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With the aid of symbolic computation by Maple, we extend the application of Virasoro-type symmetry prolongation method to
coupled systems with two-component nonlinear equations. New nonlinear systems admitting infinitely dimensional centerless
Virasoro-type symmetry algebra are constructed. Taking one of them as an example, we present some group-invariant solutions to
one of the new model systems.

1. Introduction

Integrablemodels such as theKdVequation, theKP equation,
the nonlinear Schrödinger equation, the NNV equation, the
sine-Gordon equation, and the Toda lattice have played more
and more important roles in almost all natural sciences. It
becomes one of themost fundamental problems to seek for as
much as possible new nonlinear equations and systems with
some nice properties including Lax pair, Painlevé property,
infinite number of conservation laws, and bi-Hamiltonian
structures.

There exist many powerful methods to construct non-
linear equations and systems like the multiscale method,
symmetry constraint method, and conformal invariant
method [1–4]. Among these methods developed recently,
the Virasoro-type symmetry prolongation (VSP) method is
found to be very effective. Based on the fact that all the known
(2 + 1)-dimensional integrable models possess the following
centerless Virasoro-type subalgebra:

[𝜎 (𝑓
1
) , 𝜎 (𝑓

2
)] = 𝜎 ( ̇𝑓

1
𝑓
2
− ̇𝑓
2
𝑓
1
) , (1)

where𝑓
1
and𝑓
2
are arbitrary functions of the same argument

and there are no known nonintegrable models owning such
type symmetry algebra, Lou and Hu introduced an idea
that if an 𝑓-independent model possesses the Virasoro-type
symmetry algebra (1), themodel is Virasoro integrable [5]. By
using this theory and selecting the special realizations, some
new (2 + 1)-dimensional and (3 + 1)-dimensional Virasoro
integrable models have been derived [6–8].

However, the VSP method and concrete realizations
discussed above all belong to single equations. To our
knowledge, there are few results concerning the construction
of coupled systems with two-component nonlinear equations
[9]. Therefore we extend the applications of this method to
construct several (2 + 1)-dimensional Virasoro integrable
systems by selecting special realization of algebra (1).

The remainder of this paper is organized as follows. The
general theory of the VSP method for nonlinear systems is
presented in Section 2. In Section 3, some (2+1)-dimensional
Virasoro integrable systems are constructed by choosing
appropriate realizations. For a concrete example, the one-
dimensional optimal system and group-invariant solutions to
system (21) are given in Section 4. The last section contains
some concluding remarks.
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2. The Generalized VSP Method

Firstly, let us give a brief account of the generalized VSP
method for nonlinear systems. We consider the vector field
with the following form:

�⃗� = 𝑋 (𝑥, 𝑦, 𝑡, 𝑢, V) 𝜕
𝑥
+ 𝑌 (𝑥, 𝑦, 𝑡, 𝑢, V) 𝜕

𝑦
+ 𝑇 (𝑥, 𝑦, 𝑡, 𝑢, V) 𝜕

𝑡

+ 𝑈 (𝑥, 𝑦, 𝑡, 𝑢, V) 𝜕
𝑢
+ 𝑉 (𝑥, 𝑦, 𝑡, 𝑢, V) 𝜕V.

(2)

We define the functions 𝑇,𝑋, 𝑌, 𝑈, and 𝑉 as follows:

𝑇 = 𝑓 (𝑡) ,

{𝑋, 𝑌, 𝑈, 𝑉} = {

𝑛

∑

𝑖=1

𝑓
(𝑖)
𝑋
𝑖
,

𝑛

∑

𝑖=1

𝑓
(𝑖)
𝑌
𝑖
,

𝑛

∑

𝑖=1

𝑓
(𝑖)
𝑈
𝑖
,

𝑛

∑

𝑖=1

𝑓
(𝑖)
𝑉
𝑖
} ,

𝑛 = 1, 2, 3, . . . ,

(3)

where 𝑓(𝑖) = d𝑖𝑓/d𝑡𝑖, 𝑋
𝑖
, 𝑌
𝑖
, 𝑈
𝑖
, 𝑉
𝑖
, 𝑖 = 1, 2, 3, . . ., are func-

tions of the variables {𝑥, 𝑦, 𝑡, 𝑢, V} and should be selected to
satisfy the commutation relation (1). In order to construct
invariant 𝑘th-order partial differential equations, we should
calculate the 𝑘th prolongation of the vector field �⃗� firstly.The
general formula for the 𝑘th prolongation of a vector field �⃗� is
given by

𝑝𝑟
(𝑘)
�⃗� = �⃗� + 𝑈

𝑥
𝜕
𝑢
𝑥

+ 𝑈
𝑦
𝜕
𝑢
𝑦

+ 𝑈
𝑡
𝜕
𝑢
𝑡

+ 𝑉
𝑥
𝜕V
𝑥

+ 𝑉
𝑦
𝜕V
𝑦

+ 𝑉
𝑡
𝜕V
𝑡

+ ⋅ ⋅ ⋅ + ∑

1≤𝑖+𝑗+𝑙≤𝑘

𝑈
𝑥
𝑖

𝑦
𝑗

𝑡
𝑙

𝜕
𝑢
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙

+ ∑

1≤𝑖+𝑗+𝑙≤𝑘

𝑉
𝑥
𝑖

𝑦
𝑗

𝑡
𝑙

𝜕V
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙

,

(4)

with

𝑈
𝑥
𝑖

𝑦
𝑗

𝑡
𝑙

= 𝐷
𝑥
𝑈
𝑥
𝑖−1

𝑦
𝑗

𝑡
𝑙

− (𝐷
𝑥
𝑋) 𝑢
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙

− (𝐷
𝑥
𝑌) 𝑢
𝑥
𝑖−1
𝑦
𝑗+1
𝑡
𝑙 − (𝐷

𝑥
𝑇) 𝑢
𝑥
𝑖−1
𝑦
𝑗
𝑡
𝑙+1

= 𝐷
𝑦
𝑈
𝑥
𝑖

𝑦
𝑗−1

𝑡
𝑙

− (𝐷
𝑦
𝑋)𝑢
𝑥
𝑖+1
𝑦
𝑗−1
𝑡
𝑙

− (𝐷
𝑦
𝑌) 𝑢
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 − (𝐷

𝑦
𝑇) 𝑢
𝑥
𝑖
𝑦
𝑗−1
𝑡
𝑙+1

= 𝐷
𝑡
𝑈
𝑥
𝑖

𝑦
𝑗

𝑡
𝑙−1

− (𝐷
𝑡
𝑋) 𝑢
𝑥
𝑖+1
𝑦
𝑗
𝑡
𝑙−1

− (𝐷
𝑡
𝑌) 𝑢
𝑥
𝑖
𝑦
𝑗+1
𝑡
𝑙−1 − (𝐷

𝑡
𝑇) 𝑢
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 ,

𝑉
𝑥
𝑖

𝑦
𝑗

𝑡
𝑙

= 𝐷
𝑥
𝑉
𝑥
𝑖−1

𝑦
𝑗

𝑡
𝑙

− (𝐷
𝑥
𝑋) V
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙

− (𝐷
𝑥
𝑌) V
𝑥
𝑖−1
𝑦
𝑗+1
𝑡
𝑙 − (𝐷

𝑥
𝑇) V
𝑥
𝑖−1
𝑦
𝑗
𝑡
𝑙+1

= 𝐷
𝑦
𝑉
𝑥
𝑖

𝑦
𝑗−1

𝑡
𝑙

− (𝐷
𝑦
𝑋) V
𝑥
𝑖+1
𝑦
𝑗−1
𝑡
𝑙

− (𝐷
𝑦
𝑌) V
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 − (𝐷

𝑦
𝑇) V
𝑥
𝑖
𝑦
𝑗−1
𝑡
𝑙+1

= 𝐷
𝑡
𝑉
𝑥
𝑖

𝑦
𝑗

𝑡
𝑙−1

− (𝐷
𝑡
𝑋) V
𝑥
𝑖+1
𝑦
𝑗
𝑡
𝑙−1

− (𝐷
𝑡
𝑌) V
𝑥
𝑖
𝑦
𝑗+1
𝑡
𝑙−1 − (𝐷

𝑡
𝑇) V
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 ,

(5)

where𝐷
𝑥
,𝐷
𝑦
, and𝐷

𝑡
are total derivativeswith respect to𝑥,𝑦,

𝑡, respectively. Thus we can calculate the 𝑘th prolongation of
a concrete vector �⃗�. It is well known that the invariant system
should have the following form:

Δ (𝑥, 𝑦, 𝑡, 𝑢, V, 𝑢
𝑥
, V
𝑥
, 𝑢
𝑦
, V
𝑦
, 𝑢
𝑡
, V
𝑡
, . . . , 𝑢

𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 , V
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 , . . .) = 0,

(6)

where Δ satisfies

𝑝𝑟
(𝑘)
�⃗� (Δ)

Δ=0
= 0. (7)

In order to construct group invariant equations, we should
solve the corresponding characteristic equations

d𝑡
𝑇
=
d𝑥
𝑋

=
d𝑦
𝑌
=
d𝑢
𝑈

=
dV
𝑉

= ⋅ ⋅ ⋅ =

d𝑢
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙

𝑈
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙
=

dV
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙

𝑉
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙
= ⋅ ⋅ ⋅ .

(8)

After solving the above system, we can obtain a set of
elementary invariants

𝐼
𝑚
(𝑥, 𝑦, 𝑡, 𝑢, V, . . . , 𝑢

𝑥
𝑖
𝑦
𝑗
𝑡
𝑙 , V
𝑥
𝑖
𝑦
𝑗
𝑡
𝑙)

≡ 𝐼
𝑚

(1 ≤ 𝑖 + 𝑗 + 𝑙 ≤ 𝑘, 𝑚 = 1, 2, 3, . . .) .

(9)

The general �⃗� invariant system has the following form:

𝐻
1
(𝐼
1
, 𝐼
2
, 𝐼
3
, . . . , 𝐼

𝑟
, . . .) = 0,

𝐻
2
(𝐼
1
, 𝐼
2
, 𝐼
3
, . . . , 𝐼

𝑟
, . . .) = 0.

(10)

According to the definition of the Virasoro integrability, the
model should be 𝑓-independent. Therefore, when we find
out the 𝑓-independent group invariants, we can construct
the new Virasoro integral models from (10). Compared with
the VSP method (see [7]), this method can be used to
deal with coupled systems with two-component nonlinear
equations.
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3. Applications

In this section, we will construct several coupled systems
admitting Virasoro-type symmetry algebra by selecting con-
crete realization of (1). The realization we consider is

�⃗� = 𝑓𝜕
𝑡
+ 𝐶
1
̇𝑓𝑥𝜕
𝑥
+ 𝐶
2
̇𝑓𝑦𝜕
𝑦

+ 𝐶
3
̇𝑓𝑝𝜕
𝑝
+ (𝐶
4
̇𝑓𝑟 + 𝐶
5
̈𝑓𝑥) 𝜕
𝑟
,

(11)

where ̇𝑓, ̈𝑓, and ⃛𝑓 denote the first, second, and third order
derivatives of function𝑓 = 𝑓(𝑡)with respect to 𝑡, respectively,
and 𝐶

𝑖
, 𝑖 = 1, . . . , 5, are arbitrary constants. It is easy to verify

that �⃗� is a Virasoro type symmetry when 𝐶
1
− 𝐶
4
= 1.

According to the prolongation formula (4), one can obtain the
corresponding 𝑘th prolongation of �⃗�with the aid of symbolic
computation by Maple:

𝑝𝑟
(𝑘)
�⃗�

= �⃗� + (𝐶
3
− 𝐶
1
) ̇𝑓𝑝
𝑥
𝜕
𝑝
𝑥

− ( ̇𝑓𝑟
𝑥
− 𝐶
5
̈𝑓) 𝜕
𝑟
𝑥

+ (𝐶
3
− 𝐶
2
) ̇𝑓𝑝
𝑦
𝜕
𝑝
𝑦

+ (𝐶
4
− 𝐶
2
) ̇𝑓𝑟
𝑦
𝜕
𝑟
𝑦

+ [(𝐶
3
− 1) ̇𝑓𝑝

𝑡
+ 𝐶
3
𝑝 ̈𝑓 − 𝐶

1
̈𝑓𝑥𝑝
𝑥
− 𝐶
2
̈𝑓𝑦𝑝
𝑦
] 𝜕
𝑝
𝑡

+ [(𝐶
4
− 1) ̇𝑓𝑟

𝑡
+ 𝐶
4
̈𝑓𝑟 + 𝐶
5
⃛𝑓𝑥 −𝐶
1
̈𝑓𝑥𝑟
𝑥
− 𝐶
2
̈𝑓𝑦𝑟
𝑦
]

× 𝜕
𝑟
𝑡

+ (𝐶
3
− 2𝐶
1
) ̇𝑓𝑝
𝑥𝑥
𝜕
𝑝
𝑥𝑥

− (1 + 𝐶
1
) ̇𝑓𝑟
𝑥𝑥
𝜕
𝑟
𝑥𝑥

+ (𝐶
3
− 𝐶
2
− 𝐶
1
) ̇𝑓𝑝
𝑥𝑦
𝜕
𝑝
𝑥𝑦

− (1 + 𝐶
2
) ̇𝑓𝑟
𝑥𝑦
𝜕
𝑟
𝑥𝑦

+ [(𝐶
3
− 𝐶
1
− 1) ̇𝑓𝑝

𝑥𝑡
+ (𝐶
3
− 𝐶
1
) ̈𝑓𝑝
𝑥

− 𝐶
1
̈𝑓𝑥𝑝
𝑥𝑥
− 𝐶
2
̈𝑓𝑦𝑝
𝑥𝑦
] 𝜕
𝑝
𝑥𝑡

+ [−2 ̇𝑓𝑟
𝑥𝑡
− ̈𝑓𝑟
𝑥
+ 𝐶
5
⃛𝑓 − 𝐶
1
̈𝑓𝑥𝑟
𝑥𝑥
− 𝐶
2
̈𝑓𝑦𝑟
𝑥𝑦
] 𝜕
𝑟
𝑥𝑡

+ (𝐶
3
− 2𝐶
2
) 𝑝
𝑦𝑦

̇𝑓𝜕
𝑝
𝑦𝑦

+ (𝐶
4
− 2𝐶
2
) 𝑟
𝑦𝑦

̇𝑓𝜕
𝑟
𝑦𝑦

+ [(𝐶
3
− 𝐶
2
− 1) ̇𝑓𝑝

𝑦𝑡
+ (𝐶
3
− 𝐶
2
) ̈𝑓𝑝
𝑦

−𝐶
1
̈𝑓𝑥𝑝
𝑥𝑦
− 𝐶
2
̈𝑓𝑦𝑝
𝑦𝑦
] 𝜕
𝑝
𝑦𝑡

+ [(𝐶
4
− 𝐶
2
− 1) ̇𝑓𝑟

𝑦𝑡
+ (𝐶
4
− 𝐶
2
) ̈𝑓𝑟
𝑦

− 𝐶
1
𝑥 ̈𝑓𝑟
𝑥𝑦
− 𝐶
2
̈𝑓𝑦𝑟
𝑦𝑦
] 𝜕
𝑟
𝑦𝑡

+ [(𝐶
3
− 2) ̇𝑓𝑝

𝑡𝑡
+ (2𝐶

3
− 1) ̈𝑓𝑝

𝑡
+ 𝐶
3
𝑝 ⃛𝑓 − 𝐶

1
𝑥 ⃛𝑓𝑝
𝑥

− 2𝐶
1
𝑥 ̈𝑓𝑝
𝑥𝑡
− 𝐶
2
𝑦 ⃛𝑓𝑝
𝑦
− 2𝐶
2
𝑦 ̈𝑓𝑝
𝑦𝑡
] 𝜕
𝑝
𝑡𝑡

+ [(𝐶
4
− 2) ̇𝑓𝑟

𝑡𝑡
+ (2𝐶

4
− 1) ̈𝑓𝑟

𝑡
+ 𝐶
4
𝑟 ⃛𝑓 + 𝐶

5
𝑥𝑓
(4)

−𝐶
1
𝑥 ⃛𝑓𝑟
𝑥
− 2𝐶
1
𝑥 ̈𝑓𝑟
𝑥𝑡
− 𝐶
2
𝑦 ⃛𝑓𝑟
𝑦
− 2𝐶
2
𝑦 ̈𝑓𝑟
𝑦𝑡
] 𝜕
𝑟
𝑡𝑡

+ (𝐶
3
− 3𝐶
1
) ̇𝑓𝑝
𝑥𝑥𝑥
𝜕𝑝
𝑥𝑥𝑥

+ (𝐶
4
− 3𝐶
1
) ̇𝑓𝑟
𝑥𝑥𝑥
𝜕
𝑟
𝑥𝑥𝑥

+ (𝐶
3
− 2𝐶
1
− 𝐶
2
) ̇𝑓𝑝
𝑥𝑥𝑦
𝜕
𝑝
𝑥𝑥𝑦

+ (𝐶
4
− 2𝐶
1
− 𝐶
2
) ̇𝑓𝑟
𝑥𝑥𝑦
𝜕
𝑟
𝑥𝑥𝑦

+ [(𝐶
3
− 2𝐶
1
) ̈𝑓𝑝
𝑥𝑥
+ (𝐶
3
− 2𝐶
1
− 1) ̇𝑓𝑝

𝑥𝑥𝑡

−𝐶
1
𝑥 ̈𝑓𝑝
𝑥𝑥𝑥

− 𝐶
2
𝑦 ̈𝑓𝑝
𝑥𝑥𝑦
] 𝜕
𝑝
𝑥𝑥𝑡

+ [(𝐶
4
− 2𝐶
1
) ̈𝑓𝑟
𝑥𝑥

+ (𝐶
4
− 2𝐶
1
− 1) ̇𝑓𝑟

𝑥𝑥𝑡

−𝐶
1
𝑥 ̈𝑓𝑟
𝑥𝑥𝑥

− 𝐶
2
𝑦 ̈𝑓𝑟
𝑥𝑥𝑦
] 𝜕
𝑟
𝑥𝑥𝑡

+ ⋅ ⋅ ⋅ .

(12)

The corresponding characteristic equations of 𝑝𝑟(𝑘)�⃗� are

d𝑡
𝑓
=

d𝑥
𝐶
1
̇𝑓𝑥

=
d𝑦
𝐶
2
̇𝑓𝑦

=
d𝑝
𝐶
3
𝑝 ̇𝑓

=
d𝑟

𝐶
4
𝑟 ̇𝑓 + 𝐶

5
𝑥 ̈𝑓

= ⋅ ⋅ ⋅ =

d𝑢
𝑥
𝑖
𝑦
𝑗
𝑡
𝑟

𝑈
𝑥
𝑖
𝑦
𝑗
𝑡
𝑟
=

dV
𝑥
𝑖
𝑦
𝑗
𝑡
𝑟

𝑉
𝑥
𝑖
𝑦
𝑗
𝑡
𝑟
.

(13)

After solving the above characteristic equations, we can
obtain the explicit elementary invariants of �⃗� and some of
them are listed as follows:

𝐼
1
= 𝑥𝑓
−𝐶
1

, 𝐼
2
= 𝑦𝑓
−𝐶
2

, 𝐼
3
= 𝑝𝑓
−𝐶
3

,

𝐼
4
= 𝑟𝑓
−𝐶
4

− 𝐶
5
𝐼
1
̇𝑓, 𝐼

5
= 𝑝
𝑥
𝑓
−(𝐶
3
−𝐶
1
)
,

𝐼
6
= 𝑟
𝑥
𝑓 − 𝐶

5
�̇�, 𝐼

7
= 𝑝
𝑦
𝑓
−(𝐶
3
−𝐶
2
)
,

𝐼
8
= 𝑟
𝑦
𝑓
−(𝐶
4
−𝐶
2
)
,

𝐼
9
= 𝑝
𝑡
𝑓
1−𝐶
3

− 𝐶
3
𝐼
3
̇𝑓 + 𝐶
1
𝐼
1
𝐼
5
̇𝑓 + 𝐶
2
𝐼
2
𝐼
7
̇𝑓,

𝐼
10
= 𝑟
𝑡
𝑓
1−𝐶
4

− 𝐶
5
𝐼
4
̇𝑓 −
1

2
𝐶
2

5
𝐼
1
( ̇𝑓)
2

+ 𝐶
5
𝐼
1
(𝑓 ̈𝑓 −

1

2
( ̇𝑓)
2

) − 𝐶
1
𝐼
1
𝐼
6
̇𝑓

− 𝐶
2
𝐼
2
𝐼
8
̇𝑓 −
1

2
𝐶
1
𝐼
1
𝐶
5
̇𝑓
2
,

𝐼
11
= 𝑝
𝑥𝑥
𝑓
−(𝐶
3
−2𝐶
1
)
, 𝐼

12
= 𝑟
𝑥𝑥
𝑓
1+𝐶
1

,

𝐼
13
= 𝑝
𝑥𝑦
𝑓
−(𝐶
3
−𝐶
2
−𝐶
1
)
, 𝐼

14
= 𝑟
𝑥𝑦
𝑓
1+𝐶
2

,

𝐼
15
= 𝑝
𝑥𝑡
𝑓
1+𝐶
1
−𝐶
3

− ((𝐶
3
− 𝐶
1
) 𝐼
5
− 𝐶
1
𝐼
1
𝐼
11
− 𝐶
2
𝐼
2
𝐼
13
) ̇𝑓,

𝐼
16
= 𝑟
𝑥𝑡
𝑓
2
+ 𝐼
6
̇𝑓 +
1

2
𝐶
5
( ̇𝑓)
2

+𝐶
5
(𝑓 ̈𝑓 −

1

2
( ̇𝑓)
2

) − 𝐶
1
𝐼
1
𝐼
12

̇𝑓 − 𝐶
2
𝐼
2
𝐼
14

̇𝑓,

𝐼
17
= 𝑓
2𝐶
2
−𝐶
3

𝑝
𝑦𝑦
, 𝐼

18
= 𝑓
2𝐶
2
−𝐶
4

𝑟
𝑦𝑦
,
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𝐼
19
= 𝑓
1+𝐶
2
−𝐶
3

𝑝
𝑦𝑡
− (𝐶
3
− 𝐶
2
) 𝐼
7
̇𝑓 + 𝐶
1
𝐼
1
𝐼
13

̇𝑓 + 𝐶
2
𝐼
2
𝐼
17

̇𝑓,

𝐼
20
= 𝑟
𝑦𝑡
𝑓
1+𝐶
2
−𝐶
4

− [(𝐶
4
− 𝐶
2
) 𝐼
8
− 𝐶
1
𝐼
1
𝐼
14
− 𝐶
2
𝐼
2
𝐼
18
] ̇𝑓,

𝐼
21
= 𝑝
𝑥𝑥𝑥
𝑓
3𝐶
1
−𝐶
3

, 𝐼
22
= 𝑟
𝑥𝑥𝑥
𝑓
3𝐶
1
−𝐶
4

,

𝐼
23
= 𝑝
𝑥𝑥𝑦
𝑓
2𝐶
1
+𝐶
2
−𝐶
3

, 𝐼
24
= 𝑟
𝑥𝑥𝑦
𝑓
2𝐶
1
+𝐶
2
−𝐶
4

.

(14)

Substituting the above invariants into (10), one can establish
various (2 + 1)-dimensional nonlinear systems. Generally
speaking, it is difficult to find out all of the 𝑓-independent
invariant systems. Here we only list some concrete examples.

Case 1. When selecting 𝐶
1
= 1/3, 𝐶

2
= 0, 𝐶

3
= −1/3, 𝐶

4
=

−2/3, and𝐶
5
= −1/9, we obtain the following group invariant

system:

𝐻
1
≡ 𝐼
9
+ 𝐼
21
− 3 (𝐼
4
𝐼
5
+ 𝐼
3
𝐼
6
) + 𝑘
1
𝐼
12
+ 𝑘
2
𝐼
2

13
= 0,

𝐻
2
≡ 𝐼
8
+ 𝑘
3
𝐼
5
+ 𝑘
4
𝐼
2

17
+ 𝑘
5
𝐼
18
= 0.

(15)

Here and hereafter 𝑘
𝑖
, 𝑖 = 1, . . . , 5, are arbitrary constants.

From the above invariant system, we deduce the correspond-
ing Virasoro 𝑓-independent integrable system:

𝑝
𝑡
+ 𝑝
𝑥𝑥𝑥

− 3𝑟𝑝
𝑥
− 3𝑝𝑟

𝑥
+ 𝑘
1
𝑟
𝑥𝑥
+ 𝑘
2
𝑝
2

𝑥𝑦
= 0,

𝑟
𝑦
+ 𝑘
3
𝑝
𝑥
+ 𝑘
4
𝑝
2

𝑦𝑦
+ 𝑘
5
𝑟
𝑦𝑦
= 0.

(16)

Taking 𝑘
𝑖
= 0, 𝑖 = 1, 2, 4, 5, and 𝑘

3
= −1, the above system

is changed to be the asymmetry NNV equation which is
considered as a model for an incompressible fluid and where
𝑝 and 𝑟 are the components of the velocity.

Case 2. Let 𝐶
1
= 2, 𝐶

2
= 0, 𝐶

𝑖
= 1, 𝑖 = 3, 4, 5. We find the

following group invariant system:

𝐻
1
≡ 𝐼
15
+ 𝐼
5
𝐼
6
+ 2𝐼
11
𝐼
4
+ 𝑘
1
𝐼
2

5
+ 𝑘
2
𝐼
2

13
+ 𝑘
3
𝐼
2

14
= 0,

𝐻
2
≡ 𝐼
9
+ 2𝐼
1
𝐼
5
𝐼
6
− 𝐼
3
𝐼
6
= 0,

(17)

from which we construct the Virasoro 𝑓-independent inte-
grable system as follows:

𝑝
𝑥𝑡
+ 𝑝
𝑥
𝑟
𝑥
+ 2𝑟𝑝
𝑥𝑥
+ 𝑘
1
𝑝
2

𝑥
+ 𝑘
2
𝑝
2

𝑥𝑦
+ 𝑘
3
𝑟
2

𝑥𝑦
= 0,

𝑝
𝑡
+ 2𝑥𝑟
𝑥
𝑝
𝑥
− 𝑝𝑟
𝑥
= 0.

(18)

Case 3. When choosing 𝐶
1
= 𝐶
3
= 1/2, 𝐶

2
= 1, 𝐶

4
= 𝐶
5
=

−1/2, one can arrive at the following group invariant system:

𝐻
1
≡ 𝐼
9
+ 𝐼
3
𝐼
6
− 2𝐼
2
𝐼
6
𝐼
7
− 𝐼
1
𝐼
5
𝐼
6
+ 𝑘
1
𝐼
7
+ 𝑘
2
𝐼
11
= 0,

𝐻
2
≡ 𝐼
19
− 𝐼
6
𝐼
7
− 𝐼
4
𝐼
13
− 2𝐼
2
𝐼
6
𝐼
17
+ 𝑘
3
𝐼
8
+ 𝑘
4
𝐼
17
+ 𝑘
5
𝐼
23
= 0.

(19)

Using the above system, we construct the corresponding
Virasoro 𝑓-independent integrable system as follows:

𝑝
𝑡
+ 𝑝𝑟
𝑥
− 2𝑦𝑝

𝑦
𝑟
𝑥
− 𝑥𝑝
𝑥
𝑟
𝑥
+ 𝑘
1
𝑝
𝑦
+ 𝑘
2
𝑝
𝑥𝑥
= 0,

𝑝
𝑦𝑡
− 𝑝
𝑦
𝑟
𝑥
− 𝑟𝑝
𝑥𝑦
− 2𝑦𝑝

𝑦𝑦
𝑟
𝑥
+ 𝑘
3
𝑟
𝑦
+ 𝑘
4
𝑝
𝑦𝑦
+ 𝑘
5
𝑝
𝑥𝑥𝑦

= 0.

(20)

In the next section, we will find the group invariant solutions
to the special case of the above system which reads

𝑝
𝑡
+ 𝑝𝑟
𝑥
− 2𝑦𝑝

𝑦
𝑟
𝑥
− 𝑥𝑝
𝑥
𝑟
𝑥
= 0,

𝑝
𝑦𝑡
− 𝑝
𝑦
𝑟
𝑥
− 𝑟𝑝
𝑥𝑦
− 2𝑦𝑝

𝑦𝑦
𝑟
𝑥
= 0.

(21)

Case 4. Taking 𝐶
𝑖
= −1, 𝑖 = 1, 2, 3, 5, and 𝐶

4
= −2, we have

the following group invariant system:

𝐻
1
≡ 𝐼
9
− 𝐼
3
𝐼
6
+ 𝐼
4
𝐼
5
+ 𝐼
2
𝐼
6
𝐼
7
+ 𝑘
1
𝐼
2

8
+ 𝑘
2
𝐼
2

3
= 0,

𝐻
2
≡ 𝐼
20
− 𝐼
6
𝐼
8
− 𝐼
4
𝐼
14
+ 𝐼
2
𝐼
6
𝐼
18
+ 𝑘
3
𝐼
2

3
𝐼
2

8
+ 𝑘
4
𝐼
2

3
= 0,

(22)

from which one can construct the Virasoro 𝑓-independent
integrable system as follows:

𝑝
𝑡
− 𝑝𝑟
𝑥
+ 𝑝
𝑥
𝑟 + 𝑦𝑟

𝑥
+ 𝑘
1
𝑟
2

𝑦
+ 𝑘
2
𝑝
2
= 0,

𝑟
𝑦𝑡
+ 𝑟
𝑥
𝑟
𝑦
− 𝑟𝑟
𝑥𝑦
+ 𝑦𝑟
𝑥
+ 𝑘
3
𝑟
2

𝑦
+ 𝑘
4
𝑝
2
= 0.

(23)

4. Group-Invariant Solutions of System (21)
Since group-invariant solutions of nonlinear models play
an important role in simulation of natural phenomena [10–
16], therefore we construct the group-invariant solutions
to the system (21) as an example. We utilize the classical
Lie symmetry group method to construct corresponding
infinitesimals admitted by system (21) firstly.

Theorem 1. The symmetries of system (21) form a Lie algebra
ℎ
1
generated by the following vector fields:

𝑉
1
= 𝑝𝜕
𝑝
, 𝑉

2
= 𝑦𝜕
𝑦
, 𝑉

3
= 𝑥𝜕
𝑝
,

𝑉
4
= √𝑦𝜕𝑝, 𝑉

5
= 𝑓 (𝑡) 𝜕

𝑡
− ̇𝑓 (𝑡) 𝑟𝜕

𝑟
,

𝑉
6
= 𝑔 (𝑡) 𝑥𝜕

𝑥
+ 2𝑦𝑔 (𝑡) 𝜕

𝑦
+ 𝑔 (𝑡) 𝑝𝜕

𝑝
+ (𝑔 (𝑡) 𝑟 − ̇𝑔 (𝑡) 𝑥) 𝜕

𝑟
,

(24)

where 𝑓(𝑡) and 𝑔(𝑡) are arbitrary functions of 𝑡.

Weconsider three special cases of functions𝑓(𝑡) and𝑔(𝑡).

Case 5. When 𝑓(𝑡) = 0, the symmetry generators of system
(21) are reduced to

𝑉
1
= 𝑝𝜕
𝑝
, 𝑉

2
= 𝑦𝜕
𝑦
, 𝑉

3
= 𝑥𝜕
𝑝
, 𝑉

4
= √𝑦𝜕𝑝,

(25)

𝑉
5
= 𝑔 (𝑡) 𝑥𝜕

𝑥
+ 2𝑦𝑔 (𝑡) 𝜕

𝑦
+ 𝑔 (𝑡) 𝑝𝜕

𝑝

+ (𝑔 (𝑡) 𝑟 − ̇𝑔 (𝑡) 𝑥) 𝜕
𝑟
.

(26)

The nonzero commutators of 𝑉
1
, 𝑉
2
, 𝑉
3
, and 𝑉

4
are

[𝑉
1
, 𝑉
3
] = −𝑉

3
, [𝑉

1
, 𝑉
4
] = −𝑉

4
, [𝑉

2
, 𝑉
4
] =

1

2
𝑉
4
,

[𝑉
3
, 𝑉
1
] = 𝑉
3
, [𝑉

4
, 𝑉
1
] = 𝑉
4
, [𝑉

4
, 𝑉
2
] = −

1

2
𝑉
4
.

(27)
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Table 1: The adjoint representation of𝐻
1
on ℎ
1
.

Ad(𝜀⋅) 𝑉
1

𝑉
2

𝑉
3

𝑉
4

𝑉
5

𝑉
1

𝑉
1

𝑉
2

𝑒
𝜀
𝑉
3

𝑒
𝜀
𝑉
4

𝑉
5

𝑉
2

𝑉
1

𝑉
2

𝑉
3

cos 𝜀
2
𝑉
4

𝑉
5

𝑉
3

𝑉
1
− 𝜀𝑉
3

𝑉
2

𝑉
3

𝑉
4

𝑉
5

𝑉
4

𝑉
1
− 𝜀𝑉
4

𝑉
2
+
𝜀

2
𝑉
4

𝑉
3

𝑉
4

𝑉
5

𝑉
5

𝑉
1

𝑉
2

𝑉
3

𝑉
4

𝑉
5

Table 2: Solutions to system (21) of Case 5.

𝑟
𝑖

𝑔(𝑡) 𝑝(𝑥, 𝑦, 𝑡) 𝑟(𝑥, 𝑦, 𝑡)

𝑟
3

1
1

√𝑦
+
2𝐶
1
+ 1

2𝑥
ℎ (𝑡)√𝑦

𝑟
6

1 ± (𝑥 ln𝑦 − 2𝑥 ln𝑥 + 𝐶
1
𝑥) 𝑘 (𝑦, 𝑡) 𝑥

𝑟
6

1 𝑥 ln𝑦 + 2𝑒∫−ℎ(𝑡)d𝑡 ∫𝑡 𝑒ℎ(𝑎)𝑥/ ∫−ℎ(𝑡)d𝑡d𝑎 + 𝑒−∫ ℎ(𝑡)d𝑡𝐹(𝑒𝑥/𝑒
∫−ℎ(𝑡)d𝑡

) ℎ (𝑡) 𝑥

𝑟
7

1 −𝑥 ln𝑦 − 2𝑒∫−ℎ(𝑡)d𝑡 ∫𝑡 𝑒ℎ(𝑎)𝑥/ ∫−ℎ(𝑡)d𝑡d𝑎 + 𝑒−∫ ℎ(𝑡)d𝑡𝐹(𝑒𝑥/𝑒
∫−ℎ(𝑡)d𝑡

) ℎ (𝑡) 𝑥

𝑟
13

1 𝑦
1/𝛼
ℎ(𝑡)

𝑥ℎ̇ (𝑡)

(2/𝛼 − 1) ℎ (𝑡)
+ 𝑘 (𝑦, 𝑡)

𝑟
3

𝑡
𝑥 ln𝑥
𝑡

+ 𝐶
1
𝑥 + 𝐶

2
𝑦
1/2
+ 𝑥ℎ (𝑡)

−𝑥 ln𝑥 + 𝑥
𝑡

+ 𝑥𝑡ℎ̇ (𝑡) + 𝐹 (𝑡)√𝑦

With the help of the adjoint representation:

𝐴𝑑 (exp (𝛽𝑉))𝑊 = 𝑊 − 𝛽 [𝑉,𝑊] +
𝛽
2

2
[𝑉, [𝑉,𝑊]] − ⋅ ⋅ ⋅ ,

(28)

the adjoint action of the Lie group𝐻
1
on the Lie algebra ℎ

1
is

listed in Table 1.
Applying the method initiated by Ovsiannikov [17], we

obtain the following theorem.

Theorem 2. The one-dimensional optimal system 𝜃
1
of ℎ
1
is

generated by

𝑟
1
= 𝑉
3
, 𝑟

2
= −𝑉
3
, 𝑟

3
= 𝑉
3
+ 𝑉
5
,

𝑟
4
= −𝑉
3
+ 𝑉
5
, 𝑟

5
= 𝑉
2
, 𝑟

6
= 𝑉
2
+ 𝑉
3
,

𝑟
7
= 𝑉
2
− 𝑉
3
, 𝑟

8
= 𝑉
2
+ 𝛼𝑉
5
,

𝑟
9
= 𝑉
2
+ 𝑉
3
+ 𝛼𝑉
5
, 𝑟

10
= 𝑉
2
− 𝑉
3
+ 𝛼𝑉
5
,

𝑟
11
= 𝑉
1
, 𝑟

12
= 𝑉
1
+ 𝛼𝑉
5
,

𝑟
13
= 𝑉
1
+ 𝛼𝑉
2
, 𝑟

14
= 𝑉
1
+ 𝛼𝑉
2
+ 𝛽𝑉
5
,

(29)

where 𝛼, 𝛽 are nonzero real constants.

Therefore, we obtain 14 nonequivalent one-dimensional
subalgebras and classify the group-invariant solutions into 14
nonequivalent types. After solving the characteristic equa-
tions, we can obtain the invariants and invariant forms.

Substituting the invariant forms into system (21), we can
reduce the original (2 + 1)-dimensional system to (1 + 1)-
dimensional system. Since it is a tough task to find all
solutions out for the every 14 nonequivalent subalgebras, we
just show the results for the cases that we can deal with and list
the solutions to system (21) in Table 2. Here and hereafter ℎ(⋅),
𝐹(⋅), and 𝑘(⋅, ⋅) are arbitrary functions with respect to their
variables.

Case 6. When 𝑔(𝑡) = 0, the symmetry generators of system
(21) are reduced to

𝑉
1
= 𝑝𝜕
𝑝
, 𝑉

2
= 𝑦𝜕
𝑦
, 𝑉

3
= 𝑥𝜕
𝑝
,

𝑉
4
= √𝑦𝜕𝑝, 𝑉

5
= 𝑓 (𝑡) 𝜕

𝑡
− ̇𝑓 (𝑡) 𝑟𝜕

𝑟
.

(30)

In this case, the optimal system is the same as that in
Theorem 2 and we can find some new solutions which are
listed in Table 3.

Case 7. When 𝑓(𝑡) = 1, 𝑔(𝑡) = 𝑒
𝑡, the symmetry generators

of system (21) are

𝑉
1
= 𝑝𝜕
𝑝
, 𝑉

2
= 𝑦𝜕
𝑦
, 𝑉

3
= 𝑥𝜕
𝑝
,

𝑉
4
= √𝑦𝜕𝑝, 𝑉

5
= 𝜕
𝑡
,

𝑉
6
= 𝑒
𝑡
(𝑥𝜕
𝑥
+ 2𝑦𝜕

𝑦
+ 𝑝𝜕
𝑝
+ (𝑟 − 𝑥) 𝜕

𝑟
) .

(31)
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Table 3: Solutions to system (21) of Case 6.

𝑟
𝑖

𝑓(𝑡) 𝑝(𝑥, 𝑦, 𝑡) 𝑟(𝑥, 𝑦, 𝑡)

𝑟
3

1 𝑥𝑡 + 𝐹(𝑥) + 𝐶
1√𝑦 + 𝐶2 ∫

𝑥

𝑥�̇�(𝑥) − 𝐶
1
− 𝐹(𝑥)

d𝑥 + 𝐾 (𝑦, 𝑡)

𝑟
3

𝑡 𝑥 ln 𝑡 + 𝐹(𝑥) + 𝐶
1√𝑦 + 𝐶2

∫(𝑥/(𝑥�̇�(𝑥) − 𝐶
1
− 𝐹(𝑥)))d𝑥

𝑡
+
𝐹(𝑦)

𝑡

𝑟
3

𝑡
2

−
𝑥

𝑡
+ 𝐹(𝑥) + 𝐶

1√𝑦 + 𝐶2

∫(𝑥/(𝑥�̇�(𝑥) − 𝐶
1
− 𝐹(𝑥)))d𝑥

𝑡
2

+
𝐹(𝑦)

𝑡
2

𝑟
8

1 𝐶
1
𝑥 𝐾(𝑥, 𝑦

𝛼
𝑒
−𝑡
)

𝑟
8

1 𝐹(𝑥) ℎ(𝑦
𝛼
𝑒
−𝑡
)

𝑟
8

1 𝐶
1
𝑥 +

𝐶
2
𝑥
𝐶
3

√𝑦

𝑒
𝑡/2𝛼

−𝑥

2𝛼𝐶
3

𝑟
8

1 𝐶
1
𝑥 + 𝐶

2
(𝑦
𝛼
𝑒
−𝑡
)
𝐶
3

𝐶
3
𝑥

1 − 2𝐶
3
𝛼
+ ℎ(𝑦

𝛼
𝑒
−𝑡
)

𝑟
8

𝑡 𝐶
1
𝑥

𝐾(𝑥, 𝑦
𝛼
𝑒
−𝑡
)

𝑡

𝑟
8

𝑡 𝐹(𝑥)
ℎ(𝑦
𝛼
𝑒
−𝑡
)

𝑡

𝑟
8

𝑡 𝐶
3
𝑥 +

𝐶
2
𝑥
𝐶
1

√𝑦

𝑡
1/2𝑎

−𝑥

2𝑎𝐶
1

𝑟
8

𝑡
𝐶
2
𝐶
3
𝑥𝑦
𝛼𝐶
1 − 𝑡
𝐶
1

𝐶
2
𝑦
𝛼𝐶
1

(1 + 2𝐶
1
𝛼)ℎ(𝑦

𝛼
/𝑡) − 𝐶

1
𝑥

(1 + 2𝐶
1
𝛼)𝑡

𝑟
8

𝑡
2

𝐶
1
𝑥

𝑘(𝑥, 𝑦𝑒
1/𝛼𝑡

)

𝑡
2

𝑟
8

𝑡
2

𝐹(𝑥)
ℎ(𝑦𝑒
1/𝛼𝑡

)

𝑡
2

𝑟
8

𝑡
2

𝐶
1
𝑥 + 𝐶

2
𝑥
𝐶
3

√𝑦𝑒
1/2𝛼𝑡

−𝑥

2𝐶
3
𝛼𝑡
2

𝑟
8

𝑡
2

𝐶
1
𝑥 + 𝐶

2
(𝑦𝑒
1/𝛼𝑡

)
𝐶
3

−𝐶
3
𝑥

(2𝐶
3
− 1)𝛼𝑡

2
+
ℎ(𝑦𝑒
1/𝛼𝑡

)

𝑡
2

𝑟
9

1 𝑥𝑡

𝛼
+ 𝐶
3
𝑥
2
(𝑦
𝛼
𝑒
−𝑡
)
1/2𝛼

− 2𝑥(2 ln𝑥 − 𝐶
2
)

−𝑥

4𝛼

𝑟
9

1 𝑥𝑡

𝛼
+ (𝑦
𝛼
𝑒
−𝑡
)
1/(𝛼(2+𝐶

4
))
+ 𝐶
3
𝑥 + 𝐶

4
𝑥 ln𝑥 𝑥

4𝛼
+ ℎ(𝑦

𝛼
𝑒
−𝑡
)

𝑟
9

1
𝑥(𝛼 ln𝑦 − 2𝛼 ln𝑥 + 𝐶

1
𝛼)

𝛼
𝑥ℎ(𝑦
𝛼
𝑒
−𝑡
)

𝑟
9

1 𝑥𝑡

𝛼
+ (ℎ(𝑦

𝛼
𝑒
−𝑡
) − 2 ln𝑥)𝑥 −𝑥

2𝛼

𝑟
12

1 𝐶
3
𝑒
𝑡
𝑥
𝐶
2 (𝐶
1
𝑥 + √𝑦)

𝑥

𝐶
2

𝑟
12

1 ℎ(𝑥)𝑒
𝛼/𝑡

∫
ℎ(𝑥)

𝛼(𝑥ℎ̇(𝑥) − ℎ(𝑥))

d𝑥 + 𝐾(𝑦, 𝑡)

𝑟
12

𝑡 𝐶
3
𝑡𝑥
𝐶
2 (𝐶
1
𝑥 + √𝑦)

𝑥

𝐶
2
𝑡

𝑟
12

𝑡 𝑡
1/𝛼
ℎ(𝑥)

∫ ℎ(𝑥)/(𝛼(𝑥ℎ̇(𝑥) − ℎ(𝑥)))d𝑥 + 𝐾(𝑦, 𝑡)
𝑡
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Table 4: Solutions to system (21) of Case 7.

𝑟
𝑖

𝑝(𝑥, 𝑦, 𝑡) 𝑟(𝑥, 𝑦, 𝑡)

𝑟
3

𝑥𝑡 + 𝐹(𝑥) + 𝐶
1
+ 𝐶
2√𝑦 ∫

𝑥

−𝐹 (𝑥) − 𝐶
1
+ 𝑥𝐹

(𝑥)

d𝑥 + ℎ (𝑦)

𝑟
4

−𝑥𝑡 + 𝐹(𝑥) + 𝐶
1
+ 𝐶
2√𝑦 ∫

−𝑥

−𝐹 (𝑥) − 𝐶
1
+ 𝑥𝐹

(𝑥)

d𝑥 + ℎ (𝑦)

𝑟
8

𝐶
1
𝑥 𝐾(𝑥,

𝑦

𝑒
𝑡/𝛼
)

𝑟
8

𝐹(𝑥) ℎ (
𝑦

𝑒
𝑡/𝛼
)

𝑟
8

𝐶
3
𝑥 + 𝐶

2
𝑥
𝐶

1

√𝑦

𝑒
𝑡/2𝛼

−𝑥

2𝛼𝐶
1

𝑟
8

𝐶
3
𝑥 + 𝐶

2

𝑦
𝐶
1

𝑒
(𝐶
1
𝑡)/𝛼

𝐶
1
𝑥

𝛼 (1 − 2𝐶
1
)
+ 𝐹 (

𝑦

𝑒
𝑡/𝛼
)

𝑟
9

𝑥𝑡

𝛼
+ 𝐹 (𝑥) ∫

𝑥

𝛼 (−𝐹 (𝑥) + 𝑥𝐹

(𝑥))

d𝑥 + ℎ (
𝑦

𝑒
𝑡/𝛼
)

𝑟
9

𝑥𝑡

𝛼
− 2𝑥 ln (𝐶

3
𝑥) + 𝐶

1
𝑥 + 𝐶

3
𝑥√

𝑦

𝑒
𝑡/𝛼

−𝑥

2𝛼

𝑟
9

𝑥𝑡

𝛼
+ (((𝐶

2
− 2) ln𝑥 + 𝐶

1
) 𝑥𝑒
𝐶
4
/𝐶
2 − (

𝑦

𝑒
𝑡/𝛼
)

1/𝐶
2

) 𝑒
−𝐶
4
/𝐶
2

𝑥

𝛼 (𝐶
2
− 2)

+ 𝐹(
𝑦

𝑒
𝑡/𝛼
)

𝑟
9

𝑥𝑡

𝛼
+ 𝑥 (ln(

𝑦

𝑒
𝑡/𝛼
) + 𝐶

1
− 2 ln𝑥) 𝑥𝐹(

𝑦

𝑒
𝑡/𝛼
)

𝑟
10

−𝑥𝑡

𝛼
+ 𝐹(𝑥) ∫

−𝑥

𝛼 (−𝐹 (𝑥) + 𝑥𝐹

(𝑥))

d𝑥 + ℎ (
𝑦

𝑒
𝑡/𝛼
)

𝑟
10

−𝑥𝑡

𝛼
+ 2𝑥 ln(𝐶

3
𝑥) + 𝐶

1
𝑥 + 𝐶

3
𝑥√

𝑦

𝑒
𝑡/𝛼

−𝑥

2𝛼

𝑟
10

−𝑥𝑡

𝛼
+ (((−𝐶

2
+ 2) ln𝑥 + 𝐶

1
) 𝑥𝑒
𝐶
4
/𝐶
2 − (

𝑦

𝑒
𝑡/𝛼
)

1/𝐶
2

) 𝑒
−𝐶
4
/𝐶
2

𝑥

𝛼 (𝐶
2
− 2)

+ 𝐹(
𝑦

𝑒
𝑡/𝛼
)

𝑟
10

−𝑥𝑡

𝛼
+ 𝑥 (− ln(

𝑦

𝑒
𝑡/𝛼
) + 𝐶

1
+ 2 ln𝑥) 𝑥𝐹(

𝑦

𝑒
𝑡/𝛼
)

𝑟
12

𝑒
𝑡/𝛼
+ 𝐶
1
𝑥 + 𝐶

2√𝑦 ℎ(𝑦) +
𝑥

𝛼

𝑟
14

𝑦
1/𝛼
𝐹 (𝑥) (

𝑦

𝑒
𝛼𝑡/𝛽

)

−1/𝛼

∫
𝐹(𝑥)

𝛽 (𝑥𝐹

(𝑥) − 𝐹 (𝑥))

d𝑥 + ℎ (
𝑦

𝑒
𝛼𝑡/𝛽

)

𝑟
14

𝑦
1/𝛼
(𝑥
(𝛼/2−1)

𝐶
1
(𝐶
3
𝑥
𝐶
2)
(1−𝛼/2)

(
𝑦

𝑒
𝛼𝑡/𝛽

)

𝛼−2/2𝛼

+ 𝐶
3
𝑥
𝐶
2(

𝑦

𝑒
𝛼𝑡/𝛽

)

−1/𝛼

)
𝑥

𝛽 (𝐶
2
− 1)

𝑟
14

𝐶
1
𝑦
1/𝛼

𝐹(
𝑦

𝑒
𝛼𝑡/𝛽

)

By simple calculation, we obtain that the optimal system
in this case is the same as that in Theorem 2. And we list the
new solutions in Table 4.

5. Concluding Remarks

In this paper, we extend the Virasoro-type symmetry pro-
longation approach from single equations to coupled sys-
tems of two-component nonlinear equations. Four types of

new nonlinear Virasoro integrable systems are constructed.
Furthermore, we obtain the one-dimensional optimal system
and group-invariant solutions to one of the model systems,
namely, system (21).
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