑀

21
𝑒 + 𝑑
𝑀

2
𝑐
1

=

9

10

,

𝑏
𝐿

12
𝑒 + 𝑑
𝐿

1
𝑐
2

𝑏
𝑀

22
𝑒 + 𝑑
𝑀

2
𝑐
2

=

15

14

.

𝐴
22
= min{𝑏𝐿

22
,

2

𝑀
2

− 𝑏
𝑀

22
} = 1,

0.2 = 𝑑
𝑀

2
<

𝐴
22
𝑒

𝑐
2

≈ 0.67.

(107)
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Figure 2: Numeric simulations of the solutions (𝑥
1
(𝑛), 𝑥

2
(𝑛), 𝑢(𝑛))

of system (106), with the initial conditions (𝑥
1
(𝑠), 𝑥
2
(𝑠), 𝑢(𝑠)) =

(0.8, 1.4, 1.2), (0.5, 1.2, 1.5), and (0.2, 1.6, 2.1), 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛 +

1, . . . , −1, 0, respectively.

Clearly, conditions (58) and (81) are satisfied, and so from
Theorems 8 and 10 we know that species 𝑥

1
will be driven

to extinction, while species 𝑥
2
is globally attractive.

Figure 2 shows the dynamic behaviors of system (106),
which strongly supports our results.

Example 3. Consider the following example:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp{0.9 + 0.1 sin (𝑛) − 0.6𝑥

1
(𝑛)

− 0.4

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
2
(𝑛 − 𝑠)} ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{0.8 + 0.2 sin (𝑛) − 0.8𝑥

2
(𝑛)

− 0.3

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
1
(𝑛 − 𝑠)} .

(108)

By calculating, one has

𝑏
𝐿

11

𝑏
𝑀

21

= 2 >

exp (𝑎𝑀
1
− 1)

𝑎
𝐿

2

=

5

3

,

𝑎
𝐿

1

exp (𝑎𝑀
2
− 1)

= 0.8 >

𝑏
𝑀

12

𝑏
𝐿

22

= 0.5.

(109)

Clearly, condition (A
1
) is satisfied; thus from Theorem A

we know that system (108) is permanent. Figure 3 shows the
dynamic behaviors of system (108).
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Figure 3:Dynamic behaviors of the solution (𝑥
1
(𝑛), 𝑥

2
(𝑛)) of system

(110), with the initial conditions (𝑥
1
(𝑠), 𝑥
2
(𝑠)) = (0.8, 0.4), (1.4, 1.2),

and (1.2, 1.0), 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛 + 1, . . . , −1, 0, respectively.

Now let us further incorporate the feedback control var-
iable into system (108) and consider the following system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp{0.9 + 0.1 sin (𝑛) − 0.6𝑥

1
(𝑛)

− 0.4

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
2
(𝑛 − 𝑠)

− 0.2

∞

∑

𝑠=0

𝑒
2
− 1

𝑒
2

𝑒
−2𝑠

𝑢 (𝑛 − 𝑠)} ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{0.8 + 0.2 sin (𝑛) − 0.8𝑥

2
(𝑛)

− 0.3

∞

∑

𝑠=0

𝑒 − 1

𝑒

𝑒
−𝑠
𝑥
1
(𝑛 − 𝑠)

− 0.3

∞

∑

𝑠=0

𝑒
2
− 1

𝑒
2

𝑒
−2𝑠

𝑢 (𝑛 − 𝑠)} ,

𝑢 (𝑛 + 1) = 𝑢 (𝑛) (1 − 0.5)

+ 5

∞

∑

𝑠=0

𝑒
3
− 1

𝑒
3

𝑒
−3𝑠

𝑥
1
(𝑛 − 𝑠)

+

∞

∑

𝑠=0

𝑒
3
− 1

𝑒
3

𝑒
−3𝑠

𝑥
2
(𝑛 − 𝑠) .

(110)
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Figure 4: Numeric simulations of the solutions (𝑥
1
(𝑛), 𝑥

2
(𝑛), 𝑢(𝑛)) of system (110), with the initial conditions (𝑥

1
(𝑠), 𝑥
2
(𝑠), 𝑢(𝑠)) = (0.8, 0.4,

0.5), (1.4, 1.2, 2), and (1.2, 1.0, 1.5), 𝑠 = ⋅ ⋅ ⋅ , −𝑛, −𝑛 + 1, . . . , −1, 0, respectively.

By calculating, one has

𝑎
𝐿

1

𝑎
𝑀

2

=

4

5

>

𝑏
𝑀

12
𝑒 + 𝑑
𝑀

1
𝑐
2

𝑏
𝐿

22
𝑒 + 𝑑
𝐿

2
𝑐
2

=

4

7

,

𝑎
𝐿

1

𝑎
𝑀

2

=

4

5

>

𝑏
𝑀

11
𝑒 + 𝑑
𝑀

1
𝑐
1

𝑏
𝐿

21
𝑒 + 𝑑
𝐿

2
𝑐
1

=

26

33

.

(111)

Thus, all the conditions ofTheorem 9 are satisfied, and so the
permanent 𝑥

2
species in system (108) become extinct in sys-

tem (110).
Figure 4 shows the dynamic behaviors of system (110),

which supports our assertion.

7. Discussion

(1) Li et al. [3] consider a continuous and autonomous
Lotka-Volterra competitive system with infinite
delays and feedback controls; if the Lotka-Volterra
competitive system is globally stable, then they
showed that the feedback controls only change the
position of the unique positive equilibrium and retain
the stable property. As a consequence of this result,
feedback control variables have no influence on the
persistent property of the system they considered;
Xu et al. [5] proposed and studied the discrete
nonautonomous Lotka-Volterra competitive system
with delays and feedback controls (model (4)).
Theorem 3.2 in [5] showed that feedback controls do
not affect the persistent property of system (4). In
this paper, we propose and study a discrete Lotka-
Volterra competition system with single feedback
control variable. Remarks 12 and 13 show that the
feedback control variable plays an important role

in the persistent property of the system (2). If the
Lotka-Volterra competitive system is permanent,
then we show that, by choosing suitable feedback
control variable, one of the species will be driven to
extinction; that is, feedback control variable, which
represents the biological control or some harvesting
procedure, is an unstable factor of the system. Such
a finding overturns the previous recognition on
feedback control variables ([3, 5]) and shows that it is
better for us to take a single policy to protect the rare
species through reducing the species’ competitions
than to take two different policies.

(2) In [2], Chen proposed system (2) and investigated the
persistent property of the system (see Theorem A in
introduction section); however, he did not investigate
the stability property and extinction property of the
system. As a direct corollary ofTheorem 7, concerned
with the stability property of system (2), we have the
following.

Theorem B. Assume that there exist positive constants 𝛼
𝑖
, 𝑖 =

1, 2, such that

𝛼
1
𝐴
11
− 𝛼
2
𝑏
𝑀

21
> 0, 𝛼

2
𝐴
22
− 𝛼
1
𝑏
𝑀

12
> 0 (112)

hold; then, for any two positive solutions (𝑥
1
(𝑛), 𝑥
2
(𝑛)) and

(𝑥
∗

1
(𝑛), 𝑥
∗

2
(𝑛)) of system (2), one has

lim
𝑛→+∞

(𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)) = 0, (113)

where

𝐴
𝑖𝑖
= min{𝑏𝐿

𝑖𝑖
,

2

𝑀
𝑖

− 𝑏
𝑀

𝑖𝑖
} , 𝑖 = 1, 2. (114)
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Now let us consider the autonomous case of system (2).
Assume that 𝑎

𝑖
> 1, 𝑖 = 1, 2; then

𝐴
𝑖𝑖
= min{𝑏

𝑖𝑖
,

2𝑏
𝑖𝑖

exp {𝑎
𝑖
− 1}

− 𝑏
𝑖𝑖
} = (

2

exp {𝑎
𝑖
− 1}

− 1) 𝑏
𝑖𝑖
.

(115)

As a corollary of Theorem B, we have the following.

Theorem B


. Assume that 𝑎
𝑖
> 1, 𝑖 = 1, 2, and

(

2

exp {𝑎
1
− 1}

− 1) 𝑏
11
− 𝑏
21
> 0,

(

2

exp {𝑎
2
− 1}

− 1) 𝑏
22
− 𝑏
12
> 0

(116)

hold; then, for any two positive solutions (𝑥
1
(𝑛), 𝑥
2
(𝑛)) and

(𝑥
∗

1
(𝑛), 𝑥
∗

2
(𝑛)) of the system (2), one has

lim
𝑛→+∞

(𝑥
𝑖
(𝑛) − 𝑥

∗

𝑖
(𝑛)) = 0. (117)

Remark 15. Wu and Zhang [19] obtained a set of sufficient
conditions which ensure the global attractivity of a discrete
autonomous Lotka-Volterra competition system with infinite
delays and feedback controls; as a direct corollary of their
main result, one could also obtain a set of sufficient conditions
which ensure the global stability of the autonomous case of
system (2).However, their result required the assumption 𝑎

𝑖
≤

1, 𝑖 = 1, 2. While Theorem B solves the case 𝑎
𝑖
> 1, 𝑖 = 1, 2.

It is in this sense that our resultTheorem B supplements and
complements the main result of Wu and Zhang [19].

Now, concerned with the extinction property of the sys-
tem (2), with some minor revision of the proof of Theorems
8 and 9, we could obtain the following results.

Theorem C. Assume that

𝑎
𝑀

1

𝑎
𝐿

2

<

𝑏
𝐿

11

𝑏
𝑀

21

,

𝑎
𝑀

1

𝑎
𝐿

2

<

𝑏
𝐿

12

𝑏
𝑀

22

(118)

hold; let (𝑥
1
(𝑛), 𝑥
2
(𝑛)) be any positive solution of system (2);

then

lim
𝑛→+∞

𝑥
1
(𝑛) = 0. (119)

Theorem D. Assume that

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑏
𝑀

11

𝑏
𝐿

21

,

𝑎
𝐿

1

𝑎
𝑀

2

>

𝑏
𝑀

12

𝑏
𝐿

22

(120)

hold; let (𝑥
1
(𝑛), 𝑥
2
(𝑛)) be any positive solution of system (2);

then

lim
𝑛→+∞

𝑥
2
(𝑛) = 0. (121)

It is interesting to investigate the stability property of
the rest of the species when one of the species in system
(2) is driven to extinction. In this case, as a direct corollary
of Theorems 10 and 11, by simple computation, we have the
following.

Theorem E. Assume that (118) holds and also

𝑏
𝑀

22

𝑏
𝐿

22

exp {𝑎𝑀
2
− 1} < 2 (122)

holds; then, for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system

(2), we have
lim
𝑛→+∞

𝑥
1
(𝑛) = 0, lim

𝑛→+∞
(𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)) = 0, (123)

where 𝑥∗
2
(𝑛) is any positive solution of the system 𝑥

2
(𝑛 + 1) =

𝑥
2
(𝑛) exp(𝑎

2
(𝑛) − 𝑏

22
(𝑛)𝑥
2
(𝑛)).

Theorem F. Assume that (120) holds and also

𝑏
𝑀

11

𝑏
𝐿

11

exp {𝑎𝑀
1
− 1} < 2 (124)

holds; then, for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system

(2), we have
lim
𝑛→+∞

𝑥
2
(𝑛) = 0, lim

𝑛→+∞
(𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)) = 0, (125)

where 𝑥∗
1
(𝑛) is any positive solution of the system 𝑥

1
(𝑛 + 1) =

𝑥
1
(𝑛) exp(𝑎

1
(𝑛) − 𝑏

11
(𝑛)𝑥
1
(𝑛)).

Obviously, Theorems B–F complement and supplement
the main results of Chen [2].

Appendix

The proof of the solution of system (5) which satisfies the
initial conditions (8) is positive.

Proof. For convenience, we introduce the following nota-
tions:

𝐹
𝑖
(𝑛) = 𝑎

𝑖
(𝑛) − 𝑏

𝑖𝑖
(𝑛) 𝑥
𝑖
(𝑛) − 𝑏

𝑖𝑗
(𝑛)

×

∞

∑

𝑠=0

𝑘
𝑖𝑗
(𝑠) 𝑥
𝑗
(𝑛 − 𝑠) − 𝑑

𝑖
(𝑛)

∞

∑

𝑠=0

ℎ
𝑖
(𝑠) 𝑢 (𝑛 − 𝑠) ,

𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗,

𝑏 (𝑛) = 𝑐
1
(𝑛)

∞

∑

𝑠=0

𝑙
1
(𝑠) 𝑥
1
(𝑛 − 𝑠)

+ 𝑐
2
(𝑛)

∞

∑

𝑠=0

𝑙
2
(𝑠) 𝑥
2
(𝑛 − 𝑠) .

(A.1)

And so, from the first and second equations of system (5), we
have

𝑥
𝑖
(𝑛 + 1)

𝑥
𝑖
(𝑛)

= exp {𝐹
𝑖
(𝑛)} . (A.2)

Therefore

𝑥
𝑖
(𝑛) = 𝑥

𝑖
(0) exp{

𝑛−1

∑

𝑝=0

𝐹
𝑖
(𝑝)} > 0. (A.3)
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From the third equation of system (5), we have

𝑢 (𝑛 + 1) ≥ (1 − 𝑒
𝑢
) 𝑢 (𝑛) + 𝑏 (𝑛) . (A.4)

Therefore

𝑢 (𝑛) ≥ (1 − 𝑒
𝑢
)
𝑛

𝑢 (0) +

𝑛−1

∑

𝑝=0

(1 − 𝑒
𝑢
)
𝑝

𝑏 (𝑛 − 𝑝 − 1) . (A.5)

From conditions (H
1
) and (8), we can know

1 − 𝑒
𝑢
> 0, 𝑏 (𝑛 − 𝑝 − 1) > 0. (A.6)

So

𝑢 (𝑛) > 0. (A.7)
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