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This paper investigates the proficiency of support vector machine (SVM) using datasets generated by Tennessee Eastman process
simulation for fault detection. Due to its excellent performance in generalization, the classification performance of SVM is
satisfactory. SVM algorithm combined with kernel function has the nonlinear attribute and can better handle the case where
samples and attributes are massive. In addition, with forehand optimizing the parameters using the cross-validation technique,
SVM can produce high accuracy in fault detection.Therefore, there is no need to deal with original data or refer to other algorithms,
making the classification problem simple to handle. In order to further illustrate the efficiency, an industrial benchmark of Tennessee
Eastman (TE) process is utilized with the SVM algorithm and PLS algorithm, respectively. By comparing the indices of detection
performance, the SVM technique shows superior fault detection ability to the PLS algorithm.

1. Introduction

Fault detection in manufacture process aims at timely nosing
out abnormal process behavior. Early fault detection of
process makes the process safer, more efficient and more
economical and guarantees the quality of products. There-
fore, several statistical methods appeared for fault diagnosis
and detection, such as artificial neural networks (ANN),
fuzzy logic systems, genetic algorithms, principal component
analysis (PCA), and more recently support vector machine
(SVM) [1]. SVM has been extensively studied and has been
used to construct data-driven modeling, classifying, and
fault detection due to its better generalization ability and
nonlinear classification ability [2–4]. On the other hand,
since massive amounts of data produced in the industrial
manufacturing process can be recorded and collected, the
study of data-driven technique has become an active research
field. It can benefit diverse communities including process
engineering [5, 6]. Over the past few years, linear supervised
classification technique, for example, K-nearest neighbor [7],
PCA [8, 9], Fisher discriminant analysis [8], discriminant
partial least squares (DPLS) [8–10], and nonlinear classi-
fication technique, for example, ANN [11] and SVM [12],

have been proposed and greatly improved [13, 14]. Moreover,
several machine learning algorithms have been applied in
real processes and simulation processes [15–17]; for example,
the PCA algorithm is used to analyse product quality for
a pilot plant [18], PLS and PCA are applied in chemical
industry for process fault monitoring [19], and the key
performance indicator prediction scheme is applied into an
industrial hot strip mill in [20]. The SVM algorithm can
improve the detection accuracy and it started to be used for
fault detection. Now it has been extensively used to solve
classification problems in many domains, for example, face,
object and text detection and categorization, information and
image retrieval, and so forth.

The algorithm of support vector machine (SVM) is
studied detailedly in this paper. SVM is a representative
nonlinear technique and it is a potentially effective technique
for classifying all kinds of datasets [21]. Fault detection can
be considered as a special classification problem involved in
model-based method [22] and data-based method, with the
purpose to timely recognise faulty condition.With the help of
cross-validation algorithm to optimise parameters, the per-
formance of classification is greatly enhanced [23–25]. Then,
to test the classification performance of SVM algorithm,
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a simulation model, the Tennessee Eastman process, is used
for detecting fault, which has 52 variables representing the
dynamics of the process [26]. In this simulation, original
dataset is handled using SVM algorithm and it obtains
satisfactory fault detection result. In the process of model
building and test data classifying, no other theory is added,
relatively decreasing the calculation time and reducing the
computational burden. Compared with PLS algorithm, clas-
sifier based on SVM performs higher accuracy. Finally, using
the SVM-based classifier with optimal parameters, faulty
station of the process is detected.

The paper is arranged as follows. The SVM classification
algorithm, PLS algorithm, and cross-validation algorithm are
introduced in the next section. Sections 3 and 4 present an
application to Tennessee Eastman process simulator using
SVM and PLS algorithms, respectively, and SVM-based
fault detection outperforms that of PLS algorithm. Section 5
summarizes a conclusion.

2. Method Algorithms

2.1. Support VectorMachinesTheory. Support vectormachine
(SVM) is a relatively new multivariate statistical approach
and has become popular due to its preferable effect of
classification and regression. SVM-based classifier has better
generalization property because it is based on the structural
risk minimization principle [27]. SVM algorithm has the
nonlinear attribute; thus, it can deal with large feature spaces
[28]. Due to the aforementioned two factors, SVM algorithm
begins to be used in machine fault detection.The fundamen-
tal principle of SVM is separating dataset into two classes
according to the hyperplane (a decision boundary) which
should have maximum distance between support vectors in
each class. Support vectors are representative data points
and their increasing number may increase the complexity of
problem [28, 29].

This thesis uses a binary classifier with dataset and the
corresponding labels. Training dataset containing two classes
is given in matrix 𝑋 with the form of 𝑚 × 𝑛 [6], in which
𝑚 represents the number of observe samples, while 𝑛 stands
for the quantity of the observed variables. 𝑥

𝑖
is denoted as a

column vector to stand for the 𝑖th row of 𝑋. Each sample is
assumed to be in a positive class or in a negative class. Besides,
a column vector 𝑌 serves as the class label, containing two
entries −1 and 1. Denote that 𝑦

𝑖
= 1 is associated with one

class and 𝑦
𝑖
= −1 with the other class. If the training dataset

is linearly separable, the SVMwill try to separate it by a linear
hyperplane:

𝑓 (𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 = 0, (1)

where 𝑤 is an𝑚-dimensional vector and 𝑏 is a scalar.
The parameters 𝑤 and 𝑏 decide the separating hyper-

plane’s position and orientation. A separating hyperplane is
considered to be optimal if it creates maximum distance
between the closest vectors and the hyperplane. The closest
points in each class are denoted as support vectors. If other
points in the training set are removed, the calculated decision
boundary remains the same one. That is to say the support

vectors contain all information in the dataset to define the
hyperplane. The distance 𝑑 from a data point 𝑥

𝑖
to the

separating hyperplane is

𝑑 =
|⟨𝑤, 𝑥⟩ + 𝑏|

‖𝑤‖
. (2)

Vapink in 1995 put forward a canonical hyperplane [30],
where 𝑤 and 𝑏 should satisfy

min
𝑖

󵄨󵄨󵄨󵄨⟨𝑤, 𝑥𝑖⟩ + 𝑏
󵄨󵄨󵄨󵄨 = 1. (3)

That is to say if the nearest point is taken to the hyperplane
function, the result is constrained to be 1. This restriction on
the parameters is to simplify the formation of problem. In a
way, as for a training data 𝑥

𝑖
, 𝑦
𝑖
, the separating hyperplane of

the above-mentioned form will become

𝑦
𝑖
𝑓 (𝑥
𝑖
) = 𝑦
𝑖
(⟨𝑤, 𝑥

𝑖
⟩ + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑚. (4)

The best separating hyperplane is the one that makes
maximum distance from support vectors to decision bound-
ary. The maximum distance is denoted as 𝜌.

Consider

𝜌 =
1

‖𝑤‖
. (5)

Hence, as for linear separable data, the optimal separating
hyperplane satisfies the following function:

min 𝜙 (𝑤) =
1

2
‖𝑤‖
2
. (6)

To solve the optimal problem equation (6) under the con-
strain of (4), define the Lagrangian to be

ℓ (𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖
2
−

𝑚

∑

𝑖=1

𝛼
𝑖
[𝑦
𝑖
(⟨𝑤, 𝑥

𝑖
⟩ + 𝑏) − 1] , (7)

where 𝛼
𝑖
is called Lagrangian multiplier. The Lagrangian

should be maximised by choosing appropriate 𝛼
𝑖
and should

be minimised by 𝑤, 𝑏.
Taking the noise in the data and the misclassification of

hyperplane into consideration, the above function describing
the separate hyperplane equation (4) is not accurate enough.
To make the optimal separating boundary to be generalised,
we reformulate the described function of the separate hyper-
plane:

𝑦
𝑖
(⟨𝑤, 𝑥

𝑖
⟩ + 𝑏) ≥ 1 − 𝜉

𝑖
, 𝑖 = 𝑖 . . . , 𝑚. (8)

where the variable 𝜉
𝑖
represents a measure of distance from

hyperplane to misclassified points and 𝜉
𝑖

≥ 0. To find
the optimal generalised separating hyperplane, the following
optimal problem should be solved:

min
𝑤,𝑏

1

2
‖𝑤‖
2
+ 𝐶

𝑚

∑

𝑘=1

𝜉
𝑖

s.t. 𝑦
𝑖
(⟨𝑤, 𝑥

𝑖
⟩ + 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0, 𝑖 = 𝑖 . . . , 𝑚,

(9)
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where the parameter 𝐶, a given value, is called error penalty.
As for the above-mentioned data inseparable case, in order to
simplify the optimal problem, define the Lagrangian to be

ℓ (𝑤, 𝑏, 𝜉, 𝛼, 𝛾) =
1

2
‖𝑤‖
2
+ 𝐶

𝑚

∑

𝑖=1

𝜉
𝑖

−

𝑚

∑

𝑖=1

𝛼
𝑖
[𝑦
𝑖
(⟨𝑤, 𝑥

𝑖
⟩ + 𝑏) − 1 + 𝜉

𝑖
] −

𝑚

∑

𝑖=1

𝛾
𝑖
𝜉
𝑖
,

(10)

where 𝛼, 𝛾 are the Lagrangian multipliers. We consider the
minimization problem as original, primal problem.

Consider

min
𝑤,𝑏,𝜉

𝜃
𝑝 (𝑤) = min

𝑤,𝑏,𝜉

max
𝛼,𝛾

ℓ (𝑤, 𝑏, 𝜉, 𝛼, 𝛾) . (11)

When satisfying the Kuhn-Tucker condition, then the
primal problem is transformed to its dual problem, which is

max
𝛼,𝛾

𝜃
𝑑
(𝛼, 𝛾) = max

𝛼,𝛾
min
𝑤,𝑏,𝜉

ℓ (𝑤, 𝑏, 𝜉, 𝛼, 𝛾) . (12)

Then, the task is minimizing ℓ in (10) by adjusting the
value of 𝑤, 𝑏, 𝜉. At the optimal point, derivatives of ℓ should
be zero. The saddle-point equation is as follows:

𝜕ℓ

𝜕𝑤
= 0, 󳨐⇒

𝑚

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0 (13)

𝜕ℓ

𝜕𝑏
= 0, 󳨐⇒ 𝑤 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝑥
𝑖 (14)

𝜕ℓ

𝜕𝜉
= 0, 󳨐⇒ 𝛼

𝑖
+ 𝛾
𝑖
= 𝐶. (15)

If we take (13), (14), and (15) back into (10), we can obtain
the dual quadratic optimization problem [30, 31]:

max
𝛼

𝑊(𝛼) = max
𝛼

{

{

{

−
1

2

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
⟨𝑥
𝑖
, 𝑥
𝑗
⟩ +

𝑚

∑

𝑘=1

𝛼
𝑘

}

}

}

.

(16)

Satisfying the constrains:

0 ≤ 𝛼
𝑖
≤ 𝐶, 𝑖 = 1 . . . , 𝑚,

𝑚

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0.

(17)

When solved the dual quadratic optimization problem
shown in (16), the 𝛼

𝑖
will be obtained. Then take a look back

at (14) and describe the optimal 𝑤 using 𝛼
𝑖
and the form of

hyperplane can be changed to

⟨𝑤, 𝑥
𝑖
⟩ + 𝑏 =

𝑚

∑

𝑖,𝑗=1

𝛼
𝑖
𝑦
𝑖
⟨𝑥
𝑖
, 𝑥
𝑗
⟩ + 𝑏. (18)

Table 1: Formulation of Kernel functions.

Kernel 𝐾(𝑥
𝑖
, 𝑥
𝑗
)

Linear 𝑥
𝑇

𝑖
⋅ 𝑥
𝑗

Polynomial (𝛾𝑥𝑇
𝑖
⋅ 𝑥
𝑗
+ constant)𝑑

Gaussian RBF functions 𝑒
−𝛾||𝑥𝑖−𝑥𝑗 ||

2

𝛾, constant and 𝑑 are kernel parameters.

The classifier implementing the optimal separating hyper-
plane comes out in the following form:

𝑓 (𝑥) = sgn(
𝑚

∑

𝑖,𝑗=1

𝛼
𝑖
𝑦
𝑖
⟨𝑥
𝑖
, 𝑥
𝑗
⟩ + 𝑏) . (19)

However, in some cases linear classifier is not suitable; for
example, data is overlapped or cannot be linearly separated.
Therefore, the input vectors should be projected into a higher
dimensional feature space and there the data may be linearly
classified more efficiently with the use of SVM algorithm.
However, it may cause computational problem due to the
large vectors and high dimensionality. The idea of using
Kernel function enables the calculation performed in the
original space instead of in the projected high dimensioned
future space, avoiding the curse of dimensionality [27, 31].
Given a feature mapping 𝜙, we define the corresponding
Kernel function to be

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = ⟨𝜙 (𝑥

𝑖
) , 𝜙 (𝑥

𝑗
)⟩ . (20)

Thus, the linear decision hyperplane in the high feature
space is

𝑓 (𝑥) = sgn(
𝑚

∑

𝑖,𝑗=1

𝛼
𝑖
𝑦
𝑖
⟨𝐾 (𝑥

𝑖
, 𝑥
𝑗
)⟩ + 𝑏) . (21)

𝐾(𝑥
𝑖
, 𝑥
𝑗
) is inexpensive to calculate. Kernel function returns

an inner production of vectors in the high feature spacewhich
is evaluated in the original space not in high feature space.
The commonly used four Kernel functions are as shown in
Table 1.

2.2. SVM Model Selection. SVM algorithm is a very effective
data classifying technique, and building a model to detect
fault based on SVM algorithm is not so complex. Training
dataset and testing sets are usually involved when a classi-
fication is done. Besides, every instance in the training set
contains two parts: one is target value (i.e., the class label)
and the other is several attributes (i.e., observed variables).
The basic process of using SVM algorithm to classify data is
as follows: at first build a classifier based on the training set
and then use it to predict the target value of the data in testing
set where only the attributes are known.

To construct a classifier model and figure out faulty data,
the following procedure is used.

(i) Transform data collected from real process to the
format that SVM classifier can use.
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(ii) Try a few kinds of Kernels and find out the best one;
then search the optimal parameters for it. This thesis
uses Gaussian RBF Kernel function and the optimal
parameters are obtained by using the cross-validation
algorithm.

(iii) Use the optimal parameters and appropriate Kernel
function to build a classifier.

(iv) Take testing data into the constructed classifier and
do a test. As a result the faulty data will be figured out
and in this way the faulty station can be detected.

2.2.1. RBF Kernel. Which kind of Kernel functions to use
is significant, because it decides the feature space where
training data is classified.Theoretically, the Kernel function is
considered to be better if it can provide higher upper bound
on the VC dimension. However, it requires evaluating the
hypersphere enclosing all data in the nonlinear feature space,
which is difficult to accomplish. Among the commonly used
Kernel functions for the SVM algorithm, the RBF Kernel is
preferable according to practical experience.

Kernel function can nonlinearly project original input
data to a higher dimensional space; thus, SVM equipped
with Kernel function is able to deal with the case where the
input data cannot be linearly separated. Generally speaking,
the RBF Kernel is the first choice for the following two
reasons. Firstly, linear Kernel is a special RBF Kernel—when
the parameter 𝐶 is adjusted to a certain value, linear Kernel
behaves similarly to RBF Kernel and so it is the sigmoid
Kernel at some parameters. Secondly, the RBF Kernel brings
fewer computational costs and fewer hyperparameters [23].

2.2.2. Cross-Validation. When using an RBF Kernel func-
tion, it needs appropriate parameters to make sure that the
classifier accurately predicts unknown data. It is not known
beforehand what the best parameter values are; nevertheless,
the optimal parameter searching can be accomplished using
cross-validation algorithm [23].

The cross-validation algorithm is a model validation
method which is used to evaluate the accuracy of a predictive
model. The goal of cross-validation is to give an insight on
how the model generalizes to an independent dataset (i.e., an
unknown dataset) by defining a dataset in the training phase
to test the model.

In the process of 𝑘-fold cross-validation, original training
set is randomly divided into k equal size parts. Sequentially,
one subset is used as the testing dataset to test the predictive
model and the rest of 𝑘 − 1 subsets are combined as
the training dataset. The aforementioned validation process
should be repeated 𝑘 times in all, with every subset performed
as testing data once. Using the 𝑘 results, the predictive result
of themodel is produced and it is the overall misclassification
rate across all testing sets.

This thesis uses 5-fold cross-validation algorithm to find
out the overallmisclassification rate across all testing sets.The
cross-validation process should be performed many times to
pick out the parameters whichmake the overall misclassifica-
tion minimise. In this way, the optimal parameters are found
and the classifier can obtain the best accuracy rate.

2.3. PLS for Fault Detection. ThePLS algorithm is introduced
by Dayal and Macgregor [32] due to its simplicity and the
lesser computational effort when dealing with the process
monitoring with large data. In this technique, we also denote
training data in the form of 𝑚 × 𝑛 matrix 𝑋, in which 𝑚

represents the number of observed samples, while 𝑛 is the
quantity of the attributes and 𝑌 ∈ R𝑚×1. The PLS algorithm
projects thematrix𝑋 into a lowdimensional spacewith latent
variables, and 𝑌 can be constructed by these latent variables.
The construct model is as follows:

𝑋 = 𝑇𝑃
𝑇
+ 𝐸 =

𝐴

∑

𝑖=1

𝑡
𝑖
𝑝
𝑇

𝑖
+ 𝐸,

𝑌 = 𝑇𝑄
𝑇
+ 𝐹 =

𝐴

∑

𝑖=1

𝑡
𝑖
𝑞
𝑇

𝑖
+ 𝐹,

(22)

where𝑇 = [𝑡
1
, . . . 𝑡
𝐴
] is the scorematrix of𝑋.𝑃 = [𝑝

1
, . . . 𝑝
𝐴
]

and 𝑄 = [𝑞
1
, . . . 𝑞
𝐴
] are the loading matrix of 𝑋 and 𝑌,

respectively. The latent variables 𝑡
𝑖
∈ 𝑇 (𝑖 = 1, . . . , 𝐴) can be

directly calculated from 𝑋 by 𝑡
𝑖
= 𝑋𝑟
𝑖
; 𝑅 = [𝑟

1
, . . . 𝑟
𝐴
] and 𝑟

𝑖

are calculated by the following:

𝑟
1
= 𝑤
1
,

𝑟
𝑖
= 𝑤
𝑖
− 𝑝
𝑇

1
𝑤
𝑖
𝑟
1
− 𝑝
𝑇

𝑖−1
𝑤
𝑖
𝑟
𝑖−1

, 𝑖 = 2, . . . , 𝐴,

(23)

where the 𝑤
𝑖
(𝑖 = 1, . . . , 𝐴) is the weight vector of the 𝑖th

deflated𝑋. PLS decomposes𝑋 into two parts:

𝑥 = 𝑥 + 𝑥,

𝑥 = 𝑃𝑅
𝑇
𝑥 ∈ 𝑆
𝑥
,

𝑥 = (𝐼 − 𝑃𝑅
𝑇
) 𝑥 ∈ 𝑆

𝑥
.

(24)

Usually,𝑇2 statistic is used to detect abnormalities and the
calculation method is

𝑇
2
= 𝑥
𝑇
𝑅(

𝑇
𝑇
𝑇

𝑛 − 1
)

−1

𝑅
𝑇
𝑥. (25)

With a given confidence level 𝛼, the threshold for 𝑇2 will
be calculated by the following:

𝐽th,𝑇2 =
𝐴 (𝑛
2
− 1)

𝑛 (𝑛 − 𝐴)
𝐹
𝑙,𝑛−𝑙,𝛼

, (26)

where 𝐹
𝑙,𝑛−𝑙,𝛼

represents 𝐹-distribution with l and 𝑁 − 1

degrees of freedom and its confidence level is 𝛼. If 𝑇2 are all
less than their corresponding thresholds, the process is out of
fault [32].

3. Simulation

3.1. Tennessee Eastman Process. The Tennessee Eastman
process (TE process) is a simulation model of a practical
industrial process. The simulation model is very suitable for
researching onprocess control technology and also applicable
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Figure 1: The flowsheet of TE process.

for other kinds of control issues. Figure 1 shows the flowsheet
of TE process. The TE process consists of five major parts:
the reactor, the product condenser, a vapor-liquid separator, a
recycle compressor, and a product stripper to help accomplish
reactor, separator, and recycle arrangement. More details can
be found in [33, 34].

3.2. Simulated Data Intro. The TE process is a plant-wide
closed-loop control structure. The simulated process can
produce normal operating condition as well as 21 faulty con-
ditions and generate simulated data at a sampling interval of
3min. For each case (no matter normal or faulty condition),
two sets of data are produced, training datasets and testing
datasets. The training sets are used to construct statistical
predictive model and the testing datasets are used to estimate
the accuracy of the built classifier. In training sets, the normal
dataset contains 500 observation samples, while each faulty
dataset contains 480 observation samples. As for testing data,
each dataset (both normal and faulty conditions) consists of
960 observations. In the faulty condition, faulty information
emerges 8h later since the TE process is turned on. That
is to say, in each faulty condition, the former 160 samples
are shown normally, while the remaining 800 instances are
shown really faulty and should be detected. Every observation
sample contains 52 variables which consists of 22 process
measure variables, 19 component measure variables, and 12
control variables. All the datasets used in this paper can be
found in [1].

In the following section, the fault detection result of SVM-
based classifier will be compared with the one based on

the PLS algorithm using the dataset generated by TE process
simulator. For SVM classifier, the RBF Kernel is used and the
related parameters will be set ahead according to the result of
cross-validation to make sure of the classifier’s high accuracy.
In the comparison, the performance is measured by fault
detection rates.

4. Result and Discussion

TE process simulator can generate 22 types of conditions,
containing the normal condition and 21 kinds of pro-
grammed faults caused by various known disturbances in
the process. Once fault is added, all variables will be affected
and some changes will emerge. According to Chiang et al.
[8] and Zhang [18] detection for faults 3, 9, 15, and 21 is
very difficult for there are not any observable changes in the
means, variance, or the peak time.Therefore, these four faults
always cannot be detected by any statistics technique; thus,
the four faults are not analysed in this paper.The information
of all the faults is presented in Table 2.

In order to profoundly test the detection effect of the
classifier based on theory of SVM, the SVM algorithm and
PLS algorithm are applied to the TE process, respectively. As
for SVM classifier, all faults data are by turns combined with
the normal condition data as the dataset for binary classifier.
After models are built by training data, we use testing data to
evaluate the prediction result through the following common
indices: accuracy (Acc) and fault detection rate (FDR) [35].
Then the detection result for each fault is shown in Table 3.
Table 4 represents the detection result using PLS technique.
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Table 2: Descriptions of 21 faults in TE process.

Number Fault description
IDV0 Normal
IDV1 𝐴/𝐶 feed ratio, 𝐵 composition constant
IDV2 B composition, 𝐴/𝐶 ratio constant
IDV4 Reactor cooling water inlet temperature
IDV5 Condenser cooling water inlet temperature
IDV6 A feed loss (stream 1)
IDV7 C header pressure loss-reduced availability (stream 4)
IDV8 A, B, and C feed composition (stream 4)
IDV10 C feed temperature (stream 4)
IDV11 Reactor cooling water inlet temperature
IDV12 Condenser cooling water inlet temperature
IDV13 Reaction kinetics
IDV14 Reactor cooling water valve
IDV16 Unknown
IDV17 Unknown
IDV18 Unknown
IDV19 Unknown
IDV20 Unknown

Table 3: Results of faults detection with one against one classifier.

Fault Acc (%) FDR (%)
IDV1 98.44 99.5
IDV2 98.12 98.12
IDV4 99.9 99.88
IDV5 91.98 90.75
IDV6 66.77 60.13
IDV7 99.58 98.91
IDV8 96.35 96
IDV10 77.71 81
IDV11 73.02 80.25
IDV12 97.4 97.75
IDV13 93.33 92.5
IDV14 89.06 91
IDV16 80.73 89.38
IDV17 83.85 81.63
IDV18 90.1 89.5
IDV19 74.48 85.88
IDV20 77.5 80.5

Consider

(i) Acc =
the quantity of data correctly predicated

the quantity of all data

× 100%

(ii) FDR =
number of faulty data correctly predicated

number of all faulty data

× 100%.

(27)

Table 4: Results of faults detection using PLS algorithm.

Fault FDR (%)
𝑇
2

𝑥
𝑇
2

𝑥

IDV1 99.37 99.62
IDV2 98.75 98.12
IDV4 0.63 97.25
IDV5 16.65 30.04
IDV6 99 100
IDV7 29.16 100
IDV8 89.86 96.87
IDV10 18.15 43.55
IDV11 2.63 68.84
IDV12 76.85 98.37
IDV13 92.62 94.99
IDV14 2.25 100
IDV16 9.39 29.41
IDV17 4.88 91.74
IDV18 87.48 89.86
IDV19 0.38 15.14
IDV20 18.4 50.44

Figure 2 shows the predicted label𝑦 using three classifiers
with the training and testing data respectively come from
normal condition and fault 1, normal condition and fault
2, and normal condition and fault 4. The first 160th test,
the process shows normally and 𝑦 should be −1. The fault
information appears at the moment of 161st sample-taken
and the label y should be 1 since then. From Figure 2, we
can see that the SVM classifier’s prediction result for most
of the time is right. In addition, Table 3 presents detailed
detection indices of these 21 SVM classifiers. It is worth
mentioning that the hyperparameters of the classifiers are all
optimized beforehand. Without the optimization of classifier
parameter, the predicted effect will not be so good.Moreover,
the index accuracy will be 16.77% when using classifier’s
default parameters to detect fault 1. Table 4 shows the detailed
indices using PLS technique to detect faults. It can be seen
that the SVM classifiers with optimal hyperparameters are
mostly able to detect the faulty data, and the accuracy is
higher than that given by using PLS algorithm.Therefore, the
SVM algorithm has a better performance of fault detection.

To further test the predictive ability of the SVM classifier,
that is, the detective ability of fault in the TE process, we use
normal condition data combined with three faulty condition
datasets (fault 1, fault 2, fault 4) as the training data to
construct a classificationmodel and then used corresponding
test data as testing data to observe the classification result. As
shown in Table 5, the detection indices are also good though
the computing time is a little longer with the same compute
facility. Thus the SVM algorithm can perform satisfactorily
on the original dataset containing 52 attributes without any
transformation. In this way, in real process, with advanced
compute facility, we can train normal data and all faults data
to build a classifier. Once the fault label is figured out, the fault
in process is detected.
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Figure 2: Classification results for the testing dataset by the SVM-based classifier with optimal parameters.The value 𝑦 = −1 represents at the
sample-taken moment that the process is in normal condition, while 𝑦 = 1 stands for faulty condition.The top plot is the classification result
between normal condition and fault 1, the middle one is the result between normal condition and fault 2, and the last plot is result between
normal condition and fault 4. In the simulation of fault condition, the fault information appears from the moment of 161th sample-taken and
it is pointed out by red line.

Table 5: Results of faults detection with one against all classifier.

Test description Test data Acc (%) FDR (%)
0 versus 1, 2 IDV1 test data 98.02 99.62
0 versus 1, 2 IDV2 test data 95.83 98.5
0 versus 1, 2 IDV0 test data 83.44
0 versus 1, 2, 4 IDV1 test data 96.46 99.75
0 versus 1, 2, 4 IDV2 test data 95 98.88
0 versus 1, 2, 4 IDV4 test data 96.98 100
0 versus 1, 2, 4 IDV0 test data 79.62

From the above-shown result of fault detection on TE
process, we can conclude that the classifier based on SVM
algorithm is of good predictive ability. In addition, there are
two facts that should be mentioned. First, before detecting
normal condition or faulty condition, we have used the
technique of cross-validation to optimize classifier’s hyperpa-
rameters.Therefore, the performance of classifier could be the
best. Second, the classification on TE process based on SVM
algorithm performs satisfactorily without any other process,
for example, foregoing data dealing process and attributes
selection. And this featuremakes the SVMclassifier easy to be
built. Besides, the calculation and calculate time is relatively
small since the algorithms used are fewer.

5. Conclusion

TE process, a benchmark chemical engineering model, is
used in this paper for fault detection. It can be found that
the fault detection ability of the classifier based on SVM algo-
rithm using the TE process’s original data is satisfactory and
this indicates the advantage of using nonlinear classification

when the number of samples or attributes is very large. By
comparing detection performancewith classifier based on the
PLS algorithm, the classifier based on SVM algorithm with
Kernel function shows superior accuracy rate. In addition,
parameter optimization beforehand plays a great role in
improving the effectiveness of classification. It also simplifies
the problem and by using no other technique relatively
decreases the computational load to reach a satisfactory
classification result as well.
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