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This paper is concerned with the stability of non-Fickian reaction-diffusion equations with a variable delay. It is shown that
the perturbation of the energy function of the continuous problems decays exponentially, which provides a more accurate and
convenient way to express the rate of decay of energy.Then, we prove that the proposed numericalmethods are sufficient to preserve
energy stability of the continuous problems. We end the paper with some numerical experiments on a biological model to confirm
the theoretical results.

1. Introduction

Reaction-diffusion equations with delay are widely proposed
as models for biological, physical, and control systems [1–
5]. Over the past several years, such equations have been
extensively investigated and several important properties
such as existence and stability of the travelling wavefront
are well understood (e.g., [6–9]). It is known that traveling
waves describe transition processes from the physical point of
view. If the reaction is very fast, the speed of propagation will
become rather large (e.g., [10–12]). This pathologic behavior
is not presented in the physical phenomena but introduced
by some mathematical models (cf. [13]). In order to avoid
the unphysical behavior, certain memory effects are taken
into account in the mathematical models. In [13–15], the time
memory flux is proposed by assuming that a flux observed at
some time should have something to do with the gradient of
the solution at some past time; that is,

𝐽 (𝑥, 𝑡 + 𝛿) = −𝐷
2

𝜕𝑢

𝜕𝑥
(𝑥, 𝑡) . (1)

The first order approximation of the above formula gives

𝐽 (𝑥, 𝑡) + 𝛿
𝜕𝐽

𝜕𝑡
(𝑥, 𝑡) = −𝐷

2

𝜕𝑢

𝜕𝑥
(𝑥, 𝑡) . (2)

Its solution satisfies

𝐽 (𝑥, 𝑡) = −
𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢

𝜕𝑥
(𝑥, 𝑠) 𝑑𝑠. (3)

In fact, the memory term is presented to avoid the infinite
propagation speed in flux definition. These ideas yield the
study on the following non-Fickian reaction-diffusion equa-
tion with a constant delay:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝐷

1

𝜕
2
𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2
𝑢

𝜕𝑥2
(𝑥, 𝑠) 𝑑𝑠

+ 𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏)) ,

(4)

where𝐷
2
> 0 and 𝛿 > 0.

Recently, many researchers have investigated these kinds
of equations. The existence and uniqueness of the solutions
were derived by Chang [16]. The well posedness of the
integrodifferential models was studied by Araújo et al. in
[17]. Later, they further studied the effect of the integrod-
ifferential term in the qualitative behavior of the solution
of the diffusion equations in [18]. Zhang and Vandewalle
[19] studied the general linear methods for solving the
nonlinear integrodifferential equations with memory. Wang
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et al. investigated the asymptotic stability of exact and discrete
solutions of nonlinear integrodifferential equation in [20–
22]. Wen et al. considered dissipativity of the functional
differential equations [23]. For a more detailed description
of this subject as well as its open problems, we refer the
readers to the books [1–3, 24, 25], the papers [26–32], and the
references therein.

In particular, some continuous and discrete energy esti-
mates, which are determined by the 𝐿2-norm of the solution
and the estimates for the 𝐿

2-norm of the past in time of
its gradient, were derived by Branco et al. in [13]. However,
the derived energy estimates rely on time. When time goes
to infinity, the energy estimates seem to become boundless.
Later, inspired by their instructive work, Li et al. further
derived some asymptotic stability of problem (1.1) in [33].
The stability result implies that the perturbation of the energy
estimate tends to zero as 𝑡 approaches infinity. However,
it does not imply anything about how long it takes to
decay. Moreover, when referring to the impact of various
factors (e.g., environment, temperature, and other potential
effects) in some real-world problems, the model should be
modified to an equation with a variable delay, which makes
the numerical simulation and its analysis more complicated.
Hence, some further stability results for the non-Fickian
equations with a variable delay aremuchmore significant and
challenging from both the physical and mathematical points
of view.

One aim of the paper is to study the exponential stability
of some more general models. Consider the non-Fickian
reaction-diffusion equation with a variable delay

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝐷

1

𝜕
2
𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2
𝑢

𝜕𝑥2
(𝑥, 𝑠) 𝑑𝑠

+𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏 (𝑡))) ,

(5)

where (𝑥, 𝑡) ∈ (𝑥
𝑎
, 𝑥
𝑏
)×(0, +∞), 0 ≤ 𝜏(𝑡) ≤ 𝜏

∗, the boundary
conditions

𝑢 (𝑥
𝑎
, 𝑡) = 𝑢 (𝑥

𝑏
, 𝑡) = 0, 𝑡 > 0, (6)

and initial condition

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) , 𝑥 ∈ (𝑥

𝑎
, 𝑥
𝑏
) , 𝑡 ∈ [−𝜏

∗
, 0] . (7)

We find that, the perturbation of the energy estimate decays
exponentially. This exponential stability result provides a
more accurate and convenient way to express the rate of
decay. Meanwhile, the stability result can also be applied to
the equations investigated in [13–15]. The given results imply
that the perturbations of the energy of the equations are
controlled by the initial perturbations from the systems.

The other aim is to investigate the discrete energy stability
of (5). Since finite element method can be easily designed for
high order of accuracy in space (see, e.g., [34, 35]), we intro-
duce the method to solve the equation. Exponential stability
of the semidiscrete system is derived.Then, the implicit Euler
method is further applied to discretize the equation. And the
integral is approximated by the right rectangular rule and
the delay term is approximated by a linear interpolation. It

is proved that the proposed numerical methods are sufficient
to preserve stability of the underlying systems. Besides, if we
discretize the diffusion term by using the centered difference
operator, the energy stability of full discrete non-Fickian
equation with a variable delay can also be derived. The
given result indicates that the perturbations of the numerical
solutions vanish eventually. Finally, a numerical simulation
on a biological model is presented to confirm the theoretical
and numerical results.

The rest of the paper is organized as follows. In Section 2,
we discuss energy stability of non-Fickian delay reaction-
diffusion equations. Section 3 describes in detail the stability
of the numerical methods for the equation. Section 4 shows
experimental studies for verifying the proposed results.
Finally, conclusions and discussions for this paper are sum-
marized in Section 5.

2. Exponential Stability

The following lemma can be derived from Lemma 2.1 in [36],
where it was used to investigate the dissipativity of delay
differential equations. Here it will play a key role in discussing
the energy stability of the problem (5).

Lemma 1. Suppose that

𝑌

(𝑡) ≤ −𝛼 (𝑡) 𝑌 (𝑡) + 𝛽 (𝑡) sup

𝑡−𝜏≤𝜉≤𝑡

𝑌 (𝜉) , 𝑡 ≥ 𝑡
0
. (8)

Here 𝜏 ≥ 0 and 𝛼(𝑡), 𝛽(𝑡) are continuous functions such that
𝛼(𝑡) ≥ 𝛼

0
> 0, and 0 ≤ 𝛽(𝑡) ≤ 𝑞𝛼(𝑡) for all 𝑡 ≥ 𝑡

0
with

constants 𝛼
0
> 0 and 0 ≤ 𝑞 < 1. Then

𝑌 (𝑡) ≤ 𝐺 exp (−𝜇
∗
(𝑡 − 𝑡
0
)) , 𝑡 ≥ 𝑡

0
, (9)

where 𝐺 = sup
𝑡0−𝜏≤𝑡≤𝑡0

|𝑌(𝑡)| and 𝜇
∗
> 0 is defined as

𝜇
∗
= inf
𝑡≥𝑡0

{𝜇 (𝑡) : 𝜇 (𝑡) − 𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝜇(𝑡)𝜏

= 0} . (10)

For the stability analysis, we need to consider the per-
turbed problem, that is, non-Fickian delay reaction-diffusion
equation (5) with a different initial condition �̃�(𝑥, 𝑡) =

�̃�
0
(𝑥, 𝑡). Its solution is denoted by �̃�(𝑥, 𝑡) and satisfies the

following equation:

𝜕�̃�

𝜕𝑡
(𝑥, 𝑡) = 𝐷

1

𝜕
2
�̃�

𝜕𝑥2
(𝑥, 𝑡) +

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2
�̃�

𝜕𝑥2
(𝑥, 𝑠) 𝑑𝑠

+ 𝑓 (𝑡, �̃� (𝑥, 𝑡) , �̃� (𝑥, 𝑡 − 𝜏 (𝑡))) , 𝑡 > 0,

�̃� (𝑥, 𝑡) = �̃�
0
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ (𝑥

𝑎
, 𝑥
𝑏
) × [−𝜏

∗
, 0] ,

�̃� (𝑥
𝑎
, 𝑡) = �̃� (𝑥

𝑏
, 𝑡) = 0, 𝑡 > 0.

(11)

Besides, let ⟨⋅, ⋅⟩ denote the inner product in 𝐿
2
(𝑥
𝑎
, 𝑥
𝑏
)

and by ‖ ⋅ ‖ we denote the corresponding induced norm. To
simplify the notation, we represent V(⋅, 𝑡) by V(𝑡) if V is defined
in [𝑥
𝑎
, 𝑥
𝑏
] × [−𝜏, +∞). The energy function is defined by

𝐸V (𝑡) = ‖V(𝑡)‖2 +
𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠)𝑑𝑠



2

. (12)

Then, we have the following result.
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Theorem 2. Assume that for each 𝑡 ∈ [0, +∞)

𝜕𝑢

𝜕𝑥
(𝑡) , ∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢

𝜕𝑥
(𝑠) 𝑑𝑠, ∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢0

𝜕𝑥
(𝑠) 𝑑𝑠,

∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕�̃�0

𝜕𝑥
(𝑠) 𝑑𝑠 ∈ 𝐿

2
(𝑥
𝑎
, 𝑥
𝑏
) .

(13)

If

⟨𝑢
1
− 𝑢
2
, 𝑓 (𝑡, 𝑢

1
, V
1
) − 𝑓 (𝑡, 𝑢

2
, V
1
)⟩ ≤ 𝛼

1
(𝑡)

𝑢1 − 𝑢
2


2

,

𝑓 (𝑡, 𝑢, V
1
) − 𝑓 (𝑡, 𝑢, V

2
)
 ≤ 𝛽
1
(𝑡)

V1 − V
2

 ,

(14)

where 𝛼
1
(𝑡) and 𝛽

1
(𝑡) ≥ 0 are continuous and there exists 0 ≤

𝑞
1
< 1 such that

𝑞
1
max{−

2

𝛿
, 2𝛼
1
(𝑡) −

2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
+ 𝛽
1
(𝑡)}

+ 𝛽
1
(𝑡) ≤ 0, for 𝑡 ≥ 0,

(15)

then

𝐸V (𝑡) ≤ 𝐺
1
exp (−𝜇

∗

1
𝑡) , (16)

where 𝐺
1
= sup

−𝜏≤𝑡≤0
|𝐸V(𝑡)| and 𝜇

∗

1
> 0 is defined as

𝜇
∗

1
= inf
𝑡≥𝑡0

{𝜇 (𝑡) : 𝜇 (𝑡)

+max{−
2

𝛿
, 2𝛼
1
(𝑡) −

2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
+ 𝛽
1
(𝑡)}

+𝛽
1
(𝑡) 𝑒
𝜇(𝑡)𝜏

= 0} .

(17)

Proof. Let V(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − �̃�(𝑥, 𝑡); we can obtain the
following equation:

𝜕V
𝜕𝑡

(𝑡) = 𝐷
1

𝜕
2V

𝜕𝑥2
(𝑡) +

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2V
𝜕𝑥2

(𝑠) 𝑑𝑠

+ 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑡, �̃� (𝑡) , �̃� (𝑡 − 𝜏 (𝑡))) .

(18)

Multiplying each member of (18) by V(𝑥, 𝑡) with respect to
⟨⋅, ⋅⟩ and integrating by part, we find

1

2

𝑑

𝑑𝑡
‖V (𝑡)‖2 = −𝐷

1



𝜕V
𝜕𝑥

(𝑡)



2

−
𝐷
2

𝛿
⟨∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠) 𝑑𝑠,

𝜕V
𝜕𝑥

(𝑡)⟩

+ ⟨𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏 (𝑡)))

−𝑓 (𝑡, �̃� (𝑡) , �̃� (𝑡 − 𝜏 (𝑡))) , V (𝑡)⟩ .

(19)

As in [15],

⟨
𝜕V
𝜕𝑥

(𝑡) , ∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠) 𝑑𝑠⟩ =

1

2

𝑑

𝑑𝑡


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠)𝑑𝑠



2

+
1

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠)𝑑𝑠



2

,

(20)

we have

𝑑

𝑑𝑡
(‖V (𝑡)‖2 +

𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠) 𝑑𝑠



2

)

= −2𝐷
1



𝜕V
𝜕𝑥

(𝑡)



2

−
2

𝛿

𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠)𝑑𝑠



2

+ 2 ⟨𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏 (𝑡)))

−𝑓 (𝑡, �̃� (𝑡) , �̃� (𝑡 − 𝜏 (𝑡))) , V (𝑡)⟩

≤ −
2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
‖V (𝑡)‖2 −

2

𝛿

𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠) 𝑑𝑠



2

+ 2 ⟨𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏 (𝑡)))

−𝑓 (𝑡, �̃� (𝑡) , �̃� (𝑡 − 𝜏 (𝑡))) , V (𝑡)⟩ ,
(21)

where we have used the Poincaré inequality.
Now, using assumption (14), we have

⟨𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑡, �̃� (𝑥, 𝑡) , �̃� (𝑥, 𝑡 − 𝜏 (𝑡))) , V (𝑡)⟩

= ⟨𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑡, �̃� (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏 (𝑡))) , V (𝑡)⟩

+ ⟨𝑓 (𝑡, �̃� (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑡, �̃� (𝑥, 𝑡) , �̃� (𝑥, 𝑡 − 𝜏 (𝑡))) , V (𝑡)⟩

≤ 𝛼
1
(𝑡) ‖V(𝑡)‖2 + 𝛽

1
(𝑡) ‖V (𝑡 − 𝜏 (𝑡))‖ ⋅ ‖V (𝑡)‖

≤ (𝛼
1
(𝑡) +

𝛽
1
(𝑡)

2
) ‖V(𝑡)‖2 +

𝛽
1
(𝑡)

2
‖V (𝑡 − 𝜏 (𝑡))‖

2
.

(22)

Therefore,

𝑑

𝑑𝑡
(‖V (𝑡)‖2 +

𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠) 𝑑𝑠



2

)

≤ −
2

𝛿

𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠)𝑑𝑠



2

+ (2𝛼
1
(𝑡) + 𝛽

1
(𝑡) −

2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
)‖V (𝑡)‖2

+ 𝛽
1
(𝑡) ‖V (𝑡 − 𝜏 (𝑡))‖

2
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≤ max{−
2

𝛿
, 2𝛼
1
(𝑡) + 𝛽

1
(𝑡) −

2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
}

× (‖V (𝑡)‖2 +
𝐷
2

𝛿


∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕V

𝜕𝑥
(𝑠) 𝑑𝑠



2

)

+ 𝛽
1
(𝑡) ‖V (𝑡 − 𝜏 (𝑡))‖

2
.

(23)

Then, we derive the following inequality:

𝑑

𝑑𝑡
𝐸V (𝑡) ≤ max{−

2

𝛿
, 2𝛼
1
(𝑡) + 𝛽

1
(𝑡) −

2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
}

× 𝐸V (𝑡) + 𝛽
1
(𝑡) 𝐸V (𝑡 − 𝜏 (𝑡))

≤ max{−
2

𝛿
, 2𝛼
1
(𝑡) + 𝛽

1
(𝑡) −

2𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
}

× 𝐸V (𝑡) + 𝛽
1
(𝑡) sup
𝑡−𝜏
∗
≤𝜉≤𝑡

𝐸V (𝜉) .

(24)

Now, applying Lemma 1, we finally have the stability
result.

It is remarkable that formula (16) implies that

‖V(𝑡)‖2 ≤ 𝐺
1
exp (−𝜇

∗

1
𝑡) . (25)

Hence, the perturbation of the solution of the problem also
decays exponentially.

When the right-hand side function of the problem (5)
does not possess the delay term, the problem degenerates into
a non-Fickian reaction-diffusion equation:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝐷

1

𝜕
2
𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2
𝑢

𝜕𝑥2
(𝑥, 𝑠) 𝑑𝑠

+ 𝑓 (𝑡, 𝑢 (𝑥, 𝑡)) , 𝑡 > 0,

(26)

which is also discussed in [13]. We have the following
conclusion.

Corollary 3. Assume that for each 𝑡 ∈ [0, +∞)

𝜕𝑢

𝜕𝑥
(𝑡) , ∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢

𝜕𝑥
(𝑠) 𝑑𝑠,

∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢0

𝜕𝑥
(𝑠) 𝑑𝑠 ∈ 𝐿

2
(𝑥
𝑎
, 𝑥
𝑏
) .

(27)

If

⟨𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) , 𝑢 − V⟩ ≤ 𝛼
2
(𝑡) ‖𝑢 − V‖2, (28)

where 𝛼
2
(𝑡) are continuous and 2𝛼

2
(𝑡) − 2𝐷

1
/(𝑥
𝑏
− 𝑥
𝑎
)
2
< 0,

for 𝑡 ≥ 0. Then there exist constants 𝐺
2
and 𝜇

∗

2
such that

𝐸V (𝑡) ≤ 𝐺
2
exp (−𝜇

∗

2
𝑡) . (29)

When 𝐷
1

= 0, the problem (5) degenerates into an
integrodifferential delay equation,

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) =

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2
𝑢

𝜕𝑥2
(𝑥, 𝑠) 𝑑𝑠

+𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , 𝑢 (𝑥, 𝑡 − 𝜏 (𝑡))) , 𝑡 > 0,

(30)

which is investigated in [14, 15]. We have the following
conclusion.

Corollary 4. Assume that for each 𝑡 ∈ [0, +∞)

𝜕𝑢

𝜕𝑥
(𝑡) , ∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢

𝜕𝑥
(𝑠) 𝑑𝑠,

∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢0

𝜕𝑥
(𝑠) 𝑑𝑠 ∈ 𝐿

2
(𝑥
𝑎
, 𝑥
𝑏
) .

(31)

If

⟨𝑢
1
− 𝑢
2
, 𝑓 (𝑡, 𝑢

1
, V
1
) − 𝑓 (𝑡, 𝑢

2
, V
1
)⟩ ≤ 𝛼

3
(𝑡)

𝑢1 − 𝑢
2


2

,

𝑓 (𝑡, 𝑢, V
1
) − 𝑓 (𝑡, 𝑢, V

2
)
 ≤ 𝛽
3
(𝑡)

V1 − V
2

 ,

(32)

where 𝛼
3
(𝑡) and 𝛽

3
(𝑡) ≥ 0 are continuous and there exists 0 ≤

𝑞
3
< 1 such that

𝑞
1
max {−2

𝛿
, 2𝛼
1
(𝑡) + 𝛽

1
(𝑡)} + 𝛽

1
(𝑡) < 0, for 𝑡 ≥ 0,

(33)

then there exist constants 𝐺
3
and 𝜇

∗

3
such that

𝐸V (𝑡) ≤ 𝐺
3
exp (−𝜇

∗

3
𝑡) . (34)

If we assume that

⟨𝑓 (𝑡, 𝑢, V) , 𝑢⟩ ≤ 𝛼
1
(𝑡) ‖𝑢‖

2
+ 𝛽
1
(𝑡) ‖V‖2 + 𝛾

1
(𝑡) , (35)

where 𝛽
1
(𝑡) ≥ 0 and 𝛾

1
(𝑡) ≥ 0 and 𝛼

1
(𝑡) are continuous

functions, there may exist a bounded set B and a time
𝑡
∗, such that for any given initial function 𝑢

0
(𝑥, 𝑡), (𝑥, 𝑡) ∈

[𝑥
𝑎
, 𝑥
𝑏
] × [−𝜏, 0], the corresponding energy ‖𝐸

𝑢
(𝑡)‖ of the

problem is contained in B for all 𝑡 ≥ 𝑡
∗. The analogous

results and their conclusions for non-Fickian equations with
a variable delay can be derived without any difficulty. We do
not list them here for brevity.

3. Stability of the Numerical Approximation

In this section, we will concentrate on the stability of two
kinds of numerical approximation. Here and below, for the
discretization of system (5), we divide the interval 𝐼 = [𝑥

𝑎
, 𝑥
𝑏
]

with a mesh: 𝑥
𝑎
= 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑥
𝑏
with the space

stepsize ℎ = (𝑥
𝑏
− 𝑥
𝑎
)/𝑁, where 𝑁 is a positive integer. And

𝑘 = 1/𝑁
𝑘
is a time stepsize, where𝑁

𝑘
is a positive integer. We

will numerically solve the problem at time 𝑛𝑘, 𝑛 = 1, 2, . . ..
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3.1. Stability of the Finite Element Approximation. Firstly, the
finite element method is introduced to discrete the problems.
Let 𝑆ℎ be a finite dimensional subspace of 𝐻1

0
(𝐼); then the

semidiscrete finite element method is to find 𝑈 ∈ 𝑆
ℎ, such

that, for all test functions, 𝜒
𝑖
∈ 𝑆
ℎ and 1 ≤ 𝑖 ≤ 𝑁, satisfying

(
𝜕𝑢
ℎ

𝜕𝑡
, 𝜒) + (𝐷

1

𝜕𝑢
ℎ

𝜕𝑥
+

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕𝑢ℎ

𝜕𝑥
(𝑠) 𝑑𝑠,

𝜕𝜒

𝜕𝑥
)

= (𝑓 (𝑡, 𝑢
ℎ
(𝑥, 𝑡) , 𝑢

ℎ
(𝑥, 𝑡 − 𝜏 (𝑡))) , 𝜒) .

(36)

The exponential stability of semidiscrete approximation
is shown as follows.

Theorem 5. Assume that conditions in Theorem 2 hold; then
the difference 𝐸Vℎ(𝑡) satisfies the following formulae:


𝐸Vℎ(𝑡)



2

≤ 𝐺
1
exp (−𝜇

∗
(𝑡 − 𝑡
0
)) , 𝑡 ≥ 𝑡

0
, (37)

where the parameters 𝐺
1
and 𝜇

∗ are defined inTheorem 2 and
V
ℎ
= 𝑢
ℎ
− �̃�
ℎ
with �̃�

ℎ
satisfying the semidiscrete finite element

approximation to the perturbed problem.

Proof. The proof is similar to that of Theorem 2.

If we further apply the right rectangular rule to approxi-
mate the integral and implicit Euler method to discrete (36),
then the full discrete numerical approximation is to find 𝑢

𝑛

ℎ
∈

𝑆
ℎ, such that, for all test functions, 𝜒 ∈ 𝑆

ℎ
and 1 ≤ 𝑖 ≤ 𝑁,

satisfying for 𝑛 = 0, 1, 2, . . .

(
𝑢
𝑛+1

ℎ
− 𝑢
𝑛

ℎ

𝑘
, 𝜒) + (𝐷

1

𝜕

𝜕𝑥
𝑢
𝑛+1

ℎ
+

𝐷
2
𝑘

𝛿

×

𝑛+1

∑

𝑖=1

𝑒
−(𝑡𝑛+1−𝑡𝑖)/𝛿

𝜕

𝜕𝑥
𝑢
𝑖

ℎ
,
𝜕𝜒

𝜕𝑥
)

= (𝑓 (𝑡, 𝑢
𝑛+1

ℎ
, 𝑢
𝑛+1

ℎ
) , 𝜒) .

(38)

Here 𝑢
𝑛+1

ℎ
denotes an approximation to 𝑢(𝑥, 𝑡

𝑛+1
− 𝜏(𝑡
𝑛+1

)),
which is obtained by the following linear interpolation
procedure at the point 𝑡

𝑛+1
− 𝜏(𝑡
𝑛+1

):

𝑢
𝑛+1

ℎ
= 𝜃
𝑛
𝑢
𝑛+1−𝑚𝑛

ℎ
+ (1 − 𝜃

𝑛
) 𝑢
𝑛−𝑚𝑛

ℎ
, (39)

where 𝜏(𝑡) = (𝑚
𝑛
− 𝜃
𝑛
)𝑘 with integer𝑚

𝑛
≥ 1 and 𝜃

𝑛
∈ [0, 1].

Now, we can establish the discrete version of the energy:

𝐸 (𝑢
𝑛

ℎ
) =

𝑢
𝑛

ℎ


2

+ 𝑒
−2(𝑘/𝛿)𝐷2

𝛿



𝑘

𝑛

∑

𝑗=1

𝑒
−(𝑡𝑛−𝑡𝑗)/𝛿

𝜕

𝜕𝑥
𝑢
𝑙

ℎ



2

. (40)

Then, we have the following result.

Theorem 6. Assume that conditions (14) and (15) hold. Then
there exists a constant 0 ≤ 𝑞

2
< 1 such that

𝐸 (V𝑛+1
ℎ

) ≤ 𝑞
2
𝐸 (V𝑛
ℎ
) , (41)

where V𝑛
ℎ
= 𝑢
𝑛

ℎ
− �̃�
𝑛

ℎ
and �̃�

𝑛

ℎ
(𝑥
𝑖
) is the full discrete approxima-

tions to the perturbed problem.

Proof. The difference V𝑛
ℎ
satisfies the following equation:

(
V𝑛+1
ℎ

− V𝑛
ℎ

𝑘
, 𝜒) + (𝐷

1

𝜕

𝜕𝑥
V𝑛+1
ℎ

+
𝐷
2
𝑘

𝛿

×

𝑛+1

∑

𝑖=1

𝑒
−(𝑡𝑛+1−𝑡𝑖)/𝛿

𝜕

𝜕𝑥
V𝑖
ℎ
,
𝜕𝜒

𝜕𝑥
)

= (𝑓 (𝑡, 𝑢
𝑛+1

ℎ
, 𝑢
𝑛+1

ℎ
) − 𝑓 (𝑡, �̃�

𝑛+1

ℎ
, �̃�
𝑛+1

ℎ
) , 𝜒) .

(42)

Taking 𝜒 = V𝑛+1
ℎ

in the above formula, we find that


V𝑛+1
ℎ



2

= (V𝑛
ℎ
, V𝑛+1
ℎ

) − 𝑘𝐷
1



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

−
𝐷
2
𝑘
2

𝛿

× (

𝑛+1

∑

𝑗=1

𝑒
−(𝑡𝑛−𝑡𝑗)/𝛿

𝜕

𝜕𝑥
V𝑗
ℎ
,
𝜕

𝜕𝑥
V𝑛+1
ℎ

)

+ 𝑘 (𝑓 (𝑡
𝑛+1

, 𝑢
𝑛+1

ℎ
, 𝑢
𝑛+1

ℎ
)

−𝑓 (𝑡
𝑛+1

, �̃�
𝑛+1

ℎ
, �̃�
𝑛+1

ℎ
) , V𝑛+1
ℎ

)

= (V𝑛
ℎ
, V𝑛+1
ℎ

) − 𝑘𝐷
1



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

−
𝐷
2
𝑘
2

𝛿

× (

𝑛+1

∑

𝑗=1

𝑒
−(𝑡𝑛−𝑡𝑗)/𝛿

𝜕

𝜕𝑥
V𝑗
ℎ
,
𝜕

𝜕𝑥
V𝑛+1
ℎ

)

+ 𝑘 (𝑓 (𝑡
𝑛+1

, 𝑢
𝑛+1

ℎ
, 𝑢
𝑛+1

ℎ
)

−𝑓 (𝑡
𝑛+1

, �̃�
𝑛+1

ℎ
, 𝑢
𝑛+1

ℎ
) , V𝑛+1
ℎ

)

+ 𝑘 (𝑓 (𝑡
𝑛+1

, �̃�
𝑛+1

ℎ
, 𝑢
𝑛+1

ℎ
)

−𝑓 (𝑡
𝑛+1

, �̃�
𝑛+1

ℎ
, �̃�
𝑛+1

ℎ
) , V𝑛+1
ℎ

)

≤ (V𝑛
ℎ
, V𝑛+1
ℎ

) − 𝑘𝐷
1



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

−
𝐷
2
𝑘
2

𝛿

× (

𝑛+1

∑

𝑗=1

𝑒
−(𝑡𝑛−𝑡𝑗)/𝛿

𝜕

𝜕𝑥
V𝑗
ℎ
,
𝜕

𝜕𝑥
V𝑛+1
ℎ

)

+ (𝛼
𝑛+1

+
𝛽
𝑛+1

2
) 𝑘


V𝑛+1
ℎ



2

+
𝛽
𝑛+1

2
𝑘

V𝑛+1
ℎ



2

,

(43)

where we have used condition (14).
As in [15], we have

(

𝑛+1

∑

𝑗=1

𝑒
−(𝑡𝑛+1−𝑡𝑗)/𝛿

𝜕

𝜕𝑥
V𝑗
ℎ
,
𝜕

𝜕𝑥
V𝑛+1
ℎ

)

=
1

2



𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2
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−
1

2
𝑒
−2(𝑘/𝛿)



𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

+
1

2



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

.

(44)

Substituting (44) into (43) yields


V𝑛+1
ℎ



2

+
𝐷
2

2𝛿



𝑘

𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

= (V𝑛
ℎ
, V𝑛+1
ℎ

) − 𝑘𝐷
1



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

+
𝐷
2

2𝛿
𝑒
−2(𝑘/𝛿)

×



𝑘

𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

−
𝐷
2
𝑘
2

2𝛿



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

+ (𝛼
𝑛+1

+
𝛽
𝑛+1

2
) 𝑘


V𝑛+1
ℎ



2

+
𝛽
𝑛+1

2
𝑘

V𝑛+1
ℎ



2

.

(45)

Applying the following discrete Poincaré inequality

−



𝜕

𝜕𝑥
V𝑛+1
ℎ



2

≤ −
1

(𝑥
𝑏
− 𝑥
𝑎
)
2


V𝑛+1
ℎ



2

(46)

and (V𝑛
ℎ
, V𝑛+1
ℎ

) ≤ (1/2)‖V𝑛+1
ℎ

‖
2

+(1/2)‖V𝑛
ℎ
‖
2 to (45), we arrive at

(1 − 2𝑘𝛼
𝑛+1

− 𝑘𝛽
𝑛+1

+
2𝑘𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
)


V𝑛+1
ℎ



2

+
𝐷
2

𝛿



𝑘

𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

≤
V
𝑛

ℎ


2

+ 𝑒
−2(𝑘/𝛿)𝐷2

𝛿



𝑘

𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

+ 𝑘𝛽
𝑛+1


V𝑛+1
ℎ



2

=
V
𝑛

ℎ


2

+ 𝑒
−2(𝑘/𝛿)𝐷2

𝛿



𝑘

𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

+ 𝑘𝛽
𝑛+1


𝜃
𝑛
V𝑛+1−𝑚𝑛
𝑛

+ (1 − 𝜃
𝑛
) V𝑛−𝑚𝑛
ℎ



2

=
V
𝑛

ℎ


2

+ 𝑒
−2(𝑘/𝛿)𝐷2

𝛿



𝑘

𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

+ 𝑘𝛽
𝑛+1

(𝜃
2

𝑛


V𝑛+1−𝑚𝑛
𝑛



2

+ (1 − 𝜃
𝑛
)
2
V𝑛−𝑚𝑛
ℎ



2

+ 2𝜃
𝑛
(1 − 𝜃

𝑛
)

V𝑛+1−𝑚𝑛
𝑛




V𝑛−𝑚𝑛
ℎ


)

≤
V
𝑛

ℎ


2

+ 𝑒
−2(𝑘/𝛿)𝐷2

𝛿



𝑘

𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

+ 𝑘𝛽
𝑛+1

(𝜃
𝑛


V𝑛+1−𝑚𝑛
𝑛



2

+ (1 − 𝜃
𝑛
)

V𝑛−𝑚𝑛
ℎ



2

)

≤ 𝐸 (V𝑛
ℎ
) + 𝑘𝛽

𝑛+1
max {V

𝑛+1−𝑚𝑛

ℎ



2

,

V𝑛−𝑚𝑛
ℎ



2

}

≤ 𝐸 (V𝑛
ℎ
) + 𝑘𝛽

𝑛+1
max {𝐸 (V𝑛+1−𝑚𝑛

ℎ
) , 𝐸 (V𝑛−𝑚𝑛

ℎ
)}

≤ (1 + 𝑘𝛽
𝑛+1

)max {𝐸 (V𝑛
ℎ
) , 𝐸 (V𝑛+1−𝑚𝑛

ℎ
) , 𝐸 (V𝑛−𝑚𝑛

ℎ
)} ,

(47)

where we have used the inequality 2𝛼𝛽 ≤ 𝛼
2
+ 𝛽
2.

It follows from (47) that

min {𝐶
𝑛+1

, 𝑒
2(𝑘/𝛿)

} 𝐸 (V𝑛+1
ℎ

)

≤ (1 − 2𝑘𝛼
𝑛+1

− 𝑘𝛽
𝑛+1

+
2𝑘𝐷
1

(𝑥
𝑏
− 𝑥
𝑎
)
2
)

×

V𝑛+1
ℎ



2

+
𝐷
2

𝛿



𝑘

𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿

𝜕

𝜕𝑥
V𝑙
ℎ



2

≤ (1 + 𝑘𝛽
𝑛+1

)max {𝐸 (V𝑛
ℎ
) , 𝐸 (V𝑛+1−𝑚𝑛

ℎ
) , 𝐸 (V𝑛−𝑚𝑛

ℎ
)} ,

(48)

where 𝐶
𝑛+1

= (1 − 2𝑘𝛼
𝑛+1

− 𝑘𝛽
𝑛+1

+ 2𝑘𝐷
1
/(𝑥
𝑏
− 𝑥
𝑎
)
2
).

Therefore,

𝐸 (V𝑛+1
ℎ

) ≤
(1 + 𝑘𝛽

𝑛+1
)

min {𝐶
𝑛+1

, 𝑒2(𝑘/𝛿)}

×max {𝐸 (V𝑛
ℎ
) , 𝐸 (V𝑛+1−𝑚𝑛

ℎ
) , 𝐸 (V𝑛−𝑚𝑛

ℎ
)} .

(49)

In fact, in view of condition (15), there exists a constant ,
such that

1

𝐶
𝑛+1

+
𝑘𝛽
𝑛+1

𝐶
𝑛+1

≤  < 1, (50)

𝑒
−2(𝑘/𝛿)

(1 + 𝑘𝛽
𝑛+1

) ≤ 𝑒
−𝑘𝛽𝑛+1 (1 + 𝑘𝛽

𝑛+1
)

= (1 − 𝑘𝛽
𝑛+1

+ O (𝑘
2
))

× (1 + 𝑘𝛽
𝑛+1

) ≤  < 1.

(51)

Hence,

1 + 𝑘𝛽
𝑛+1

min {𝐶
𝑛+1

, 𝑒2(𝑘/𝛿)}
≤  < 1, 𝑛 = 1, 2, . . . (52)

Togetherwith (49) and (52), we have the final conclusion.

Theorem 5 shows that, for any given initial perturba-
tion, the perturbation of the corresponding discrete energy
of the problem decreases in time. Meantime, noting that
‖𝑘∑
𝑛

𝑙=1
𝑒
−(𝑡𝑛−𝑡𝑙)/𝛿(𝜕/𝜕𝑥)V𝑙

ℎ
‖
2

> 0 in the energy function, the
difference ‖V𝑛

ℎ
‖ tends to zero very quickly.
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3.2. Stability of the Finite Difference Approximation. In this
subsection, we will apply the central finite difference method
to discrete the diffusion term and discuss the stability of the
full discrete problems.

Let 𝑘be the time stepsize and𝑈
𝑛

ℎ
(𝑥
𝑖
)denote the numerical

approximation to𝑈(𝑥
𝑖
, 𝑡
𝑛
)with 𝑡

𝑛
= 𝑛𝑘; then the full discrete

finite difference approximation for (5) can be written as

𝑈
𝑛+1

ℎ
(𝑥
𝑖
) = 𝑈

𝑛

ℎ
(𝑥
𝑖
) + 𝑘𝐷

1
𝐷
2,𝑥

𝑈
𝑛+1

ℎ
(𝑥
𝑖
) + 𝑘
2𝐷2

𝛿

×

𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿𝐷

2,𝑥
𝑈
𝑙

ℎ
(𝑥
𝑖
)

+ 𝑘𝑓 (𝑡
𝑛+1

, 𝑈
𝑛+1

ℎ
(𝑥
𝑖
) , 𝑈
𝑛+1

ℎ
(𝑥
𝑖
)) ,

𝑛 = 0, 1, 2, . . . ,

(53)

where

𝐷
2,𝑥

𝑈
ℎ
(𝑥
𝑖
) =

𝑈
ℎ
(𝑥
𝑖+1

) − 2𝑈
ℎ
(𝑥
𝑖
) + 𝑈
ℎ
(𝑥
𝑖−1

)

ℎ2
,

𝑖 = 1, . . . , 𝑁 − 1,

(54)

and the argument 𝑈
𝑛+1

ℎ
(𝑥) denotes an approximation to

𝑢(𝑥, 𝑡
𝑛+1

− 𝜏(𝑡
𝑛+1

)), which is obtained by the linear interpola-
tion procedure at the point 𝑡

𝑛+1
− 𝜏(𝑡
𝑛+1

)

𝑈
𝑛+1

ℎ
= 𝜃
𝑛
𝑈
𝑛+1−𝑚𝑛

ℎ
+ (1 − 𝜃

𝑛
) 𝑈
𝑛−𝑚𝑛

ℎ
, (55)

where 𝜏(𝑡) = (𝑚
𝑛
− 𝜃
𝑛
)𝑘 with integer𝑚

𝑛
≥ 1 and 𝜃

𝑛
∈ [0, 1].

The discrete version of the energy of the finite difference
approximation is defined by

̃̃
𝐸 (𝑈
𝑛+1

ℎ
) =


𝑈
𝑛+1

ℎ



2

𝐿
2
(𝐼ℎ)

+ 𝑒
−2(𝑘/𝛿)𝐷2

𝛿

×



𝑘

𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿𝐷

−𝑥
𝑈
𝑙

ℎ



2

𝐿
2(𝐼ℎ,+)

,

(56)

where𝐷
−𝑥

is the backward finite difference operator:

𝑈ℎ

2

𝐿
2
(𝐼ℎ)

= (𝑈
ℎ
, 𝑈
ℎ
)
ℎ
= (𝑈
ℎ
, 𝑈
ℎ
)
ℎ
= ℎ

𝑁−1

∑

𝑖=1

𝑈
2

ℎ
(𝑥
𝑖
) ,

‖𝑉‖
2

𝐿
2
(𝐼ℎ ,+)

= (𝑉,𝑉)
ℎ,+

= ℎ

𝑁

∑

𝑖=1

𝑉 (𝑥
𝑖
) 𝑉 (𝑥

𝑖
) ,

𝑉 = 𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿𝐷

−𝑥
𝑈
𝑙

ℎ
.

(57)

Theorem 7. Assume that conditions (14) and (15) hold. Then
there exists a constant 0 ≤ 𝑞

3
< 1 such that

̃̃
𝐸 (𝑉
𝑛+1

ℎ
) ≤ 𝑞
3

̃̃
𝐸 (𝑉
𝑛

ℎ
) , (58)

where 𝑉
𝑛

ℎ
= 𝑈
𝑛

ℎ
− �̃�
𝑛

ℎ
and �̃�

𝑛

ℎ
(𝑥
𝑖
) is the full discrete finite

difference approximations to the perturbed problem.

Proof. Theproof is similar to the one done inTheorem 6with
the following relation:

(

𝑛+1

∑

𝑗=1

𝑒
−(𝑡𝑛+1−𝑡𝑗)/𝛿𝐷

−𝑥
V𝑗
ℎ
, 𝐷
−𝑥
V𝑛+1
ℎ

)

ℎ,+

=
1

2



𝑛+1

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿𝐷

−𝑥
V𝑙
ℎ



2

𝐿
2
(𝐼ℎ ,+)

−
1

2
𝑒
−2(𝑘/𝛿)



𝑛

∑

𝑙=1

𝑒
−(𝑡𝑛+1−𝑡𝑙)/𝛿𝐷

−𝑥
V𝑙
ℎ



2

𝐿
2
(𝐼ℎ ,+)

+
1

2


𝐷
−𝑥
V𝑛+1
ℎ



2

𝐿
2
(𝐼ℎ ,+)

.

(59)

4. Application

In this section, we will provide a numerical experiment to
illustrate the given results.

Consider the following Non-FickianMackey-Glass equa-
tions [33]:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝐷

1

𝜕
2
𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝐷
2

𝛿
∫

𝑡

0

𝑒
−(𝑡−𝑠)/𝛿 𝜕

2
𝑢

𝜕𝑥2
(𝑥, 𝑠) 𝑑𝑠

− 𝑎𝑢 (𝑥, 𝑡) +
𝑏𝑢 (𝑥, 𝑡 − 𝜏 (𝑡))

1 + 𝑢𝑚 (𝑥, 𝑡 − 𝜏 (𝑡))
,

𝑢 (𝑥
𝑎
, 𝑡) = 𝑢 (𝑥

𝑏
, 𝑡) = 0, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 𝜑 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ [0, 𝜋] × [−𝜏
∗
, 0] ,

(60)

where 𝑎, 𝑏, 𝐷
1
, 𝐷
2
, and 𝛿 are given parameters, 𝑚 is an even

positive integer, and 𝜏(𝑡) is a nonnegative function.
There is no difficulty in verifying that condition (14) holds

(𝛼
1
(𝑡) = −𝑎, 𝛽

1
(𝑡) = 𝑏). If there exists 0 ≤ 𝑞

1
< 1 such

that 𝑞
1
max{−2/𝛿, −2𝑎 − 2𝐷

1
/(𝑥
𝑏
− 𝑥
𝑎
)
2
+ 𝑏} + 𝑏 < 0, the

perturbation of the energy estimate decays exponentially. For
the numerical simulation of the model, we set the parameter
𝐷
1

= 𝐷
2

= 𝛿 = 1, 𝑚 = 2, 𝜏(𝑡) = 1 − 0.1| sin(𝑡)|, the
space stepsize ℎ = 𝜋/10, and time stepsize 𝑘 = 0.1 and
apply 1-degree finite elementmethod to solve the problem on
[0, 𝜋] × [0, 20] with the following different initial conditions:

𝑢
0
(𝑥, 𝑡) = (2 + cos (𝑡)) sin (𝑥) ,

�̃�
0
(𝑥, 𝑡) = 10𝑥 (𝜋 − 𝑥) .

(61)

Some statistics of the numerical results with different param-
eters 𝑎 and 𝑏 are shown in Tables 1 and 2, where the discrete
energy𝐸(V𝑛

ℎ
) and ‖V𝑛

ℎ
‖
2 of the problems decreases in time very

quickly. Moreover, The numerical differences |V𝑛
ℎ
(𝑥
𝑖
)| with

the parameters 𝑎 = 2 and 𝑏 = 1 are shown in Figure 1,
where 𝑥

𝑖
= 𝑖ℎ with 𝑖 = 1, 2, . . . , 9. The numerical differences

(the blue lines) are all bounded by the exponential function
𝑦 = 20 exp(−𝑡) (the red line). Clearly, they all confirm the
results in this paper.
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Table 1: The discrete energy 𝐸(V𝑛
ℎ
) at different time.

𝐸(V𝑛
ℎ
) 𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 𝑡 = 10

𝑎 = 1, 𝑏 = 1 1.37 1.01𝐸 − 1 9.17𝐸 − 4 6.90𝐸 − 5 6.53𝐸 − 6

𝑎 = 2, 𝑏 = 1 5.28𝐸 − 1 2.21𝐸 − 2 1.72𝐸 − 4 6.32𝐸 − 6 2.08𝐸 − 7

𝑎 = 3, 𝑏 = 1 2.88𝐸 − 1 7.73𝐸 − 3 8.20𝐸 − 5 1.55𝐸 − 6 3.33𝐸 − 8

𝑎 = 4, 𝑏 = 1 1.87𝐸 − 1 3.94𝐸 − 3 5.32𝐸 − 5 8.98𝐸 − 7 1.69𝐸 − 8

Table 2: The difference ‖V𝑛
ℎ
‖
2 at different time.

‖V𝑛
ℎ
‖
2

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 𝑡 = 10

𝑎 = 1, 𝑏 = 1 9.52𝐸 − 1 8.43𝐸 − 2 4.37𝐸 − 4 5.80𝐸 − 5 5.77𝐸 − 6

𝑎 = 2, 𝑏 = 1 2.82𝐸 − 1 4.56𝐸 − 2 2.86𝐸 − 5 3.53𝐸 − 6 1.38𝐸 − 7

𝑎 = 3, 𝑏 = 1 1.19𝐸 − 1 4.00𝐸 − 3 8.21𝐸 − 6 1.92𝐸 − 7 7.38𝐸 − 9

𝑎 = 4, 𝑏 = 1 6.16𝐸 − 2 1.39𝐸 − 3 4.56𝐸 − 6 3.40𝐸 − 9 5.04𝐸 − 10

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

t

|�
i h
|

Figure 1: The difference |V𝑛
ℎ
(𝑥
𝑖
)| at different time.

5. Conclusions

In this paper, we have investigated the stability of continuous
and discrete non-Fickian delay reaction-diffusion equations
with a variable delay. Firstly, we show that the perturbation
of the energy estimate decays exponentially. The present
stability results for a more general case improved that of our
previous paper. Secondly, the numerical analysis indicates
that the finite element method or central finite difference
method, combined with implicit Euler method and a linear
interpolation procedure for the delay term, can preserve the
stability of the energy function of the equations. All the above
findings are confirmed by using the numerical methods on
the non-Fickian Mackey-Glass equations.
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