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We give some properties of the periodic Bernoulli functions and study the Fourier series of the periodic Euler functions which are
derived periodic functions from the Euler polynomials. And we derive the relations between the periodic Bernoulli functions and
those from Euler polynomials by using the Fourier series.

1. Introduction

The numbers and polynomials of Bernoulli and Euler are
very useful in classical analysis and numerical mathemat-
ics. Recently, several authors have studied the identities
of Bernoulli and Euler numbers and polynomials [1–12].
The Bernoulli and Euler polynomials, 𝐵

𝑛
(𝑥), 𝐸

𝑛
(𝑥), 𝑛 =

0, 1, . . ., are defined, respectively, by the following exponential
generating functions:

∞

∑

𝑛=0

𝐵
𝑛

(𝑥)
𝑡
𝑛

𝑛!
=

𝑡

𝑒𝑡 − 1
𝑒
𝑥𝑡

,

∞

∑

𝑛=0

𝐸
𝑛

(𝑥)
𝑡
𝑛

𝑛!
=

2

𝑒𝑡 + 1
𝑒
𝑥𝑡

.

(1)

When 𝑥 = 0, these values 𝐵
𝑛
(0) = 𝐵

𝑛
and 𝐸

𝑛
(0) = 𝐸

𝑛
, 𝑛 =

0, 1, . . ., are called the Bernoulli numbers and Euler numbers,
respectively [13].

Euler polynomials are related to the Bernoulli polynomi-
als by

𝐸
𝑛−1

(𝑥) =
2

𝑛
{𝐵
𝑛

(𝑥) − 2
𝑛

𝐵
𝑛

(
𝑥

2
)} ,

𝐸
𝑛−2

(𝑥) =
4

𝑛 (𝑛 − 1)

𝑛−2

∑

𝑘=0

(
𝑛

𝑘
) {(2
𝑛−𝑘

− 1) 𝐵
𝑛−𝑘

𝐵
𝑘

(𝑥)} ,

(2)

where (
𝑛

𝑘
) = 𝑛!/(𝑛 − 𝑘)!𝑘! [3, 14].

Bernoulli polynomials and the related Bernoulli func-
tions are of basic importance in theoretical numerical anal-
ysis. The periodic Bernoulli functions 𝐵

𝑛
(𝑥) are Bernoulli

polynomials evaluated at the fractional part of the argument
𝑥 as follows:

𝐵
𝑛

(𝑥) = 𝐵
𝑛

(⟨𝑥⟩) , (3)

where ⟨𝑥⟩ = 𝑥 − [𝑥] and [𝑥] is the greatest integer less
than or equal to 𝑥 [13]. Periodic Bernoulli functions play an
important role in several mathematical results such as the
general Euler-McLaurin summation formula [1, 10, 15]. And
also it was shown by Golomb et al. that the periodic Bernoulli
functions serve to construct periodic polynomials splines on
uniform meshes. For uniform meshes Delvos showed that
Locher’s method of interpolation by translation is applicable
to periodic𝐵-splines.This yields an easy and stable algorithm
for computing periodic polynomial interpolating splines of
arbitrary degree on uniform meshes via Fourier transform
[15].

A Fourier series is an expansion of a periodic function
𝑓(𝑥) in terms of an infinite sum of sines and cosines. Fourier
series make use of the orthogonality relationships of the
sine and cosine functions. Since these functions form a

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 856491, 4 pages
http://dx.doi.org/10.1155/2014/856491

http://dx.doi.org/10.1155/2014/856491


2 Abstract and Applied Analysis

complete orthogonal system over [−𝜋, 𝜋], the Fourier series
of a function 𝑓(𝑥) is given by

𝑓 (𝑥) =
1

2
𝑎
0

+

∞

∑

𝑛=1

(𝑎
𝑛
cos 𝑛𝑥 + 𝑏

𝑛
sin 𝑛𝑥) , (4)

where

𝑎
0

=
1

𝜋
∫

𝜋

−𝜋

𝑓 (𝑥) 𝑑𝑥,

𝑎
𝑛

=
1

𝜋
∫

𝜋

−𝜋

𝑓 (𝑥) cos 𝑛𝑥 𝑑𝑥,

𝑏
𝑛

=
1

𝜋
∫

𝜋

−𝜋

𝑓 (𝑥) sin 𝑛𝑥 𝑑𝑥.

(5)

Thenotion of a Fourier series can also be extended to complex
coefficients [16, 17].

The complex form of the Fourier series can be written by
the Euler formula, 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 (𝑖 = √−1), as follows:

𝑓 (𝑥) =

∞

∑

𝑘=−∞

𝑐
𝑘
𝑒
𝑖𝑘𝑥

, (6)

where

𝑐
𝑘

=
1

2𝜋
∫

𝜋

−𝜋

𝑓 (𝑥) 𝑒
−𝑖𝑘𝑥

𝑑𝑥, 𝑘 ∈ Z. (7)

For a function periodic in [−𝐿/2, 𝐿/2], these become

𝑓 (𝑥) =

∞

∑

𝑛=−∞

𝑐
𝑘
𝑒
𝑖(2𝜋𝑘𝑥/𝐿)

, (8)

where

𝑐
𝑘

=
1

𝐿
∫

𝐿/2

−𝐿/2

𝑓 (𝑥) 𝑒
−𝑖(2𝜋𝑘𝑥/𝐿)

𝑑𝑥. (9)

In this paper, we give some properties of the periodic
Bernoulli functions and study the Fourier series of the peri-
odic Euler functions which are derived periodic functions
from the Euler polynomials. And we derive the relations
between the periodic Bernoulli functions and those from
Euler polynomials by using the Fourier series. We indebted
this idea to Kim [6–9, 18–20].

2. Periodic Bernoulli and Euler Functions

The periodic Bernoulli functions can be represented as
follows:

𝐵
∗

𝑛
(𝑥) = 𝐵

𝑛
(𝑥) , 0 ≤ 𝑥 < 1, 𝑛 = 0, 1, . . . , (10)

satisfying

𝐵
∗

𝑛
(𝑥) = 𝐵

∗

𝑛
(𝑥 + 1) , 𝑥 ∈ R, 𝑛 = 0, 1, . . . . (11)

From the definition of 𝐵
𝑛
(𝑥) we know that for 0 ≤ 𝑥 < 1

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐵
∗

𝑘
(𝑥) − 𝐵

∗

𝑛
(𝑥) = 𝑛𝑥

𝑛−1

, 𝑛 = 0, 1, . . . . (12)

These can be rewritten as follows:

(𝐵
∗

(𝑥) + 1)
𝑛

− 𝐵
∗

𝑛
(𝑥) = 𝑛𝑥

𝑛−1

, 𝑛 = 0, 1, . . . , (13)

by using the symbolic convention exhibited by (𝐵
∗

(𝑥))
𝑛

=:

𝐵
∗

𝑛
(𝑥) [7].
Observe that for 0 ≤ 𝑥 < 1

∞

∑

𝑛=0

𝐵
∗

𝑛
(1 − 𝑥)

𝑡
𝑛

𝑛!
=

−𝑡

𝑒−𝑡 − 1
𝑒
𝑥(−𝑡)

=

∞

∑

𝑛=0

(−1)
𝑛

𝐵
∗

𝑛
(𝑥)

𝑡
𝑛

𝑛!
. (14)

Since 𝐵
∗

𝑛
(𝑥), 𝑛 = 0, 1, . . ., are periodic with period 1 onR, we

have

𝐵
∗

𝑛
(−𝑥) = (−1)

𝑛

𝐵
∗

𝑛
(𝑥) , 𝑥 ∈ R. (15)

The Apostol-Bernoulli and Apostol-Euler polynomials
have been investigated by many researchers [1, 2, 10, 11]. In
[1], Bayad found the Fourier expansion for Apostol-Bernoulli
polynomials which are complex version of the classical
Bernoulli polynomials. As a result of ordinary Bernoulli
polynomials, we have the following lemma.

Lemma 1 (Bayad [1]; see also Luo [10]). The Fourier series of
𝐵
∗

𝑛
(𝑥) on (−1, 1) is

𝐵
∗

𝑛
(𝑥) = −𝑛! ∑

𝑘∈Z−{0}

1

(2𝜋𝑖𝑘)
𝑛
𝑒
2𝜋𝑖𝑘𝑥

, 𝑛 = 0, 1, . . . . (16)

From Lemma 1 we have the following theorem.

Theorem 2. For |𝑥| < 1 and 𝐿 ∈ N one has

𝐿−1

∑

ℓ=0

𝐵
∗

𝑛
(

𝑥 + ℓ

𝐿
)

=
1

𝐿
𝐵
∗

𝑛
(

𝑥

𝐿
) − 𝑛! ∑

𝑘∈Z−{0}

[
[

[

𝐿−1

∑

ℓ=0

𝑘 ̸≡ 0( mod 𝐿)

𝑒
2𝜋𝑖𝑘(𝑥+ℓ)/𝐿

(2𝜋𝑖𝑘)
𝑛

]
]

]

.

(17)

Proof. Since

𝐿−1

∑

ℓ=0

𝐵
∗

𝑛
(

𝑥 + ℓ

𝐿
) = (−𝑛!)

𝐿−1

∑

ℓ=0

{ ∑

𝑘∈Z−{0}

𝑒
2𝜋𝑖𝑘(𝑥+ℓ)/𝐿

(2𝜋𝑖𝑘)
𝑛

}

= (−𝑛!) ∑

𝑘∈Z−{0}

[
[

[

𝐿−1

∑

ℓ=0

𝑘≡0( mod 𝐿)

𝑒
2𝜋𝑖𝑘(𝑥+ℓ)/𝐿

(2𝜋𝑖𝑘)
𝑛

+

𝐿−1

∑

ℓ=0

𝑘 ̸≡ 0( mod 𝐿)

𝑒
2𝜋𝑖𝑘(𝑥+ℓ)/𝐿

(2𝜋𝑖𝑘)
𝑛

]
]

]

(18)

and under 𝑘 ≡ 0(mod 𝐿)

𝐿−1

∑

ℓ=0

𝑒
2𝜋𝑖ℓ𝑘/𝐿

= 𝐿, (19)
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we have

𝐿−1

∑

ℓ=0

𝐵
∗

𝑛
(

𝑥 + ℓ

𝐿
)

= (−𝑛!) ∑

𝑘∈Z−{0}

[
[

[

1

𝐿

𝑒
2𝜋𝑖𝑘𝑥/𝐿

(2𝜋𝑖𝑘)
𝑛

+

𝐿−1

∑

ℓ=0

𝑘 ̸≡ 0( mod 𝐿)

𝑒
2𝜋𝑖𝑘(𝑥+ℓ)/𝐿

(2𝜋𝑖𝑘)
𝑛

]
]

]

.

(20)

This implies the desired result.

The periodic Euler polynomials 𝐸
𝑛
(𝑥) can be usually

defined by 𝐸
𝑛
(𝑥 + 1) = −𝐸

𝑛
(𝑥) and 𝐸

𝑛
(𝑥) = 𝐸

𝑛
(𝑥) for 0 ≤

𝑥 < 1 [13]. Unlike the periodic Bernoulli, which have period
1, the 𝐸

𝑛
(𝑥) have periodic 2 and exhibit an even (versus odd)

symmetry about zero [21].
As the above Bernoulli case, we consider the periodic

Euler functions as the following:

𝐸
∗

𝑛
(𝑥) = 𝐸

𝑛
(𝑥) , 0 ≤ 𝑥 < 1, 𝑛 = 0, 1, . . . , (21)

such that

𝐸
∗

𝑛
(𝑥) = 𝐸

∗

𝑛
(𝑥 + 1) , 𝑥 ∈ R, 𝑛 = 0, 1, . . . . (22)

Then the functions 𝐸
∗

𝑛
, 𝑛 = 0, 1, . . ., are also periodic. From

definition of Euler polynomials, we know that

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐸
∗

𝑘
(𝑥) + 𝐸

∗

𝑛
(𝑥) = 2𝑥

𝑛

, 0 ≤ 𝑥 < 1, 𝑛 = 0, 1, . . . ,

(23)

where 𝐸
∗

𝑘
= 𝐸
𝑘
(0) is the 𝑘th Euler number. These can be

rewritten as follows:

(𝐸
∗

(𝑥) + 1)
𝑛

+ 𝐸
∗

𝑛
(𝑥) = 2𝑥

𝑛

, 0 ≤ 𝑥 < 1, 𝑛 = 0, 1, . . . ,

(24)

by using the symbolic convention exhibited by (𝐸
∗

(𝑥))
𝑛

=:

𝐸
∗

𝑛
(𝑥). When 𝑥 = 0, these relations are given by

(𝐸
∗

+ 1)
𝑛

+ 𝐸
∗

𝑛
= 2𝛿
0,𝑛

, 𝑛 = 0, 1, . . . , (25)

where 𝛿
0,𝑛

is Kronecker symbol and (𝐸
∗

+ 1)
𝑛 is interpreted

as ∑
𝑛

𝑘=0
(
𝑛

𝑘
) 𝐸
∗

𝑘
[9].

Remark 3. Observe that for 0 ≤ 𝑥 < 1

∞

∑

𝑛=0

𝐸
∗

𝑛
(1 − 𝑥)

𝑡
𝑛

𝑛!
=

∞

∑

𝑛=0

(−1)
𝑛

𝐸
∗

𝑛
(𝑥)

𝑡
𝑛

𝑛!
. (26)

As in the Bernoulli case, we have the following equation:

𝐸
∗

𝑛
(−𝑥) = (−1)

𝑛

𝐸
∗

𝑛
(𝑥) , 𝑥 ∈ R. (27)

This means that if 𝑛 is odd (even) number, then 𝐸
∗

𝑛
is odd

(even) function.

Theorem 4. For |𝑥| < 1/2, one has

𝐸
∗

𝑛
(𝑥) = −

2

𝑛 + 1
𝐸
∗

𝑛+1

+ ∑

𝑘∈Z−{0}

[2

𝑛−2

∑

ℓ=1

(𝑛)
ℓ
𝐸
∗

𝑛−ℓ+1

(2𝜋𝑖𝑘)
ℓ

(𝑘 − ℓ + 1)

−
𝑛!

(2𝜋𝑖𝑘)
𝑛
] 𝑒
2𝜋𝑖𝑘𝑥

.

(28)

Proof. Let

𝐸
∗

𝑛
(𝑥) =

∞

∑

𝑘=−∞

𝑐
∗

𝑘,𝑛
𝑒
2𝜋𝑖𝑘𝑥 (29)

be the Fourier series for 𝐸
∗

𝑛
(𝑥), 𝑛 = 0, 1, . . ., on (−1/2, 1/2).

Then

𝑐
∗

𝑘,𝑛
= ∫

1/2

−1/2

𝐸
∗

𝑛
(𝑥) 𝑒
−2𝜋𝑖𝑘𝑥

𝑑𝑥. (30)

From definition of 𝐸
∗

𝑛
(𝑥), we have

∫

1/2

−1/2

𝐸
𝑛
(𝑥)
∗

𝑒
−2𝜋𝑖𝑘𝑥

𝑑𝑥 = ∫

1

0

𝐸
𝑛

(𝑥) 𝑒
−2𝜋𝑖𝑘𝑥

𝑑𝑥. (31)

Since 𝐸
𝑛+1

(1) = −𝐸
𝑛+1

, if 𝑘 = 0, then

𝑐
∗

0,𝑛
=

1

𝑛 + 1
[𝐸
𝑛+1

(1) − 𝐸
𝑛+1

] = −
2

𝑛 + 1
𝐸
𝑛+1

= −
2

𝑛 + 1
𝐸
∗

𝑛+1
.

(32)

For 𝑘 ∈ Z− {0}, so we have the following recurrence relation:

𝑐
∗

𝑘,𝑛
= −

2

𝑛 + 1
𝐸
𝑛+1

+
2𝜋𝑖𝑘

𝑛 + 1
∫

1

0

𝐸
𝑛+1

(𝑥) 𝑒
−2𝜋𝑖𝑘𝑥

𝑑𝑥

= −
2

𝑛 + 1
𝐸
𝑛+1

+
2𝜋𝑖𝑘

𝑛 + 1
𝑐
∗

𝑘,𝑛+1
, 𝑛 = 0, 1, . . . .

(33)

This implies that

𝑐
∗

𝑘,𝑛
= 2

𝑛−2

∑

ℓ=1

(𝑛)
ℓ
𝐸
𝑛−ℓ+1

(2𝜋𝑖𝑘)
ℓ

(𝑛 − ℓ + 1)

+
𝑛!

(2𝜋𝑖𝑘)
𝑛−1

𝑐
∗

𝑘,1
,

𝑛 = 0, 1, . . . ,

(34)

where (𝑛)
ℓ

= 𝑛(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − ℓ + 1) is falling factorial. Since

𝑐
∗

𝑘,1
= ∫

1

0

(𝑥 −
1

2
) 𝑒
−2𝜋𝑖𝑘𝑥

𝑑𝑥 = −
1

2𝜋𝑖𝑘
, (35)

we have

𝑐
∗

𝑘,𝑛
= 2

𝑛−2

∑

ℓ=1

(𝑛)
ℓ
𝐸
𝑛−ℓ+1

(2𝜋𝑖𝑘)
ℓ

(𝑛 − ℓ + 1)

+
𝑛!

(2𝜋𝑖𝑘)
𝑛
, 𝑛 = 0, 1, . . . .

(36)

This is completion of the proof.
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From Lemma 1 and Theorem 4 we have the following
corollary.

Corollary 5. For |𝑥| < 1/2 one has

𝐵
∗

𝑛
(𝑥) = 𝐸

∗

𝑛
(𝑥) +

2

𝑛 + 1
𝐸
∗

𝑛+1

− 2 ∑

𝑘∈Z−{0}

[

𝑛−2

∑

ℓ=1

(𝑛)
ℓ
𝐸
∗

𝑛−ℓ+1

(2𝜋𝑖𝑘)
𝑙

(𝑛 − ℓ + 1)

] 𝑒
2𝜋𝑖𝑘𝑥

,

(37)

where 𝐸
∗

𝑛−ℓ+1
= 𝐸
∗

𝑛−ℓ+1
(0) and (𝑛)

ℓ
= 𝑛(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − ℓ + 1) is

falling factorial.

Corollary 6. For |𝑥| < 1/2 one has

𝐵
∗

𝑛
(𝑥) = 𝐸

∗

𝑛
(𝑥) +

2

𝑛 + 1
𝐸
∗

𝑛+1
+ 2

𝑛−2

∑

ℓ=1

(
𝑛

ℓ
)

𝐸
∗

𝑛−ℓ+1

𝑛 − ℓ + 1
𝐵
∗

ℓ
(𝑥) ,

(38)

where 𝐸
∗

𝑛−ℓ+1
= 𝐸
∗

𝑛−ℓ+1
(0).

Proof. From Lemma 1, we have

∑

𝑘∈Z−{0}

[

𝑛−2

∑

ℓ=1

(𝑛)
ℓ
𝐸
∗

𝑛−ℓ+1

(2𝜋𝑖𝑘)
ℓ

(𝑛 − ℓ + 1)

] 𝑒
2𝜋𝑖𝑘𝑥

=

𝑛−2

∑

ℓ=1

(
𝑛

ℓ
)

𝐸
∗

𝑛−ℓ+1

(𝑛 − ℓ + 1)
[ℓ! ∑

𝑘∈Z−{0}

𝑒
2𝜋𝑖𝑘𝑥

(2𝜋𝑖𝑘)
ℓ
]

=

𝑛−2

∑

ℓ=1

(
𝑛

ℓ
)

𝐸
∗

𝑛−ℓ+1

(𝑛 − ℓ + 1)
(−𝐵
∗

ℓ
(𝑥)) .

(39)

This becomes the desired result.
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