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We consider a class of stochastic delay recurrent neural networks with distributed parameters and Markovian jumping. It is
assumed that the coefficients in these neural networks belong to the interval matrices. Several sufficient conditions ensuring robust
exponential stabilization are derived by using periodically intermittent control and Lyapunov functional. The obtained results are
very easy to verify and implement, and improve the existing results. Finally, an example with numerical simulations is given to
illustrate the presented criteria.

1. Introduction

In recent decades, neural network dynamics has been widely
studied by many authors due to the fact that neural network
dynamics can be applied to associate memory, signal pro-
cessing, pattern classification, and quadratic optimization.
Liao and Mao [1, 2] investigated the stability of stochastic
neural network for the first time in 1996. By Razumikhin-
type theorems, the stability of stochastic neural networkswith
variable delays was considered [3]. Considering electrons
moving in the asymptotic electromagnetic field, the diffusion
phenomena could not be ignored. Luo et al. [4] gave several
algebra criteria for stochastic Hopfield neural networks with
distributed parameters by using average Lyapunov function.
The asymptotic stability of stochastic reaction- diffusion
systems was also established in [5]. The asymptotic behavior
of several classes of neural networks with reaction-diffusion
terms has been reported in [6–9]. Hu et al. [10] discussed
the exponential stability and synchronization of delay neural
networks with reaction-diffusion terms by impulsive control.

However, the parameters in neural networks are always
some uncertainty and error. Taking these uncertainty and

error into account, Xu et al. [11] investigated stochastic
exponential robust stability of interval neural networks with
reaction-diffusion terms and mixed delays by applying the
vector Lyapunov function method and 𝑀-matrix theory.
Wang andGao [12] studied global exponential robust stability
of reaction-diffusion interval neural networks with time-
varying delays by means of the topological degree theory and
Lyapunov functional method. And, a sufficient condition was
presented for robust global exponential stability of interval
reaction-diffusion Hopfield neural networks with distributed
delays by constructing Lyapunov functional and utilizing
some inequality techniques [13].

The neural networks driven by continuous-time Markov
Chains have been also used to model many practical neural
networks because they may experience abrupt changes in
their structure and parameters caused by phenomena such
as component failures or repairs, changing subsystem inter-
connections, and abrupt environmental disturbances. The
exponential stability and stabilization of recurrent neural
networks with Markovian jumping were discussed in [14–
20]. Robust stability of stochastic delayed additive neural
networks withMarkov jumping was investigated in [21]. Mao
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[22] studied the stability of stochastic delay interval system
with Markovian jumping by linear matrix inequality.

Many control approaches have been developed to stable
and synchronized system such as impulsive control [23]
and intermittent control [24–29]. Gan [24–26] revealed
exponential synchronization of three classes of stochastic
delay neural networks via periodically intermittent control.
Hu et al. [27, 28] investigated exponential stabilization and
synchronization of delay neural networks. Huang et al. [29]
studied stabilization of delayed chaotic neural networks by
periodically intermittent control.

In this paper, we will consider a class of stochastic
delay interval recurrent neural networks with distributed
parameters and Markovian switching whose active func-
tions are more general than the Lipschitz continuous active
function [24–26] and the monotone active function [27–
29]. By the average Lyapunov functional and periodically
intermittent control, several sufficient conditions ensuring
robust exponential stabilization are given. Therefore, the
organization of this paper is as follows. Some preliminaries
and introduction are given in Section 2. In Section 3, robust
exponential stabilization of these stochastic neural networks
is proved. An example with numerical simulation is given to
illustrate the effectiveness of the obtained results in Section 4.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω,F, {F

𝑡
}
𝑡≥0
,P) be a complete probability space with a

filtration {F}
𝑡≥0

satisfying the usual conditions (i.e., it is
right-continuous and F

0
contains all P-null sets). Let R𝑚

be the 𝑚-dimensional Euclidean space and let | ⋅ | be the
Euclidean norm in R𝑚, R

+
= [0, +∞) and 𝜏 > 0. Assuming

that Ω
0

⊂ R𝑚 is a bounded compact set with smooth
boundary 𝜕Ω

0
and mes Ω

0
> 0 in space R𝑚. Let 𝐶([−𝜏, 0] ×

Ω
0
;R𝑛

) denote the family of continuous function𝜙(𝑡, 𝑥) from
[−𝜏, 0] × Ω

0
toR𝑛 with ‖𝜙‖ = sup

−𝜏≤𝑡≤0, 𝑥∈Ω0
|𝜙(𝑡, 𝑥)|. Denote

by 𝐶
𝑏

F0
([−𝜏, 0] × Ω

0
,R𝑛

) the family of all bounded, F
0
-

measurable,𝐶([−𝜏, 0]×Ω
0
;R𝑛

)-valued random variables. Let
𝑊(𝑡), 𝑡 ≥ 0 be 𝑛-dimension Brownian motion defined on the
probability space. Let 𝑟(𝑡), 𝑡 ≥ 0 be right-continuous Markov
chain on the probability space taking values in a finite state
space S = {1, 2, . . . , 𝑁} with generator Γ = (𝑟

𝑖𝑗
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖}

= {
𝛾
𝑖𝑗
Δ + 𝑜 (Δ) if 𝑖 ̸= 𝑗

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) if 𝑖 = 𝑗,

(1)

where Δ > 0. Here, 𝑟
𝑖𝑗
≥ 0 is the transition rate from 𝑖 to 𝑗 if

𝑖 ̸= 𝑗 while

𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝛾
𝑖𝑗
. (2)

We assume that the Markov chain 𝑟(⋅) is independent of the
Brownian motion 𝑊(⋅). It is well known that almost every
sample path of 𝑟(𝑡) is right-continuous step function with a
finite number of simple jumps in any finite subinterval R

+
.

In this paper, we consider a class of stochastic delay inter-
val recurrent neural networks with distributed parameters
and Markovian jumping:

𝑑𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡) ,

(3)

for 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 ≥ 2 denotes the number
of neurons in neural networks. 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
)
𝑇
∈ Ω

0
⊂

R𝑚 is the space variable, Ω
0
= {𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
)
𝑇
||𝑥

𝑘
| <

𝜃
𝑘
, 𝑘 = 1, 2, . . . , 𝑚} is a bounded compact set with

smooth boundary 𝜕Ω
0
, and mes Ω

0
> 0 in space R𝑚.

𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), . . . , 𝑢

𝑛
(𝑡, 𝑥))

𝑇 corresponds to the
state variable of the 𝑖th neural in space 𝑥 and at time 𝑡.
𝐷

𝑖𝑘
(𝑟(𝑡)) ≥ 0 denotes the transmission diffusion operator

along the 𝑖th neuron. 𝑎
𝑖
(𝑟(𝑡)) > 0 denotes the changing

time constant or passive decay rate of the 𝑖th neuron. 𝑏
𝑖𝑗
(𝑟(𝑡))

and 𝑐
𝑖𝑗
(𝑟(𝑡)) denote the connection weight and the delayed

connection weight of the 𝑗th neuron on the 𝑖th neuron,
respectively. 𝜏

𝑖𝑗
(𝑡) corresponds to the transmission delay

and satisfies 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏, ̇𝜏

𝑖𝑗
(𝑡) ≤ 𝜏

0
< 1 for all

𝑡 ≥ 0 (𝜏, 𝜏
0
is a constant, 𝑖, 𝑗 = 1, 2, . . . , 𝑛). ℎ

𝑖𝑗
(⋅, ⋅) denotes

stochastic perturbation function to the neuron.
The boundary condition of system (3),

𝑢 (𝑡, 𝑥)|
𝜕Ω0

= 0, (𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω
0
, 𝑖 = 1, 2, . . . , 𝑛.

(4)

The initial value of system (3),

𝑢 (𝑡, 𝑥) = 𝜙
𝑖
(𝑡, 𝑥) , (𝑡, 𝑥) ∈ [−𝜏, 0) × Ω

0
, 𝑖 = 1, 2, . . . , 𝑛.

(5)

Moreover, 𝐴(𝑟(𝑡)) = diag(𝑎
1
(𝑟(𝑡)), . . . , 𝑎

𝑛
(𝑟(𝑡))), 𝐵(𝑟(𝑡)) =

(𝑏
𝑖𝑗
(𝑟(𝑡)))

𝑛×𝑛
, and 𝐶(𝑟(𝑡)) = (𝑐

𝑖𝑗
(𝑟(𝑡)))

𝑛×𝑛
are the interval

connection weight matrix for each value of 𝑟(𝑡) in S with the
initial value 𝑟(0) = 𝑟

0
; 𝐷(𝑟(𝑡)) = (𝑏

𝑖𝑗
(𝑟(𝑡)))

𝑛×𝑚
is interval

transmission diffusion operator matrix for each value of 𝑟(𝑡)
in S with the initial value 𝑟(0) = 𝑟

0
.
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For convenience, we give the following notions that for
𝑟(𝑡) = 𝑙 in S:

𝐴
∗
= {𝐴 (𝑙) = diag (𝑎

1
(𝑙) , . . . , 𝑎

𝑛
(𝑙)) : 𝐴 (𝑙) ≤ 𝐴 (𝑙) ≤ 𝐴 (𝑙) ,

i.e., 𝑎
𝑖
(𝑙) ≤ 𝑎

𝑖
(𝑙) ≤ 𝑎

𝑖
(𝑙) , 𝑖 = 1, 2, . . . , 𝑛} ;

𝐵
∗
= {𝐵 (𝑙) = (𝑏

𝑖𝑗
(𝑙))

𝑛×𝑛
: 𝐵 (𝑙) ≤ 𝐵 (𝑙) ≤ 𝐵 (𝑙) ,

i.e., 𝑏
𝑖𝑗
(𝑙) ≤ 𝑏

𝑖𝑗
(𝑙) ≤ 𝑏

𝑖𝑗
(𝑙) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ;

𝐶
∗
= {𝐶 (𝑙) = (𝑐

𝑖𝑗
(𝑙))

𝑛×𝑛
: 𝐶 (𝑙) ≤ 𝐶 (𝑙) ≤ 𝐶 (𝑙) ,

i.e., 𝑐
𝑖𝑗
(𝑙) ≤ 𝑐

𝑖𝑗
(𝑙) ≤ 𝑐

𝑖𝑗
(𝑙) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ;

𝐷
∗
= {𝐷 (𝑙) = (𝑑

𝑖𝑗
(𝑙))

𝑛×𝑛
: 𝐷 (𝑙) ≤ 𝐷 (𝑙) ≤ 𝐷 (𝑙) ,

i.e., 𝑑
𝑖𝑗
(𝑙) ≤ 𝑑

𝑖𝑗
(𝑙) ≤ 𝑑

𝑖𝑗
(𝑙) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚} .

(6)

Definition 1. The stochastic vector 𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥),

. . . , 𝑢
𝑛
(𝑡, 𝑥))

𝑇 is called the solution of system (3)–(5), if it
satisfies the following conditions:

(i) 𝑢(𝑡, 𝑥) is adapted to {F
𝑡
}
𝑡≥0

;

(ii) for every 𝑇
0
∈ R

+
, 𝑢(𝑡, 𝑥) ∈ 𝐶

𝑏

F0
([0, 𝑇

0
] ×Ω

0
;R𝑛

) and

E(max
𝑥∈Ω0

∫

𝑇0

0

[|𝑢 (𝑡, 𝑥)|
2
+ |∇𝑢 (𝑡, 𝑥)|

2
] 𝑑𝑡) < +∞; (7)

(iii) for every 𝑡 ∈ R
+
,

∫
Ω0

𝑢
𝑖
(𝑡, 𝑥) 𝑑𝑥

= ∫
Ω0

𝜙
𝑖
(0, 𝑥) 𝑑𝑥 + ∫

Ω0

∫

𝑡

0

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

× (𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

)𝑑𝑠𝑑𝑥

+ ∫
Ω0

∫

𝑡

0

[

[

−𝑎
𝑖
(𝑟 (𝑠)) 𝑢

𝑖
(𝑠, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑠)) 𝑓

𝑗
(𝑢

𝑗
(𝑠, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑠)) 𝑔

𝑗
(𝑢

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠) , 𝑥))]

]

𝑑𝑠𝑑𝑥

+ ∫
Ω0

∫

𝑡

0

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑠, 𝑥) , 𝑢

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠) , 𝑥)) 𝑑𝑊

𝑗
(𝑠) 𝑑𝑥,

(𝑡, 𝑥) ∈ [0, 𝑇
0
] × Ω

0
,

(8)

so it holds as P-a.s., 𝑖 = 1, 2, . . . , 𝑛.

Definition 2. System (3)–(5) is called robust exponential
stable in𝑝thmoment for any𝐴(𝑙) ∈ 𝐴∗,𝐵(𝑙) ∈ 𝐵∗,𝐶(𝑙) ∈ 𝐶∗,
𝐷(𝑙) ∈ 𝐷

∗, 𝑙 ∈ S if the solution 𝑢(𝑡, 𝑥) of system (3)–(5)
satisfies

lim sup
𝑡→+∞

1

𝑡
log (E ‖𝑢 (𝑡, 𝑥)‖𝑝) < 0, (9)

where ||𝑢(𝑡, 𝑥)|| = (∫
Ω0

|𝑢(𝑡, 𝑥)|
𝑝
𝑑𝑥)

1/𝑝

, (𝑡, 𝑥) ∈ R
+
× Ω

0
.

To assure the existence and uniqueness of the solution to
system (3)–(5) (see, [30, 31]), we give the following assump-
tions:

(H1) for 𝑖 = 1, 2, . . . 𝑛, ∀𝑠
1
, 𝑠

2
∈ R, the neuron activation

functions 𝑓
𝑖
, 𝑔

𝑖
are bounded, 𝑓

𝑖
(0) = 𝑔

𝑖
(0) = 0, and

satisfy

𝐿
−

𝑖
≤
𝑓
𝑖
(𝑠

1
) − 𝑓

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝐿
+

𝑖
,

𝑁
−

𝑖
≤
𝑔
𝑖
(𝑠

1
) − 𝑔

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝑁
+

𝑖
,

(10)

where 𝑠
1

̸= 𝑠
2
, and 𝐿−

𝑖
, 𝐿+

𝑖
,𝑁−

𝑖
,𝑁+

𝑖
are constants.

(H2) For 𝑖, 𝑗 = 1, 2, . . . , 𝑛, ∀𝑠
1
, 𝑠

2
, 𝑠

1
, 𝑠

2
∈ R, there exists

positive constant 𝜎
𝑖𝑗
, such that


ℎ
𝑖𝑗
(𝑠

1
, 𝑠

2
) − ℎ

𝑖𝑗
(𝑠

1
, 𝑠

2
)


2

≤ 𝜎
𝑖𝑗
(
𝑠1 − 𝑠

1



2

+
𝑠2 − 𝑠

2



2

) (11)

and ℎ
𝑖𝑗
(0, 0) = 0.

(H3) Time-varying delay function 𝜏
𝑖𝑗
(⋅) : [0, +∞) →

[0, +∞) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) satisfies

0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏, ̇𝜏

𝑖𝑗
(𝑡) ≤ 𝜏

0
≤ 1, (12)

for 𝑡 ≥ 0, where 𝜏 and 𝜏
0
are constants.

It is well known, if the parameters or time-varying delay
in neural networks is appropriately chosen, neural networks
may lead to some phenomena such as instability, divergence,
oscillation, chaos [32, 33].

In order to stabilize the origin of system (3)–(5), we
introduce the following periodically intermittent controller:

V
𝑖
(𝑡, 𝑥) =

{{

{{

{

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑢
𝑗
(𝑡, 𝑥) , 𝑀𝑇 ≤ 𝑡 < 𝑀𝑇 + 𝛿,

0, 𝑀𝑇 + 𝛿 ≤ 𝑡 < (𝑀 + 1) 𝑇,

(13)

where 𝑀 = 0, 1, 2, . . . and 𝑘
𝑖𝑗
is the control gains for 𝑖, 𝑗 =

1, 2, . . . , 𝑛, 𝑇 denotes the control period, and 0 < 𝛿 < 𝑇 is
called the control width.
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Then, system (3) under the periodically intermittent
controller (13) is described by the following equations:

𝑑𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑢
𝑗
(𝑡, 𝑥)

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡)

𝑀𝑇 ≤ 𝑡 < 𝑀𝑇 + 𝛿,

𝑑𝑢
𝑖
(𝑡, 𝑥) =

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)

}

}

}

𝑑𝑡

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡)

𝑀𝑇 + 𝛿 ≤ 𝑡 < (𝑀 + 1) 𝑇.

(14)

Lemma 3 (see [10]). Let 𝑝 ≥ 2 be a positive integer, let 𝜃
𝑘
be a

positive constant, letΩ
0
be a cube |𝑥

𝑘
| ≤ 𝜃

𝑘
for 𝑘 = 1, 2, . . . , 𝑚,

and let 𝑢(𝑥) be a real-valued function belonging to 𝐶
1
(Ω

0
)

which vanish on the boundary 𝜕Ω
0
; that is, 𝑢(𝑥)|

𝜕Ω0
= 0; then

∫
Ω0

|𝑢 (𝑥)|
𝑝
𝑑𝑥 ≤

𝑝
2
𝜃
2

𝑘

4
∫
Ω0

|𝑢 (𝑥)|
𝑝−2



𝜕𝑢

𝜕𝑥
𝑘



2

𝑑𝑥. (15)

3. Robust Exponential Stabilization

In this section, we design suitable 𝑇, 𝛿, and 𝑘
𝑖𝑗
such that

system (3)–(5) under the external controller (13) can realize

robust exponential stability in 𝑝thmoment. For convenience,
we give some denotations as follows:

𝜆
𝑖
= min

𝑙∈S
𝜇
𝑙
{

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

+ 𝑝𝑎
∗

𝑖

−

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(�̃�
𝑝𝛼ℓ𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁ℓ𝑖𝑗

𝑗
)

−
𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎
𝑝𝜖ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔ℓ𝑖𝑗

𝑖𝑗
)

−

𝑛

∑

𝑗=1

(�̃�
𝑝𝛼𝑝𝑗𝑖

𝑗𝑖
�̃�
𝑝𝛽𝑝𝑗𝑖

𝑖

+ 𝑐
𝑝𝜉𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁𝑝𝑗𝑖

𝑖

+
𝑝 − 1

2
(𝜎

𝑝𝜖(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝑝𝜖𝑝𝑗𝑖

𝑗𝑖
))} ,

(16)

𝜅
𝑖
= min

𝑙∈S
𝜇
𝑙
{

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

+ 𝑝𝑎
∗

𝑖

−

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(�̃�
𝑝𝛼ℓ𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽
ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉
ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁
ℓ𝑖𝑗

𝑗
)

−
𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎
𝑝𝜖ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔ℓ𝑖𝑗

𝑖𝑗
)

−

𝑛

∑

𝑗=1

(�̃�
𝑝𝛼𝑝𝑗𝑖

𝑗𝑖
�̃�
𝑝𝛽
𝑝𝑗𝑖

𝑖
+ 𝑐

𝑝𝜉
𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁
𝑝𝑗𝑖

𝑖

+
𝑝 − 1

2
(𝜎

𝑝𝜖(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝑝𝜖𝑝𝑗𝑖

𝑗𝑖
) )} ,

(17)

]
𝑖
= max

𝑙∈S
𝜇
𝑙

[
[
[

[

𝑝𝑘
𝑖𝑖
+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝−1

∑

ℓ=1


𝑘
𝑖𝑗



𝑝𝜂
∗

ℓ𝑖𝑗

+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖


𝑘
𝑗𝑖



𝑝𝜂
∗

𝑝𝑗𝑖
]
]
]

]

,

(18)

𝜂
𝑖
= max

𝑙∈S
𝜇
𝑙

𝑛

∑

𝑗=1

[
𝑝 − 1

2
(𝜎

𝜔(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝜔𝑝𝑗𝑖

𝑗𝑖
)

+𝑐
𝑝𝜉𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁𝑝𝑗𝑖

𝑖
] ,

(19)
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where 𝑎
∗

𝑖
= min

𝑙∈S𝑎𝑖(𝑙), �̃�𝑖𝑗 = max
𝑙∈S�̌�𝑖𝑗(𝑙), �̌�𝑖𝑗(𝑙) =

max {|𝑏
𝑖𝑗
(𝑙)|, |𝑏

𝑖𝑗
(𝑙)|}, 𝑐

𝑖𝑗
= max

𝑙∈S ̌𝑐
𝑖𝑗
(𝑙),

̌𝑐
𝑖𝑗
(𝑙) = max {𝑐𝑖𝑗 (𝑙)


,

𝑐
𝑖𝑗
(𝑙)

} ,

�̃�
𝑗
= max {𝐿

−

𝑗


,

𝐿
+

𝑗


} , �̃�

𝑗
= max {𝑁

−

𝑗


,

𝑁

+

𝑗


} ,

(20)

𝜇
𝑙
> 0, and 𝛼

ℓ𝑖𝑗
, 𝛽

ℓ𝑖𝑗
, 𝜉

ℓ𝑖𝑗
, 𝜁

ℓ𝑖𝑗
, 𝜖

ℓ𝑖𝑗
, 𝑤

ℓ𝑖𝑗
, 𝜂∗

ℓ𝑖𝑗
, 𝛼

ℓ𝑖𝑗
, 𝛽

ℓ𝑖𝑗
, 𝜉

ℓ𝑖𝑗
, 𝜁

ℓ𝑖𝑗
,

𝜖
ℓ𝑖𝑗
, and 𝑤

ℓ𝑖𝑗
are nonnegative constants, satisfying

𝑝

∑

ℓ=1

𝛼
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝛽
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜉
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜁
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜖
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝑤
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝛼
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝛽
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜉
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜁
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜖
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝑤
ℓ𝑖𝑗

=

𝑝

∑

ℓ=1

𝜂
∗

ℓ𝑖𝑗
= 1, 𝐷

𝑖𝑘
= min

𝑙∈S
𝐷

𝑖𝑘
(𝑙) .

(21)

In the following, we give an assumption:
(H4) 𝜆

𝑖
− ]

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− 𝜂

𝑖
/(1 − 𝜏

0
) > 0 and

there exists 𝜌
𝑖
> 0 such that

𝜅
𝑖
+ 𝜌

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
𝑖

1 − 𝜏
0

> 0, 𝑖 = 1, 2, . . . , 𝑛. (22)

We consider the function

𝐻
𝑖
( ̌𝜀

𝑖
) = 𝜆

𝑖
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
− ̌𝜀

𝑖
max
𝑙∈S

𝜇
𝑙
−

𝜂
𝑖
𝑒

̌𝜀𝑖𝜏

1 − 𝜏
0

,

𝑖 = 1, 2, . . . , 𝑛.

(23)

It is easy to see that

𝐻


𝑖
( ̌𝜀

𝑖
) = −max

𝑙∈S
𝜇
𝑙
−
𝜏𝜂

𝑖
𝑒

̌𝜀𝑖𝜏

1 − 𝜏
0

< 0,

𝐻
𝑖
(0) = 𝜆

𝑖
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
𝑖

1 − 𝜏
0

> 0.

(24)

On the other hand, 𝐻
𝑖
( ̌𝜀

𝑖
) is continuous on [0, +∞), and

𝐹
𝑖
( ̌𝜀

𝑖
) → −∞ as ̌𝜀

𝑖
→ +∞. Then there exists a positive

constant ̌𝜀
∗

𝑖
such that 𝐻

𝑖
( ̌𝜀

∗

𝑖
) ≥ 0 and 𝐻

𝑖
( ̌𝜀

𝑖
) > 0, for ̌𝜀

𝑖
∈

(0, ̌𝜀
∗

𝑖
).

Let ̌𝜀 = min
1≤𝑖≤𝑛

{ ̌𝜀
∗

𝑖
}; then we have

𝐻
𝑖
( ̌𝜀) = 𝜆

𝑖
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
− ̌𝜀max

𝑙∈S
𝜇
𝑙
−

𝜂
𝑖

1 − 𝜏
0

𝑒
̌𝜀𝜏
≥ 0.

(25)

In similar, there exists a positive constant 𝜀 > 0, such that

𝐹
𝑖
(𝜀) = 𝑘

𝑖
+ 𝜌

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
− 𝜀max

𝑙∈S
𝜇
𝑙
−

𝜂
𝑖

1 − 𝜏
0

𝑒
𝜀𝜏
≥ 0.

(26)

Let 𝜀 = min{ ̌𝜀, 𝜀}; we have

𝐻
𝑖
(𝜀) > 0, 𝐹

𝑖
(𝜀) > 0, 𝑖 = 1, 2, . . . , 𝑛. (27)

We give another assumption:
(H5) 𝜀 − 𝜌(𝑇 − 𝛿)/𝜇𝑇 > 0, where 𝜌 = max

1≤𝑖≤𝑛
𝜌
𝑖
, 𝜇 =

min
𝑙∈S{𝜇𝑙}.

Theorem 4. Under assumptions (H1)–(H5), the origin of
system (3)–(5) under periodically intermittent controller (13)
is robust exponentially stable in 𝑝th moment.

Proof. Let us define the average Lyapunov-Krasovskii func-
tional (see [4]) 𝑉

1
: 𝐶([0, +∞) × Ω

0
,R𝑛

) × S × R
+
→ R

+

by

𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) = ∫

Ω0

𝑉 (𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) 𝑑𝑥 (28)

with
𝑉 (𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

= 𝜇
𝑟(𝑡)

𝑛

∑

𝑖=1

𝑒
𝜀𝑡𝑢𝑖 (𝑡, 𝑥)



𝑝

+
𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑒
𝜀𝑠𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑠,

(29)

where 𝜇
𝑟(𝑡)

> 0.
By the generalized Itô formula (see [31]), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

= E𝑉
1
(𝜙, 𝑟 (0) , 0) + E∫

𝑡

0

∫
Ω0

L𝑉 (𝑢 (𝑠, 𝑥) , 𝑟 (𝑠) , 𝑠) 𝑑𝑥𝑑𝑠.

(30)

By Lemma 3.1 in [22] and 𝑟(𝑡) = 𝑙, we get that for (𝑡, 𝑥) ∈

[𝑀𝑇,𝑀𝑇 + 𝛿) × Ω
0

L𝑉 (𝑢 (𝑡, 𝑥) , 𝑙, 𝑡)

= 𝜀𝜇
𝑙

𝑛

∑

𝑖=1

𝑒
𝜀𝑡𝑢𝑖 (𝑡, 𝑥)



𝑝

+ 𝑝𝜇
𝑙
𝑒
𝜀𝑡

𝑛

∑

𝑖=1

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

×

{

{

{

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

) − 𝑎
𝑖
(𝑙) 𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑙) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑙) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥))

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑢
𝑗
(𝑡, 𝑥)

}

}

}
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+ 𝜇
𝑙
𝑒
𝜀𝑡
𝑝 (𝑝 − 1)

2

𝑛

∑

𝑖=1

𝑢𝑖 (𝑡, 𝑥)


𝑝−2

×

𝑛

∑

𝑗=1

ℎ
2

𝑖𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥))

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
𝑒
𝜀𝑡

𝑛

∑

𝑖=1

𝑢𝑖 (𝑡, 𝑥)


𝑝

+
𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
𝑒
𝜀𝑡𝑢𝑖 (𝑡, 𝑥)



𝑝

−
𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
𝑒
𝜀(𝑡−𝜏𝑖𝑗(𝑡))

×

𝑢
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑥) , 𝑥)



𝑝

(1 − ̇𝜏
𝑖𝑗
(𝑡))

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞

𝑒
𝜀𝜏

1 − 𝜏
0

𝑛

∑

𝑖=1

𝜂
𝑖
∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑒
𝜀𝑠𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑠.

(31)

By the fundamental inequality |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|, we have

L𝑉 (𝑢 (𝑡, 𝑥) , 𝑙, 𝑡)

≤

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
{𝜀𝜇

𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝

+ 𝑝𝜇
𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙))

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

+ (𝑘
𝑖𝑖
− 𝑎

𝑖
(𝑙)) 𝑝𝜇

𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝

+ 𝑝𝜇
𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

(

𝑛

∑

𝑗=1


𝑏
𝑖𝑗
(𝑙)



𝑓
𝑗
(𝑢

𝑗
(𝑡, 𝑥))


)

+ 𝑝𝜇
𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

× (

𝑛

∑

𝑗=1


𝑐
𝑖𝑗
(𝑙)



𝑔
𝑗
(𝜇

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) , 𝑥)


)

+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝𝜇
𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1 
𝑘
𝑖𝑗




𝜇
𝑗
(𝑡, 𝑥)



+ 𝜇
𝑙

𝑝 (𝑝 − 1)

2

𝑢𝑖 (𝑡, 𝑥)


𝑝−2

×

𝑛

∑

𝑗=1

𝜎
𝑖𝑗
(

𝑢
𝑗
(𝑡, 𝑥)



2

+

𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



2

)

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞

𝑢𝑖 (𝑡, 𝑥)


𝑝

+
𝑒
𝜀𝜏

1 − 𝜏
0

𝜂
𝑖

𝑢𝑖 (𝑡, 𝑥)


𝑝

−𝜂
𝑖


𝑢
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



𝑝

} ,

(32)

where we use ∑𝑁

𝑞=1
𝛾
𝑙𝑞
= 0.

By using the fundamental inequality 𝑎𝑝
1
+ 𝑎

𝑝

2
+ ⋅ ⋅ ⋅ + 𝑎

𝑝

𝑝
≥

𝑝𝑎
1
𝑎
2
, . . . , 𝑎

𝑝
(𝑎

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑝), we have

𝑝𝜇
𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

(

𝑛

∑

𝑗=1


𝑏
𝑖𝑗
(𝑙)



𝑓
𝑗
(𝑢

𝑗
(𝑡, 𝑥))


)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝
𝑢𝑖 (𝑡, 𝑥)



𝑝−1

�̃�
𝑖𝑗
�̃�
𝑗


𝑢
𝑗
(𝑡, 𝑥)



= 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝[

𝑝−1

∏

ℓ=1

�̃�
𝛼ℓ𝑖𝑗

𝑖𝑗
�̃�
𝛽ℓ𝑖𝑗

𝑗

𝑢𝑖 (𝑡, 𝑥)
]

× (�̃�
𝛼𝑝𝑖𝑗

𝑖𝑗
�̃�
𝛽𝑝𝑖𝑗

𝑗


𝑢
𝑗
(𝑡, 𝑥)


)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

�̃�
𝑝𝛼ℓ𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽ℓ𝑖𝑗

𝑗

𝑢𝑖 (𝑡, 𝑥)


𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

�̃�
𝑝𝛼𝑝𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽𝑝𝑖𝑗

𝑗


𝑢
𝑗
(𝑡, 𝑥)



𝑝

,

𝑝𝜇
𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

× (

𝑛

∑

𝑗=1


𝑐
𝑖𝑗
(𝑙)



𝑔
𝑗
(𝑢

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥))


)

≤ 𝑝𝜇
𝑙

𝑛

∑

𝑗=1

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

𝑐
𝑖𝑗
�̃�

𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



= 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝[

𝑝−1

∏

ℓ=1

𝑐
𝜉ℓ𝑖𝑗

𝑖𝑗
�̃�

𝜁ℓ𝑖𝑗

𝑗


𝑢
𝑗
(𝑡, 𝑥)


]

× (𝑐
𝜉𝑝𝑖𝑗

𝑖𝑗
�̃�

𝜁𝑝𝑖𝑗

𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)


)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

𝑐
𝑝𝜉ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁ℓ𝑖𝑗

𝑗


𝑢
𝑗
(𝑡, 𝑥)



𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑐
𝑝𝜉𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁𝑝𝑖𝑗

𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



𝑝

.

(33)
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Similarly, we have

𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝
𝑢𝑖 (𝑡, 𝑥)



𝑝−1 
𝑘
𝑖𝑗




𝑢
𝑗
(𝑡, 𝑥)



= 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝[

𝑝−1

∏

ℓ=1


𝑘
𝑖𝑗



𝜂
∗

ℓ𝑖𝑗 𝑢𝑖 (𝑡, 𝑥)
]

× (

𝑘
𝑖𝑗



𝜂
∗

𝑝𝑖𝑗 
𝑢
𝑗
(𝑡, 𝑥)


)

≤ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝−1

∑

ℓ=1


𝑘
𝑖𝑗



𝑝𝜂
∗

ℓ𝑖𝑗 𝑢𝑖 (𝑡, 𝑥)


𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖


𝑘
𝑖𝑗



𝑝𝜂
∗

𝑝𝑖𝑗 
𝑢
𝑗
(𝑡, 𝑥)



𝑝

,

𝜇
𝑙

𝑝 (𝑝 − 1)

2

𝑢𝑖 (𝑡, 𝑥)


𝑝−2

×

𝑛

∑

𝑗=1

𝜎
𝑖𝑗


𝑢
𝑗
(𝑡, 𝑥)



2

= 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝[

𝑝−2

∏

ℓ=1


𝜎
𝑖𝑗



𝜖ℓ𝑖𝑗 𝑢𝑖 (𝑡, 𝑥)
]

× (

𝜎
𝑖𝑗



𝜖(𝑝−1)𝑖𝑗 
𝑢
𝑗
(𝑡, 𝑥)


) (

𝜎
𝑖𝑗



𝜖𝑝𝑖𝑗 
𝑢
𝑗
(𝑡, 𝑥)


)

≤ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1


𝜎
𝑖𝑗



𝑝𝜖ℓ𝑖𝑗 𝑢𝑖 (𝑡, 𝑥)


𝑝

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

(

𝜎
𝑖𝑗



𝑝𝜖(𝑝−1)𝑖𝑗

+

𝜎
𝑖𝑗



𝑝𝜖𝑝𝑖𝑗

)

×

𝑢
𝑗
(𝑡, 𝑥)



𝑝

.

(34)

Further, we also have

𝜇
𝑙

𝑝 (𝑝 − 1)

2

𝑢𝑖 (𝑡, 𝑥)


𝑝−2

×

𝑛

∑

𝑗=1

𝜎
𝑖𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



2

= 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝[

𝑝−2

∏

ℓ=1

𝜎
𝜔ℓ𝑖𝑗

𝑖𝑗

𝑢𝑖 (𝑡, 𝑥)
]

× (𝜎
𝜔(𝑝−1)𝑖𝑗

𝑖𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)


)

× (𝜎
𝜔𝑝𝑖𝑗

𝑖𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)


)

≤ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1


𝜎
𝑖𝑗



𝑝𝜔ℓ𝑖𝑗 𝑢𝑖 (𝑡, 𝑥)


𝑝

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

(𝜎
𝜔(𝑝−1)𝑖𝑗

𝑖𝑗
+ 𝜎

𝜔𝑝𝑖𝑗

𝑖𝑗
)

×

𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



𝑝

.

(35)

Substituting (33)–(35) into (32), we obtain

L𝑉 (𝑢 (𝑡, 𝑥) , 𝑙, 𝑡)

≤

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
{

{

{

[

[

𝜇
𝑙
+ 𝑝𝜇

𝑙
𝑘
𝑖𝑖
− 𝑝𝜇

𝑙
𝑎
∗

𝑖

+

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
+

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(�̃�
𝑝𝛼ℓ𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁ℓ𝑖𝑗

𝑗
)

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑝−1

∑

ℓ=1


𝑘
𝑖𝑗



𝑝𝜂
∗

ℓ𝑖𝑗

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎
𝑝𝜖ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔ℓ𝑖𝑗

𝑖𝑗
)]

]

×
𝑢𝑖 (𝑡, 𝑥)



𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

[�̃�
𝑝𝛼𝑝𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽𝑝𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁𝑝𝑖𝑗

𝑗

+
𝑝 − 1

2
(𝜎

𝑝𝜖(𝑝−1)𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜖𝑝𝑖𝑗

𝑖𝑗
)]

×
𝑢𝑖 (𝑡, 𝑥)



𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖


𝑘
𝑖𝑗



𝑝𝜂
∗

𝑝𝑖𝑗 
𝑢
𝑗
(𝑡, 𝑥)



𝑝

+ 𝜇
𝑙

𝑝 − 1

2

𝑛

∑

𝑗=1

(𝜎
𝜔(𝑝−1)𝑖𝑗

𝑖𝑗
+ 𝜎

𝜔𝑝𝑖𝑗

𝑖𝑗
)

×

𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



𝑝

+ 𝜇
𝑙

𝑛

∑

𝑗=1

𝑐
𝑝𝜉𝑝𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁𝑝𝑖𝑗

𝑗


𝑢
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



𝑝

−𝜂
𝑖


𝑢
𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡) , 𝑥)



𝑝

}

+

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
𝑝𝜇

𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1
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× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

))

≤

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
{𝜀max

𝑙∈S
𝜇
𝑙
+ ]

𝑖
− 𝜆

𝑖
+max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
+

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

}

×
𝑢𝑖 (𝑡, 𝑥)



𝑝

+

𝑛

∑

𝑖=1

𝑒
𝜀𝑡
𝑝𝜇

𝑙

𝑢𝑖 (𝑡, 𝑥)


𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑙)

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)) ,

(36)

where

𝜆
𝑖
= min

𝑙∈S
𝜇
𝑙

{

{

{

𝑝𝑎
∗

𝑖
−

𝑛

∑

𝑗=1

𝑝−1

∑

ℓ=1

(�̃�
𝑝𝛼ℓ𝑖𝑗

𝑖𝑗
�̃�
𝑝𝛽ℓ𝑖𝑗

𝑗
+ 𝑐

𝑝𝜉ℓ𝑖𝑗

𝑖𝑗
�̃�

𝑝𝜁ℓ𝑖𝑗

𝑗
)

−
𝑝 − 1

2

𝑛

∑

𝑗=1

𝑝−2

∑

ℓ=1

(𝜎
𝑝𝜖ℓ𝑖𝑗

𝑖𝑗
+ 𝜎

𝑝𝜔ℓ𝑖𝑗

𝑖𝑗
)

−

𝑛

∑

𝑗=1

(�̃�
𝑝𝛼𝑝𝑗𝑖

𝑗𝑖
�̃�
𝑝𝛽𝑝𝑗𝑖

𝑖
+ 𝑐

𝑝𝜉𝑝𝑗𝑖

𝑗𝑖
�̃�

𝑝𝜁𝑝𝑗𝑖

𝑖

+
𝑝 − 1

2
(𝜎

𝑝𝜖(𝑝−1)𝑗𝑖

𝑗𝑖
+ 𝜎

𝑝𝜖𝑝𝑗𝑖

𝑗𝑖
))

}

}

}

.

(37)

Substituting (36) into (30), we obtain

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0)

− E∫
𝑡

0

∫
Ω0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜆

𝑖
− 𝜀max

𝑙∈S
𝜇
𝑙
− ]

𝑖

−max
𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]

×
𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑥𝑑𝑠

+ E∫
𝑡

0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
∫
Ω0

𝑝𝜇
𝑟(𝑠)

𝑢𝑖 (𝑠, 𝑥)


𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

))𝑑𝑥𝑑𝑠.

(38)

By Lemma 3 and the boundary condition (4), we have

∫
Ω0

𝑝
𝑢𝑖 (𝑠, 𝑥)



𝑝−1

× (

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥
𝑘

))𝑑𝑥

≤ −

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘
(𝑟 (𝑠))

𝑝𝜃
2

𝑘

∫
Ω0

𝑢𝑖 (𝑠, 𝑥)


𝑝

𝑑𝑥

≤ −

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

∫
Ω0

𝑢𝑖 (𝑠, 𝑥)


𝑝

𝑑𝑥.

(39)

Substituting these into (38), we get

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0)

− E∫
𝑡

0

∫
Ω0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜆

𝑖
+min

𝑙∈S
𝜇
𝑙

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

− 𝜀max
𝑙∈S

𝜇
𝑙
− ]

𝑖
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞

−
𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]
𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑥𝑑𝑠

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0)

− E∫
𝑡

0

∫
Ω0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜆

𝑖
− 𝜀max

𝑙∈S
𝜇
𝑙
− ]

𝑖

−max
𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]

×
𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑥𝑑𝑠

≤ E𝑉
1
(𝜙, 𝑟 (0) , 0) (𝑡, 𝑥) ∈ [𝑀𝑇,𝑀𝑇 + 𝛿) × Ω

0
.

(40)

Similarly, for (𝑡, 𝑥) ∈ [𝑀𝑇 + 𝛿, (𝑀 + 1)𝑇) × Ω
0
, we can

obtain
E𝑉

1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑀𝑇 + 𝛿, 𝑥) , 𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿)

− E∫
𝑡

0

∫
Ω0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
[𝜅

𝑖
+ 𝜌

𝑖
− 𝜀max

𝑙∈S
𝜇
𝑙

− max
𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝑒
𝜀𝜏
𝜂
𝑖

1 − 𝜏
0

]

×
𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑥𝑑𝑠

+ E∫
𝑡

0

∫
Ω0

𝑛

∑

𝑖=1

𝑒
𝜀𝑠
𝜌
𝑖

𝑢𝑖 (𝑠, 𝑥)


𝑝

𝑑𝑥𝑑𝑠

≤ E𝑉
1
(𝑢 (𝑀𝑇 + 𝛿, 𝑥) , 𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿)

+
𝜌

𝜇
E∫

𝑡

0

𝑉
1
(𝑢 (𝑠, 𝑥) , 𝑟 (𝑠) , 𝑠) 𝑑𝑠,

(41)

where 𝜌 = max
1≤𝑖≤𝑛

𝜌
𝑖
, 𝜇 = min

𝑙∈S𝜇𝑙.
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Figure 1: Surface curves and state trajectories for system (54) in model 1.

By the Gronwall inequality, we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑀𝑇 + 𝛿, 𝑥) ,

𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿) 𝑒
(𝜌/𝜇)(𝑡−𝑀𝑇−𝛿)

.

(42)

Combining (40) and (42), we summarize that,

(I) for (𝑡, 𝑥) ∈ [0, 𝛿) × Ω
0
, from (40), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) ≤ E𝑉

1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) . (43)

(II) For (𝑡, 𝑥) ∈ [𝛿, 𝑇) × Ω
0
, from (42), we get

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)(𝑡−𝛿)
.

(44)

(III) For (𝑡, 𝑥) ∈ [𝑇, 𝑇 + 𝛿) × Ω
0
, from (40), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑇, 𝑥) , 𝑟 (𝑇) , 𝑇)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)(𝑇−𝛿)
.

(45)

(IV) For (𝑡, 𝑥) ∈ [𝑇 + 𝛿, 2𝑇) × Ω
0
, from (42), we have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑇 + 𝛿, 𝑥) , 𝑟 (𝑇 + 𝛿) , 𝑇 + 𝛿) 𝑒

(𝜌/𝜇)(𝑡−𝑇−𝛿)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)(𝑡−2𝛿)
.

(46)



10 Abstract and Applied Analysis

0

50

−5

0

5
−2000

0

2000

u
1
(
t
n
,
x
j
)

xj

tn

(a)

0

50

−5

0

5
−1

0

1

u
2
(
t
n
,
x
j
)

xj tn

×10
4

(b)

0 20 40 60
−1000

0

1000

2000

u
1
(
t
n
,
x
j
)

tn

(c)

0 20 40 60
−10000

−5000

0

5000

u
2
(
t
n
,
x
j
)

tn

(d)

Figure 2: Surface curves and state trajectories for system (54) in model 2.

Repeating the above procedure, we obtain that, for (𝑡, 𝑥) ∈
[𝑀𝑇,𝑀𝑇 + 𝛿),𝑀 ≤ (𝑡/𝑇),

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (𝑀𝑇, 𝑥) , 𝑟 (𝑀𝑇) ,𝑀𝑇)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌(𝑇−𝛿)/𝜇𝑇)𝑡.

(47)

Moreover, for (𝑡, 𝑥) ∈ [𝑀𝑇 + 𝛿, (𝑀 + 1)𝑇) × Ω
0
, (𝑡/𝑇) <

𝑀 + 1,

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝜇 (𝑀𝑇 + 𝛿, 𝑥) , 𝑟 (𝑀𝑇 + 𝛿) ,𝑀𝑇 + 𝛿) 𝑒

(𝜌/𝜇 )(𝑡−𝑀𝑇−𝛿)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)((𝑇−𝛿)/𝑇)𝑡
.

(48)

Hence, for any (𝑡, 𝑥) ∈ [0, +∞) × Ω
0
, we always have

E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡) ≤ E𝑉

1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇) ((𝑇−𝛿)/𝑇)𝑡
.

(49)

By (28) and (49), we have

𝑒
𝜀𝑡
𝜇E∫

Ω0

𝑛

∑

𝑖=1

𝑢𝑖 (𝑡, 𝑥)


𝑝

𝑑𝑥

≤ E𝑉
1
(𝑢 (𝑡, 𝑥) , 𝑟 (𝑡) , 𝑡)

≤ E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0) 𝑒

(𝜌/𝜇)((𝑇−𝛿)/𝑇)𝑡
.

(50)
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Note that

E𝑉
1
(𝑢 (0, 𝑥) , 𝑟 (0) , 0)

= E∫
Ω0

𝜇
𝑙

𝑛

∑

𝑖=1

𝑢𝑖 (0, 𝑥)


𝑝

𝑑𝑥

+
𝑒
𝜀𝜏

1 − 𝜏
0

E∫
Ω0

𝑛

∑

𝑖=1

𝜂
𝑖
∫

0

−𝜏𝑖𝑗(0)

𝑒
𝜀𝑠𝑢𝑖 (𝑠, 𝑥)



𝑝

𝑑𝑠𝑑𝑥

≤ max
𝑙∈S

𝜇
𝑙
E∫

Ω0

𝑛

∑

𝑖=1

𝜙𝑖 (0, 𝑥)


𝑝

𝑑𝑥

+ sup
−𝜏≤𝑠≤0

[(max
1≤𝑖≤𝑛

𝜂
𝑖
)

𝜏𝑒
𝜀𝜏

1 − 𝜏
0

E∫
Ω0

𝑛

∑

𝑖=1

𝜙𝑖 (𝑠, 𝑥)


𝑝

𝑑𝑥]

= 𝑀
0
.

(51)

Under assumption (H5), the assertion of Theorem 4 follows
from (50) and (51).

Corollary 5. Under assumptions (H1)–(H3), the origin of
system (3)–(5) under periodically intermittent control (13) is
robust exponentially stable in 𝑝th moment if the following
conditions hold:

(I) ]
𝑖
< 0, 𝜆

𝑖
− ]

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− (𝜂

𝑖
/(1 − 𝜏

0
)) >

0, 𝑖 = 1, 2, . . . , 𝑛,

(II) 𝜀 − (](𝑇 − 𝛿)/(𝜇𝑇)) > 0, where ] = max
1≤𝑖≤𝑛

{|]
𝑖
|},

𝜇 = min
𝑙∈S 𝜇𝑙.

Proof. In Theorem 4, let 𝛼
ℓ𝑖𝑗

= 𝛼
ℓ𝑖𝑗
, 𝛽

ℓ𝑖𝑗
= 𝛽

ℓ𝑖𝑗
, 𝜉

ℓ𝑖𝑗
= 𝜉

ℓ𝑖𝑗
,

𝜁
ℓ𝑖𝑗

= 𝜁
ℓ𝑖𝑗
, 𝜖

ℓ𝑖𝑗
= 𝜖

ℓ𝑖𝑗
, 𝜔

ℓ𝑖𝑗
= 𝜔

ℓ𝑖𝑗
for all ℓ = 1, 2, . . . , 𝑝, 𝑖, 𝑗 =

1, 2, . . . , 𝑛; then 𝜆
𝑖
= 𝜅

𝑖
. Under condition (i), select 𝜌

𝑖
= −]

𝑖
,

and Corollary 5 holds immediately fromTheorem 4.
In Theorem 4, we choose 𝛼

ℓ𝑖𝑗
= 𝛼

ℓ𝑖𝑗
= 𝛽

ℓ𝑖𝑗
= 𝛽

ℓ𝑖𝑗
= 𝜉

ℓ𝑖𝑗
=

𝜉
ℓ𝑖𝑗

= 𝜁
ℓ𝑖𝑗

= 𝜁
ℓ𝑖𝑗

= 𝜂
∗
= 𝜖

ℓ𝑖𝑗
= 𝜖

ℓ𝑖𝑗
= 𝜔

ℓ𝑖𝑗
= 𝜔

ℓ𝑖𝑗
= 1/𝑝 for

ℓ = 1, 2, . . . , 𝑝, and 𝑖, 𝑗 = 1, 2, . . . , 𝑛; then

�̃�
𝑖
= 𝜅

𝑖

= min
𝑙∈S

𝜇
𝑙

{

{

{

𝑚

∑

𝑘=1

4 (𝑝 − 1)𝐷
𝑖𝑘

𝑝𝜃
2

𝑘

+ 𝑝𝑎
∗

𝑖

− (𝑝 − 1)

𝑛

∑

𝑗=1

(�̃�
𝑖𝑗
�̃�
𝑗
+ 𝑐

𝑖𝑗
�̃�

𝑗
)

− (𝑝 − 1) (𝑝 − 2)

𝑛

∑

𝑗=1

𝜎
𝑖𝑗

−

𝑛

∑

𝑗=1

(�̃�
𝑗𝑖
�̃�
𝑗
+ 𝑐

𝑗𝑖
�̃�

𝑗
+ (𝑝 − 1) 𝜎

𝑗𝑖
)

}

}

}

,

]̃
𝑖
= max

𝑙∈S
𝜇
𝑙

{{{

{{{

{

𝑝𝑘
𝑖𝑖
+ (𝑝 − 1)

×

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖


𝑘
𝑖𝑗


+

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖


𝑘
𝑗𝑖



}}}

}}}

}

,

𝜂
𝑖
= max

𝑙∈S
𝜇
𝑙

𝑛

∑

𝑗=1

[(𝑝 − 1) 𝜎
𝑗𝑖
+ 𝑐

𝑗𝑖
�̃�

𝑗
] .

(52)

Then, as the proof of Theorem 4, we have the following.

Corollary 6. Under assumptions (H1)–(H3), the origin of
system (3)–(5) under periodically intermittent control (13) is
robust exponentially stable in 𝑝th moment if the following
conditions hold:

(I) �̃�
𝑖
− ]̃

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− (𝜂

𝑖
/(1 − 𝜏

0
)) > 0, 𝑖 =

1, 2, . . . , 𝑛,
(II) there exists𝜌

𝑖
> 0, such that �̃�

𝑖
+𝜌

𝑖
−max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
𝑖
/(1 − 𝜏

0
) > 0, 𝑖 = 1, 2, . . . , 𝑛,

(III) 𝜀 − (𝜌(𝑇 − 𝛿)/𝜇𝑇) > 0, where 𝜌 = max
1≤𝑖≤𝑛

𝜌
𝑖
, 𝜇 =

min
𝑙∈S{𝜇𝑙}.

Combining Corollary 5 and Corollary 6, we have the following.

Corollary 7. Under assumptions (H1)–(H3), the origin of
system(3)–(5) under periodically intermittent control (13) is
robust exponentially stable in 𝑝th moment if the following
conditions hold:

(I) ]̃
𝑖
< 0, �̃�

𝑖
− ]̃

𝑖
−max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− (𝜂

𝑖
/(1 − 𝜏

0
)) > 0,

𝑖 = 1, 2, . . . , 𝑛,
(II) 𝜀 − (]̂(𝑇 − 𝛿)/𝜇𝑇) > 0, where ]̂ = max

0≤𝑖≤𝑛
{|]̃

𝑖
|}, 𝜇 =

min
𝑙∈S{𝜇𝑙}.

Remark 8. By constructing an average Lyapunov function,
the stabilization of stochastic Hopfield neural networks with
distributed parameters was studied in [4]. The feedback
controller in [4] was designed as the compound function
of the state and activation function. Therefore, the feedback
controller may be the nonlinear functions. However, we see
in this paper that the control width is greater than the time
delay and the periodically intermittent controller is linear and
practical.

Remark 9. In [11–13, 24–26], robust exponential stability
and exponential synchronization of some classes of neural
networks with reaction-diffusion terms were discussed. The
activation function satisfies Lipschitz condition. In fact, the
activation functionmay be notmonotone. But, from assump-
tion (H1) in this paper, the activation functions include the
monotone functions. So the results of this paper are less
conservational and more general.
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Figure 3: Surface curves and state trajectories for system (54) in model 1 under periodically intermittent control (13), 𝑇 = 5 and 𝛿 = 4.7.

Remark 10. In [27, 28], the periodically intermittent con-
troller was designed to stabilization and synchronization of
two classes of neural networks, where the activation functions
satisfy

0 <
𝑓
𝑖
(𝑠

1
) − 𝑓

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝐿
+

𝑖
, 0 <

𝑔
𝑖
(𝑠

1
) − 𝑔

𝑖
(𝑠

2
)

𝑠
1
− 𝑠

2

≤ 𝑁
+

𝑖
.

(53)

In fact, they need 𝐿+
𝑖
≥ 𝐿

−

𝑖
> 0,𝑁+

𝑖
≥ 𝑁

−

𝑖
> 0 in assumption

(H1) of this paper. Obviously, the assumption (H1) of this
paper is weaker than those of papers [27, 28].

Remark 11. In this paper, if the transmission delay 𝜏
𝑖𝑗
(𝑡) is

not continuous and differential, we can give new sufficient
conditions ensuring robust exponential stabilization and
antisynchronization for system (3)–(5) by applying linear
matrix inequality (LMI) technique and periodically intermit-
tent control. We will give the topics in future research.

4. Numerical Example

In this section, we give an example with numerical simula-
tions to illustrate our result in the preceding section.

Example 1. Consider the 2-dimensional stochastic interval
recurrent neural networks with two models as follows:

𝑑𝑢
1
(𝑡, 𝑥) =

{

{

{

𝐷
1
(𝑟 (𝑡))

𝜕
2
𝑢
1
(𝑡, 𝑥)

𝜕𝑥2
− 𝑎

1
(𝑟 (𝑡)) 𝑢

1
(𝑡, 𝑥)

+

2

∑

𝑗=1

𝑏
1𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥))

+

2

∑

𝑗=1

𝑐
1𝑗
(𝑟 (𝑡)) 𝑔

𝑗
(𝑢

𝑗
(𝑡 − 𝜏

1𝑗
(𝑡) , 𝑥))

}

}

}

𝑑𝑡
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Figure 4: Surface curves and state trajectories for system (54) in model 2 under periodically intermittent control (13), 𝑇 = 5 and 𝛿 = 4.7.

+

2

∑

𝑗=1

ℎ
1𝑗
(𝑢

𝑗
(𝑡, 𝑥) , 𝑢

𝑗
(𝑡 − 𝜏

1𝑗
(𝑡) , 𝑥)) 𝑑𝑊

𝑗
(𝑡) ,

𝑑𝑢
2
(𝑡, 𝑥) = {𝐷

2
(𝑟 (𝑡))

𝜕
2
𝑢
2
(𝑡, 𝑥)

𝜕𝑥2
− 𝑎

2
(𝑟 (𝑡)) 𝑢

2
(𝑡, 𝑥)

+

2

∑

𝑗=1

𝑏
2𝑗
(𝑟 (𝑡)) 𝑓

𝑗
(𝑢

𝑗
(𝑡, 𝑥)) +

2

∑

𝑗=1

𝑐
2𝑗
(𝑟 (𝑡))

×𝑔
𝑗
(𝑢

𝑗
(𝑡 − 𝜏

2𝑗
(𝑡) , 𝑥)) } 𝑑𝑡

+

2

∑

𝑗=1

ℎ
2𝑗
(𝑢

𝑗
(𝑡, 𝑥), 𝑢

𝑗
(𝑡−𝜏

2𝑗
(𝑡) , 𝑥))𝑑𝑊

𝑗
(𝑡) ,

(54)

with the boundary conditions 𝑢
1
(𝑡, 0) = 𝑢

2
(𝑡, 0) =

𝑢
1
(𝑡, 2) = 𝑢

2
(𝑡, 2) = 0, 𝑡 ≥ −1 and the initial value

𝑢
1
(𝑡, 𝑥) = 𝑒

𝑡
(cos(2𝜋𝑥) − 1), 𝑢

2
(𝑡, 𝑥) = 𝑒

2𝑡 sin(4𝜋𝑥), 𝑡 ∈

[−1, 0] × Ω
0
, where 𝜏

𝑖𝑗
(𝑡) = (𝑒

𝑡
/(1 + 𝑒

𝑡
)), Ω

0
= [−5, 5] ∈ R,

and the generator of the Markov chain

Γ = (

−1 1

1

2
−
1

2

) ,

𝑓
𝑖
(𝑢

𝑖
) =

3

4
sin (𝑢

𝑖
) +

1

4
𝑢
𝑖
,

𝑔
𝑖
(𝑢

𝑖
) =

1

2
(
𝑢𝑖 + 1

 −
𝑢𝑖 − 1

) ,

ℎ
11
(𝑢

1
(𝑡, 𝑥) , 𝑢

1
(𝑡 − 𝜏

11
(𝑡) , 𝑥))

= 0.1𝑢
1
(𝑡, 𝑥) + 0.2𝑢

1
(𝑡 − 𝜏

11
(𝑡) , 𝑥) ,

ℎ
12
(𝑢

2
(𝑡, 𝑥) , 𝑢

2
(𝑡 − 𝜏

12
(𝑡) , 𝑥))

= ℎ
21
(𝑢

1
(𝑡, 𝑥) , 𝑢

1
(𝑡 − 𝜏

21
(𝑡)) , 𝑥) = 0,
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ℎ
22
(𝑢

2
(𝑡, 𝑥) , 𝑢

2
(𝑡 − 𝜏

22
(𝑡) , 𝑥))

= 0.3𝑢
2
(𝑡, 𝑥) + 0.4𝑢

2
(𝑡 − 𝜏

22
(𝑡) , 𝑥) .

(55)

We assume that the interval matrices are the same in every
model; let

𝐷 (𝑟 (𝑡)) = (
𝐷

1
(𝑟 (𝑡))

𝐷
2
(𝑟 (𝑡))

) = (
[1, 2]

[2, 3]
) ,

𝐴 (𝑟 (𝑡)) = (
𝑎
1
(𝑟 (𝑡))

𝑎
2
(𝑟 (𝑡))

)

= (
[0.28, 0.42]

[0.18, 0.35]
) ,

𝐵 (𝑟 (𝑡)) = (
𝐵
11
(𝑟 (𝑡)) 𝐵

12
(𝑟 (𝑡))

𝐵
21
(𝑟 (𝑡)) 𝐵

22
(𝑟 (𝑡))

) = (
[4, 5]

[3, 4]
) ,

𝐶 (𝑟 (𝑡)) = (
𝐶
11
(𝑟 (𝑡)) 𝐶

12
(𝑟 (𝑡))

𝐶
21
(𝑟 (𝑡)) 𝐶

22
(𝑟 (𝑡))

)

= (
[0.2, 0.3]

[0.3, 0.4]
) .

(56)

The surface curves and state trajectories of system (54) in
model (1) and model (2) are given, respectively, as shown in
Figures 1 and 2. They exhibit instability behavior.

Let𝑝 = 2, 𝜇
1
= 2, 𝜇

2
= 4. By simple calculation, we obtain

𝐿
−

𝑖
= −

1

2
, 𝐿

+

𝑖
= 1, 𝑁

−

𝑖
= 0,

𝑁
+

𝑖
= 1, 𝜏 = 1, 𝜏

0
=
1

4

�̃�
1
= 𝜅

1
= −40.16, 𝜂

1
= 1.52

�̃�
2
= 𝜅

2
= −34.4, 𝜂

2
= 2.88.

(57)

Now, we consider the periodically intermittent control (13),
where the parameters are given as follows:
𝑘
11
= −10, 𝑘

22
= −10, 𝑘

12
= 0, 𝑘

21
= 0. (58)

Then ]̃
1
= −80 and ]̃

2
= −80,

�̃�
1
− ]̃

1
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
1

1 − 𝜏
0

> 0,

�̃�
2
− ]̃

2
−max

𝑙∈S

𝑁

∑

𝑞=1

𝛾
𝑙𝑞
𝜇
𝑞
−

𝜂
2

1 − 𝜏
0

> 0.

(59)

From 𝐻
𝑖
(𝜀

𝑖
) = �̃�

𝑖
− ]̃

𝑖
− max

𝑙∈S∑
𝑁

𝑞=1
𝛾
𝑙𝑞
𝜇
𝑞
− 𝜀

𝑖
max

𝑙∈S 𝜇𝑙 −

(𝜂
𝑖
/(1 − 𝜏

0
))𝑒

𝜀𝑖𝜏 = 0, 𝑖 = 1, 2, we have
𝜀 = min {𝜀

1
, 𝜀

2
} = min {2.605, 2.413} = 2.413. (60)

Choose 𝑇 = 5, from Corollary 7, 𝛿 = 4.7. Then the origin
of system (54) under the periodically intermittent controller
(13) is robust exponentially stable inmean square.The surface
curves and state trajectories in model (1) and model (2) are
given, respectively, as shown in Figures 3 and 4.
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