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We first investigate the construction of a fusion frame system in a finite-dimensional Hilbert space F𝑛 when its fusion frame
operator matrix is given and provides a corresponding algorithm. The matrix representations of its local frame operators and
inverse frame operators are naturally obtained. We then study the related properties of the constructed fusion frame systems.
Finally, we implement the construction of fusion frame systems which behave optimally for erasures in some special sense in signal
transmission.

1. Introduction

The theory of frames has gradually become an attractive
research area in the past twenty years. A prominent feature of
frames is redundancy which has two advantages: it makes the
construction of various frames more flexible and it provides
stability and robustness of signal in transmission. This leads
to the rapid development of theory and applications of frames
in past twenty years. We refer to [1–3] and the references
therein for more details about the frame theory and its new
achievements. In applications, we only mention some areas
here such as signal and image processing [4], quantization
[5], capacity of transmission channel [1, 2, 6], coding theory
[7–12], and data transmission technology [13].

But in some modern applications, the data which need
to be handled are so large that the processing procedures
cannot be implemented effectively by using a single frame.
Fusion frames are naturally suitable tools for dealing with
this problem. One can see the systemic introduction of
theory of fusion frames in [14, 15]. In recent years, many
excellent results about the theory and applications of fusion
frames have been achieved at an amazing speed [15–20].
In fact, fusion frames are generalization of conventional
frames and go beyond them. The procedure of using fusion
frame systems to handle information can be described as
follows. A large number of data can be assigned to a set of

small spaces and processed in these subsystems, finally all
the information are fused together at a center. Fusion frames
have been applied to various fields where distributed or
parallel processing is required. For instance, in a coding
transmission process, the encoded and quantized data must
be put in numbers of packets. When one or more packets
are scrambled, lost, or delayed, fusion frames can enhance
the robustness to the packet erasures. Furthermore, we can
see the successful applications of fusion frames in sensors
network [21], transmission coding [22–25], and so forth.

However, some problems about fusion frame systems
are open. Many excellent results about conventional frames
have been obtained and applied successfully, but how to
generalize them to fusion frames? Even in mathematics
application, the relation between the theory of fusion frames
and the interesting fields studied in [26–28] is worth further
researching. It is an appealing subject due to the complexity
of the structure of fusion frames compared with conventional
frames. In this paper, we focus on the matrix representations
of fusion frame operators of fusion frame systems and the
construction of fusion frame systems if their fusion frame
operator matrices are provided. To this end, we first study
the correspondence between frames of a subspace 𝑊 with
dimension 𝑙 of an 𝑛-dimensionalHilbert spaceHwith frames
of Hilbert space F 𝑙, where 𝑙 ≤ 𝑛. We obtain the matrix
representations of the local inverse frame operators and the
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fusion frame operator of a given fusion frame system by using
the correspondence. Based on these matrix representations,
the concrete algorithm for constructing a dual fusion frame
system is provided. Then we investigate the construction
of fusion frame systems, which fusion frame operators are
given. It is essential for constructing fusion frame systems
to get their local frames. We show that the constructed local
frame of a subspace with dimension 𝑙 can inherit some
properties from the corresponding frame of Hilbert space F 𝑙
such as Parseval and harmony. Finally, we give a method for
construction of the optimal fusion frame systems for one local
frame vector erasure.

We organize the structure of this paper as follows. In
Section 2, we introduce and recall some notations, concep-
tions, and some basic theory about frames and fusion frame
systems. Then we recall the method to obtain the matrix
representation of the fusion frame operator of a given fusion
frame system in a finite-dimensional Hilbert space F𝑛. In
Section 3, we study the construction of frames of an 𝑙-
dimensional subspace 𝑊 of F𝑛 by using the corresponding
frames of F 𝑙, where 𝑙 ≤ 𝑛. We then present an algorithm
for constructing a fusion frame system when its fusion frame
operator is given.Moreover, we get thematrix representations
of its local frame operators and inverse frame operators and
research the related characteristics of the constructed fusion
frame systems. The optimal fusion frame systems under
erasures in some particular sense can be obtained by using
our method. An example is given to show the effectiveness of
our construction in imagine coding.

2. Preliminaries

We refer to [1–3, 15, 25] for the details of the basic notations,
concepts, and results about frames and fusion frame systems.
We will adopt the same notations as [25] throughout this
paper. We recall the main concepts and results about the
construction of the matrix representation of the fusion frame
operator of a given fusion frame system in this section.

LetW = {(𝑊
𝑖
, V
𝑖
)}
𝑖∈𝐼

be a fusion frame forH.The analysis
operator ΘW is defined by

ΘW :H → (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ
2

with ΘW (𝑓) = {V𝑖𝑃𝑊
𝑖

(𝑓)}
𝑖∈𝐼

,

(1)

where

(∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ
2

= {{𝑓
𝑖
}
𝑖∈𝐼
| 𝑓
𝑖
∈ 𝑊
𝑖
, {
𝑓𝑖
}𝑖∈𝐼

∈ ℓ
2

(𝐼)} (2)

is called the representation space. The synthesis operator Θ∗W
(the adjoint operator of ΘW) can be defined by

Θ
∗

W : (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ
2

→H with Θ∗W (𝑓) = ∑
𝑖∈𝐼

V
𝑖
𝑓
𝑖
,

𝑓 = {𝑓
𝑖
}
𝑖∈𝐼
∈ (∑

𝑖∈𝐼

⊕𝑊
𝑖
)

ℓ
2

.

(3)

The fusion frame operator 𝑆W forW is defined by

𝑆W (𝑓) = Θ
∗

WΘW (𝑓) = ∑

𝑖∈𝐼

V2
𝑖
𝑃
𝑊
𝑖

(𝑓) . (4)

The following result shows how to obtain the global dual
frame from the local dual frames.

Proposition 1 (c.f. [15], Proposition 4.3). Let {(𝑊
𝑖
, V
𝑖
,

{𝑓
𝑖𝑗
}
𝑗∈𝐽
𝑖

)}
𝑖∈𝐼

be a fusion frame system for H with associated
fusion frame operator 𝑆W, common local frame bounds, and
local dual frames {𝑓

𝑖𝑗
}
𝑗∈𝐽
𝑖

, 𝑖 ∈ 𝐼. Then {V
𝑖
𝑆
−1

W(𝑓𝑖𝑗)}𝑗∈𝐽𝑖,𝑖∈𝐼
is a

dual frame for the frame {V
𝑖
𝑓
𝑖𝑗
}
𝑗∈𝐽
𝑖
,𝑖∈𝐼

.

Because we only consider finite-dimensional Hilbert
spaces, 𝐼will denote the identity operator (matrix) exclusively
in the rest of the paper.

Let {(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
be a fusion frame system for F𝑛;

then the analysis operator of the local frame of𝑊
𝑖
is a 𝑘
𝑖
× 𝑛

matrixΘ
𝐹
𝑖

with𝑓∗
𝑖𝑗
as its 𝑗th row and the 𝑛×𝑘

𝑖
matrixΘ∗

𝐹
𝑖

is its
synthesis operator. Furthermore, the 𝑖th local frame operator
is an 𝑛 × 𝑛matrix 𝑆

𝐹
𝑖

= Θ
∗

𝐹
𝑖

Θ
𝐹
𝑖

.

Notation. For the purpose of coding of any 𝑓 ∈ F𝑛, Θ
𝐹
𝑖

always denote the analysis operator of the system {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
in

F𝑛 throughout this paper. Hence it is a 𝑘
𝑖
× 𝑛 matrix, not a

𝑘
𝑖
× (dim𝑊

𝑖
)matrix.

The following definition is given by [25].

Definition 2. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with
a local frame 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
, where 𝑙 ≤ 𝑛. 𝑆

𝐹
is the local

frame operator of 𝐹. If there exists an operator 𝐴 such that
𝑓 = 𝑆

𝐹
𝐴(𝑓) = 𝐴𝑆

𝐹
(𝑓) holds for all 𝑓 ∈ 𝑊, we call 𝐴 the

inverse of 𝑆
𝐹
in𝑊 and denote it by 𝑆−1

𝐹
.

For any 𝑓 ∈ F𝑛, Θ
𝐹
𝑖

𝑓 is its encoding version in sub-
space 𝑊

𝑖
. For obtaining 𝑃

𝑊
𝑖

(𝑓) = ∑
𝑘
𝑖

𝑗=1
⟨𝑓, 𝑓
𝑖𝑗
⟩𝑓
𝑖𝑗

=

∑
𝑘
𝑖

𝑗=1
⟨𝑓, 𝑓
𝑖𝑗
⟩𝑆
−1

𝐹
𝑖

𝑓
𝑖𝑗
= Θ
∗

𝐹
𝑖

Θ
𝐹
𝑖

(𝑓), the following lemma is given
to calculate the matrix representation of 𝑆−1

𝐹
𝑖

and the 𝑖th local
dual frame {𝑓

𝑖𝑗
}
𝑘
𝑖

𝑗=1
.

Lemma 3 (c.f. [25], Lemma 11). Let 𝑊 be an 𝑙-dimensional
subspace of F𝑛 with an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
and a frame

𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
with frame bounds𝐴, 𝐵, where 𝑙 ≤ 𝑛. Define 𝐿 to be

an 𝑙×𝑛matrix with the vector 𝑒∗
𝑖
as its 𝑖th row for 𝑖 = 1, 2, . . . , 𝑙,

where 𝑒∗
𝑖
is the conjugate-transpose of 𝑒

𝑖
. The sequence 𝐺 =

{𝑔
𝑖
}
𝑘

𝑖=1
is given by 𝑔

𝑖
= 𝐿𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘. Then {𝑔

𝑖
}
𝑘

𝑖=1
is a

frame of F 𝑙 with the same frame bounds as 𝐹. In particular, if
𝐹 is a tight (or Parseval) frame, also is 𝐺.

By applying this lemma, we can obtain a method to
compute the matrix representation of the inverse frame
operator of a subspace endowed with an orthonormal basis
in the following theorem.

Theorem4 (c.f. [25],Theorem 12). Let𝑊 be an 𝑙-dimensional
subspace of F𝑛 with an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
and a frame
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𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
, where 𝑙 ≤ 𝑛. 𝐿 is defined as the above lemma. 𝑆

𝐹
is

the frame operator of 𝐹. Then

𝑆
−1

𝐹
= 𝐿
∗

(𝐿𝑆
𝐹
𝐿
∗

)
−1

𝐿 (5)

is the inverse of 𝑆
𝐹
in𝑊. Moreover, the orthogonal projection

𝑃
𝑊
from 𝐹𝑛 onto𝑊 is 𝑃

𝑊
= 𝑆
−1

𝐹
𝑆
𝐹
= 𝑆
𝐹
𝑆
−1

𝐹
= 𝐿
∗

𝐿.

For a given fusion frame system {(𝑊
𝑖
, V
𝑖
, 𝐹
𝑖
= {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
,

we can calculate the orthonormal basis of its each subspace
by finding the maximally linear independent subset of 𝐹

𝑖

and taking the Gram-Schmidt process on it. Then by using
the above theorem, we derive the matrix representations of
all local inverse frame operators and orthogonal projections
onto the subspaces {𝑊

𝑖
}
𝑚

𝑖=1
. Furthermore, we can compute

the matrix representation of the fusion frame operator by
applying the formula provided by the following proposition.

Proposition 5 (c.f. [25], Proposition 13). Let {(𝑊
𝑖
, V
𝑖
, 𝐹
𝑖
=

{𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
be a fusion frame system for F𝑛, and let 𝐹

𝑖
=

{𝑓
𝑖𝑗
}
𝑗∈𝐽
𝑖

, 𝑖 ∈ 𝐼, be the local dual frames given by 𝑓
𝑖𝑗
= 𝑆
−1

𝐹
𝑖

𝑓
𝑖𝑗

for all 𝑗 = 1, 2, . . . , 𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑚. Then the matrix

representation of the fusion frame operator is given by

𝑆W =

𝑚

∑

𝑖=1

V2
𝑖
Θ
∗

𝐹
𝑖

Θ
𝐹
𝑖

=

𝑚

∑

𝑖=1

V2
𝑖
Θ
∗

𝐹
𝑖

Θ
𝐹
𝑖

=

𝑚

∑

𝑖=1

V2
𝑖
𝑆
−1

𝐹
𝑖

𝑆
𝐹
𝑖

=

𝑚

∑

𝑖=1

V2
𝑖
𝑆
𝐹
𝑖

𝑆
−1

𝐹
𝑖

,

(6)

where Θ
𝐹
𝑖

and Θ
𝐹
𝑖

are the analysis operators of 𝐹
𝑖
and 𝐹

𝑖
,

respectively, and 𝑆
𝐹
𝑖

is the frame operator of 𝐹
𝑖
for each 𝑖 ∈ 𝐼.

Given a fusion frame system of a finite-dimensional
Hilbert space F𝑛, thematrix representation of its fusion frame
operator as well as its one dual fusion frame system can
be obtained by using the above two results. The concrete
algorithm is presented in [25].

3. Construction of Fusion Frame Systems

In this section, we research the construction of a fusion frame
system with a given positive invertible matrix 𝑆 as its fusion
frame operator. The constructing approach should include
two stages. First, construct the orthogonal projections of all
subspaces as well as their weights if the fusion frame operator
is given. Secondly, construct the local frames of all subspaces
with the desired properties. By using this method, we can
derive the optimal fusion frame systems for erasures in some
special sense.

3.1. Construction of Fusion Frame Systems. We first recall our
previous work in [19] on the construction of fusion frames
which fusion frame operators are provided. In practise, the
local frames of a fusion frame system are served as coder in
their respective subspaces. The main distribution of this sub-
section is the derivation of the local frames with the expected
characteristics which can be implemented by constructing

frames of F 𝑙𝑖 with the same dimension as subspace𝑊
𝑖
for each

𝑖 ∈ {1, 2, . . . , 𝑚}. And then, we get the construction of fusion
frame systems combined with the previous work.

Notations and Assumptions. We set up some notations that
will be used throughout this subsection. Let 𝑆 be a positive
𝑛 × 𝑛matrix with eigenvalues {𝜆

𝑖
}
𝑛

𝑖=1
where 𝜆

𝑖
> 0 for all 1 ≤

𝑖 ≤ 𝑛 and let 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 be the orthonormal eigenvectors

of 𝑆 corresponding to the eigenvalues 𝜆
𝑖
, respectively, which

form an orthonormal basis of F𝑛. Let𝑚 be a positive integer,
and 𝐿

𝑖
= (𝑒
𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑙
𝑖

)
∗; that is, thematrix 𝐿

𝑖
is constituted

by 𝑒∗
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑙

𝑖
as its rows for 𝑖 = 1, 2, . . . , 𝑚, where

𝑒
𝑖𝑗
∈ {𝑒
𝑖
}
𝑛

𝑖=1
and 𝑒

𝑖𝑗
1

̸= 𝑒
𝑖𝑗
2

when 𝑗
1
̸= 𝑗
2
. Assume that the

matrix [𝐿∗
1
, 𝐿
∗

2
, . . . , 𝐿

∗

𝑚
] has rank 𝑛; that is, the rows of all

𝐿
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 can span the space F𝑛. Set Λ

𝑖
= {𝑗 |

𝑒
∗

𝑖
is one of the rows of 𝐿

𝑗
} for 𝑖 = 1, 2, . . . , 𝑛.

The following theorem provides the method of orthogo-
nal projection decomposition of a given positive matrix.

Theorem 6 (c.f. [19], Theorem 3.2). Let the notations and
assumptions be as described in the previous setup. Let the
positive numbers {V

𝑖
}
𝑚

𝑖=1
satisfy the following condition:

∑

𝑗∈Λ
𝑖

V2
𝑗
= 𝜆
𝑖 (7)

for all 𝑖 = 1, 2, . . . , 𝑚; then the positive matrix 𝑆 has the
following decomposition:

𝑆 =

𝑚

∑

𝑖=1

V2
𝑖
𝑃
𝑖
, (8)

where 𝑃
𝑖
= 𝐿
∗

𝑖
𝐿
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are orthogonal projection

matrices on𝑊
𝑖
= span{𝑒

𝑖
𝑗

}
𝑙
𝑖

𝑗=1
.

The following proposition provides amethod for the con-
struction of a fusion frame as well as orthonormal projections
on its subspaces with a given fusion frame operator.

Proposition 7 (c.f. [19], Proposition 3.4). Let the notations
and assumptions be as described in the previous setup, and the
positive numbers {V

𝑖
}
𝑚

𝑖=1
satisfy equation (7). Then {(𝑊

𝑖
, V
𝑖
)}
𝑚

𝑖=1

is a fusion frame for F𝑛 with frame operator 𝑆W = 𝑆, where
𝑊
𝑖
= span{𝑒

𝑖
𝑗

}
𝑙
𝑖

𝑗=1
. In the case that 𝑆 = 𝐴𝐼, we have that if

{V
𝑖
}
𝑚

𝑖=1
satisfies the following condition:

∑

𝑗∈Λ
𝑖

V2
𝑗
= 𝐴, (9)

for all 𝑖 = 1, 2, . . . , 𝑚, where 𝐴 > 0 is a positive real
number; then {(𝑊

𝑖
, V
𝑖
)}
𝑚

𝑖=1
is an 𝐴-tight fusion frame for F𝑛. In

particular, if 𝐴 = 1, then it is a Parseval fusion frame.

Then we will focus on the construction of local frames
of the fusion frames derived by the above proposition. It is
an important step for constructing fusion frame systems. We
first show the following theorem which is the converse of
Lemma 3.
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Theorem 8. Let 𝑊 be an 𝑙-dimensional subspace of F𝑛 with
an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
be a frame

of F 𝑙 with frame bounds 𝐴, 𝐵, where 𝑙 ≤ 𝑛. 𝐿 is defined as
Lemma 3. The sequence 𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
is given by 𝑓

𝑖
= 𝐿
∗

𝑔
𝑖
for

𝑖 = 1, 2, . . . , 𝑘. Then 𝐹 is a frame of 𝑊 with the same frame
bounds as 𝐺. In particular, if 𝐺 is a tight (or Parseval) frame,
also is 𝐹.

Proof. For any 𝑓 ∈ 𝑊, we have 𝐿𝑓 =

(⟨𝑓, 𝑒
1
⟩, ⟨𝑓, 𝑒

2
⟩, . . . , ⟨𝑓, 𝑒

𝑙
⟩)
𝑇

∈ F 𝑙 and ‖𝐿𝑓‖
2

=

∑
𝑙

𝑖=1
|⟨𝑓, 𝑒
𝑖
⟩|
2

= ‖𝑓‖
2. Therefore,

𝐴
𝑓


2

= 𝐴
𝐿𝑓


2

≤

𝑘

∑

𝑖=1

⟨𝐿𝑓, 𝑔𝑖⟩


2

=

𝑘

∑

𝑖=1

⟨𝑓, 𝐿
∗

𝑔
𝑖
⟩


2

=

𝑘

∑

𝑖=1

⟨𝑓, 𝑓𝑖⟩


2

≤ 𝐵
𝐿𝑓


2

= 𝐵
𝑓


2

,

(10)

as required. The particular assertion is obvious.

The following proposition gives the matrix representa-
tions of the local frame operator and inverse frame operator
of a subspace𝑊 of F𝑛 derived by the above theorem.

Proposition 9. Let𝑊 be an 𝑙-dimensional subspace of F𝑛 with
an orthonormal basis {𝑒

𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
be a frame of

F 𝑙 with frame bounds 𝐴, 𝐵, where 𝑙 ≤ 𝑛. 𝐿 and 𝐹 = {𝑓
𝑖
}
𝑘

𝑖=1
are

defined as the above theorem. 𝑆
𝐺
is the frame operator of 𝐺.

Then the frame operator of 𝐹 and its inverse are given by

𝑆
𝐹
= 𝐿
∗

𝑆
𝐺
𝐿,

𝑆
−1

𝐹
= 𝐿
∗

𝑆
−1

𝐺
𝐿.

(11)

Moreover, the orthogonal projection 𝑃
𝑊

from 𝐹
𝑛 onto 𝑊 is

𝑃
𝑊
= 𝑆
−1

𝐹
𝑆
𝐹
= 𝑆
𝐹
𝑆
−1

𝐹
= 𝐿
∗

𝐿.

Proof. Let Θ
𝐺

and Θ
∗

𝐺
be the analysis operator and

synthesis operator of 𝐺, respectively; then Θ
∗

𝐹
=

(𝐿
∗

𝑔
1
, 𝐿
∗

𝑔
2
, . . . , 𝐿

∗

𝑔
𝑘
) = 𝐿

∗

Θ
∗

𝐺
is the synthesis operator

of 𝐹. Hence, the frame operator of 𝐹 is 𝑆
𝐹
= Θ
∗

𝐹
Θ
𝐹
=

𝐿
∗

Θ
∗

𝐺
Θ
𝐺
𝐿 = 𝐿

∗

𝑆
𝐺
𝐿.

Since 𝑆
𝐺
is invertible, we will show that 𝑆−1

𝐹
= 𝐿
∗

𝑆
−1

𝐺
𝐿 is

inverse of 𝑆
𝐹
. Note that 𝐿𝐿∗ = 𝐼 and 𝐿∗𝐿𝑓 = 𝑓 for any𝑓 ∈ 𝑊.

Hence, we have

𝑆
−1

𝐹
𝑆
𝐹
𝑓 = 𝐿

∗

𝑆
−1

𝐺
𝐿𝐿
∗

𝑆
𝐺
𝐿𝑓 = 𝐿

∗

𝐿𝑓 = 𝑓,

𝑆
𝐹
𝑆
−1

𝐹
𝑓 = 𝐿

∗

𝑆
𝐺
𝐿𝐿
∗

𝑆
−1

𝐺
𝐿𝑓 = 𝐿

∗

𝐿𝑓 = 𝑓,

(12)

as claimed.The proof of the moreover part is the same as that
of Theorem 12 of [25].

The following two propositions show that the constructed
frame of𝑊 inherits some features of the corresponding frame
of F 𝑙.

Proposition 10. Let 𝑊 be an 𝑙-dimensional subspace of F𝑛

with an orthonormal basis {𝑒
𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
be

a frame of F 𝑙 with frame bounds 𝐴, 𝐵, where 𝑙 ≤ 𝑛. 𝐿 and
𝐹 = {𝑓

𝑖
}
𝑘

𝑖=1
are defined as Theorem 8. If 𝐺 = {𝑔

𝑖
}
𝑘

𝑖=1
is a dual

frame of 𝐺, then 𝐹 = {𝐿
∗

𝑔
𝑖
}
𝑘

𝑖=1
is a dual frame of 𝐹.

Furthermore, if 𝐺 is the canonical one, so is 𝐹.

Proof. For any 𝑓 ∈ 𝑊, we have

𝑘

∑

𝑖=1

⟨𝑓, 𝐿
∗

𝑔
𝑖
⟩ 𝐿
∗

𝑔
𝑖
= 𝐿
∗

𝑘

∑

𝑖=1

⟨𝐿𝑓, 𝑔
𝑖
⟩𝑔
𝑖
=

𝑘

∑

𝑖=1

⟨𝑓, 𝐿
∗

𝑔
𝑖
⟩𝐿
∗

𝑔
𝑖

= 𝐿
∗

𝑘

∑

𝑖=1

⟨𝐿𝑓, 𝑔
𝑖
⟩𝑔
𝑖
= 𝐿
∗

𝐿𝑓 = 𝑓.

(13)

Hence, 𝐹 is a dual frame of 𝐹. If 𝑔
𝑖
= 𝑆
−1

𝐺
𝑔
𝑖
, then 𝑓

𝑖
= 𝐿
∗

𝑔
𝑖
=

𝐿
∗

𝑆
−1

𝐺
𝐿𝐿
∗

𝑔
𝑖
= 𝑆
−1

𝐹
𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘, which implies that 𝐹 is

the canonical dual frame of 𝐹.

Proposition 11. Let 𝑊 be an 𝑙-dimensional subspace of F𝑛

with an orthonormal basis {𝑒
𝑖
}
𝑙

𝑖=1
, and let 𝐺 = {𝑔

𝑖
}
𝑘−1

𝑖=0
be a

harmonic frame of F 𝑙, where 𝑙 ≤ 𝑛. 𝐿 and 𝐹 = {𝑓
𝑖
}
𝑘−1

𝑖=0
are

defined as Theorem 8. Then 𝐹 is a harmonic frame of𝑊.

Proof. Since𝐺 is a harmonic frame of F 𝑙, there exists a unitary
𝑈on F 𝑙 such that𝑈𝑘 = 𝐼,𝑈𝑖 ̸= 𝐼 for 1 ≤ 𝑖 ≤ 𝑘−1, and𝑔

𝑖
= 𝑈
𝑖

𝑔
0

for 0 ≤ 𝑖 ≤ 𝑘 − 1. Let 𝐿∗𝑈𝐿 = 𝑉. For any 𝑓 ∈ 𝑊, we have

𝑉𝑉
∗

𝑓 = 𝐿
∗

𝑈𝐿𝐿
∗

𝑈
∗

𝐿𝑓 = 𝑉
∗

𝑉𝑓 = 𝐿
∗

𝑈
∗

𝐿𝐿
∗

𝑈𝐿𝑓

= 𝐿
∗

𝐿𝑓 = 𝑓.
(14)

Therefore,𝑉 is a unitary on𝑊. It is obvious that𝑉𝑖 = 𝐿∗𝑈𝑖𝐿.
So we have 𝑉𝑘 = 𝐿∗𝐿, 𝑉𝑖 ̸= 𝐿∗𝐿 for 1 ≤ 𝑖 ≤ 𝑘 − 1, and 𝑓

𝑖
=

𝐿
∗

𝑔
𝑖
= 𝐿
∗

𝑈
𝑖

𝑔
0
= 𝐿
∗

𝑈
𝑖

𝐿𝐿
∗

𝑔
0
= 𝑉
𝑖

𝑓
0
, which implies that 𝐹 is

a harmonic frame.

Summarizing the related results of this subsection, we can
obtain the algorithm for constructing a required fusion frame
system with a given fusion frame operator 𝑆 as follows.

Step 1. Compute the eigenvalues {𝜆
𝑖
}
𝑛

𝑖=1
and their corre-

sponding independent eigenvectors {ℎ
𝑖
}
𝑛

𝑖=1
of 𝑆.

Step 2. Take the Gram-Schmidt process on {ℎ
𝑖
}
𝑛

𝑖=1
to get an

orthonormal basis {𝑒
𝑖
}
𝑛

𝑖=1
for F𝑛.

Step 3. According to the requirement, construct the matrix
𝐿
𝑖
constituted by this basis as follows:

𝐿
𝑖
=

[
[
[
[

[

← 𝑒
∗

𝑖1
→

← 𝑒
∗

𝑖2
→

...
← 𝑒
∗

𝑖𝑙
𝑖

→

]
]
]
]

]

, (15)

for 𝑖 = 1, 2, . . . , 𝑚, where 𝑒
𝑖𝑗
∈ {𝑒
𝑖
}
𝑛

𝑖=1
, and 𝑒

𝑖𝑗
1

̸= 𝑒
𝑖𝑗
2

, when
𝑗
1
̸= 𝑗
2
.
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Step 4. Resolve (7) to derive the sequence of weights {V
𝑖
}
𝑛

𝑖=1
.

Set 𝑊
𝑖
= span{𝑒

𝑖
𝑗

}
𝑙
𝑖

𝑗=1
. Use formula (8) to decompose 𝑆 and

get the orthogonal projections 𝑃
𝑊
𝑖

, for 𝑖 = 1, 2, . . . , 𝑚. Then
we obtain a required fusion frame {(𝑊

𝑖
, V
𝑖
)}
𝑚

𝑖=1
.

Step 5. Construct the frames 𝐺
𝑖
= {𝑔

𝑖𝑗
}
𝑘
𝑖

𝑗=1
in F 𝑙𝑖 with

requirement properties for 𝑖 = 1, 2, . . . , 𝑚.

Step 6. Apply Theorem 8 to compute the local frames 𝐹
𝑖
=

{𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
for 𝑖 = 1, 2, . . . , 𝑚. Then we derive a required fusion

frame system {(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
.

3.2. Construction of Optimal Fusion Frame Systems for Era-
sures. We apply our construction method to obtain optimal
Parseval fusion frame systems for the packet erasure problem
in some special sense in this subsection. Bodmann initiated
in [22] the investigation about the optimality of (𝑚, 𝑘, 𝑛)-
protocols that are used to the packet erasure problem. Let
{𝐵
𝑗
}
𝑚

𝑗=1
be a family of coordinate operators 𝐵

𝑗
: H → K

into a finite-dimensional Hilbert space K of maximal rank
𝑘 that provide a resolution of the identity 𝐼 = ∑

𝑚

𝑗=1
𝐵
∗

𝑗
𝐵
𝑗

for the Hilbert space H = F𝑛, where 𝑚, 𝑘, 𝑛 are positive
integers satisfying 𝑛 < 𝑚𝑘; then the analysis operator Θ of
such a family {𝐵

𝑗
} is called a (𝑚, 𝑘, 𝑛)-protocol.Theoptimality

of (𝑚, 𝑘, 𝑛)-protocols requires to get weighted projective
resolutions of the identity operator: 𝐼 = ∑

𝑚

𝑗=1
𝐵
∗

𝑗
𝐵
𝑗
=

∑
𝑚

𝑗=1
V
𝑖
𝑃
𝑗
, where V

𝑗
> 0, and 𝑃

𝑗
is a projection on some

Hilbert space with rank-𝑘 for 𝑗 = 1, 2, . . . , 𝑚. This can be
also phrased by Parseval fusion frames (Theorem 3.6 of [18]).
Furthermore, optimal Parseval fusion frame systems for one
local frame vector erasure have been depicted inTheorem 4.3
of [18]). We point out that a special type of Parseval fusion
frames that are optimal for the one packet erasure problem
can be easily constructed by using Proposition 7. Moreover,
Parseval fusion frame systems that are optimal for the one
local frame vector erasure problem described by [18] can
be easily constructed by using Theorem 8. Let us recall the
description of the optimal Parseval fusion frames for the one
packet erasure problem.

Definition 12. Let W = {(𝑊
𝑖
, V
𝑖
)}
𝑚

𝑖=1
be a Parseval fusion

frame for an 𝑛-dimension Hilbert space F𝑛 with analysis
operator ΘW. Define the operator 𝐷

𝑗
: (∑
𝑚

𝑖=1
⨁𝑊
𝑖
)
ℓ
2

→

(∑
𝑚

𝑖=1
⨁𝑊
𝑖
)
ℓ
2

by {𝐷
𝑗
(𝑔)}
𝑖
= 𝛿
𝑗𝑖
𝑔
𝑖
for all 𝑖 = 1, 2, . . . , 𝑚,

where 𝑔 = {𝑔
𝑖
}
𝑚

𝑖=1
∈ (∑
𝑚

𝑖=1
⨁𝑊
𝑖
)
ℓ
2

. For any 𝑓 ∈ H, we call
𝐷
𝑗
ΘW𝑓 the 𝑗th coding packet for 𝑗 = 1, 2, . . . , 𝑚. The one

packet erasure reconstruction error 𝑒
1
(W) ofW is defined by

𝑒
1
(W) = max {Θ

∗

W𝐷𝑖ΘW
 : 1 ≤ 𝑖 ≤ 𝑚} . (16)

In practise, a signal (vector) 𝑓 ∈ H is encoded as ΘW𝑓

including 𝑚 coding packets and decoded (reconstructed) as
Θ
∗

WΘW𝑓 by using a Parseval fusion frame W. If one packet
is lost in the transmission process, then 𝑒

1
(W) depict the

reconstruction error in the worst case. The optimal Parseval
fusion frame can be used to implement the optimal coding
in this special sense in applications [18, 22]. The following

theorem describe the optimal Parseval fusion frames with a
prescribed number of subspaces and prescribed dimensions
of the subspaces under one subspace (packet) erasure.

Theorem 13 (c.f. [18], Theorem 3.6). LetW = {(𝑊
𝑖
, V
𝑖
)}
𝑚

𝑖=1
be

a Parseval fusion frame for an 𝑛-dimension Hilbert space F𝑛.
Then the following are equivalent.

(i) The Parseval fusion frameW satisfies

𝑒
1
(W) = min {𝑒

1
({(�̃�
𝑖
, Ṽ
𝑖
)}
𝑚

𝑖=1

) :

{(�̃�
𝑖
, Ṽ
𝑖
)}
𝑚

𝑖=1

is a Parseval fusion

frame with dim �̃�
𝑖

= dim𝑊
𝑖
, ∀1 ≤ 𝑖 ≤ 𝑚} .

(17)

(ii) We have

V2
𝑖
=

dimH

𝑚 ⋅ dim𝑊
𝑖

, ∀1 ≤ 𝑖 ≤ 𝑚. (18)

Moreover, let 𝑓 ∈ H and 𝑓 be the reconstructed vector.
Then we have the following error bound


𝑓 − 𝑓


≤

dim H

𝑚 ⋅min {dim𝑊
𝑖
: 1 ≤ 𝑖 ≤ 𝑚}

. (19)

The following proposition which follows from
Proposition 7 and Theorem 13 describe the construction of
one kind of optimal Parseval fusion frames for one packet
erasure.

Proposition 14 (c.f. [19], Proposition 3.8). Let {𝑒
𝑖
}
𝑛

𝑖=1
be an

orthonormal basis for a Hilbert space F𝑛, and let 𝑘 be a positive
integer. Assume that𝑊

𝑗
is a subspace spanned by some elements

in {𝑒
𝑖
}
𝑛

𝑖=1
for 𝑗 = 1, 2, . . . , 𝑚, and span{𝑊

𝑗
}
𝑚

𝑗=1
= H. Let

ℎ
𝑖
be number of subspaces 𝑊

𝑗
that contain 𝑒

𝑖
(1 ≤ 𝑖 ≤ 𝑛).

If all dim𝑊
𝑗
are equal to 𝑙 and all ℎ

𝑖
are equal to ℎ, then

{(𝑊
𝑗
, √V𝑗)}

𝑚

𝑗=1
is an optimal Parseval fusion frame for one

packet erasure described in Theorem 13, where V
𝑗
= 𝑛/𝑚𝑙 for

all 1 ≤ 𝑗 ≤ 𝑚.

The optimal Parseval fusion frame systems with local
Parseval frames of prescribed numbers of frame vectors and
prescribed dimensions of subspaces under the erasure of
one local frame vector is presented in [18]. We find that
constructing this kind of fusion frame systems can be reduced
to constructing the conventional optimal Parseval frames
with respect to one frame vector erasure under our method.
Now let us first recall the related knowledge.

Let (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑚
) ∈ ∏

𝑚

𝑖=1
𝑀(𝑘
𝑖
× 𝑘
𝑖
, F) be a vector of

matrices, where 𝐷
𝑖
0

= (𝑑
𝑖𝑗
)
𝑘
𝑖0
×𝑘
𝑖0

, 𝑑
𝑖𝑗
= 𝛿
𝑖,𝑗
0

𝛿
𝑗,𝑗
0

for some
𝑖
0
∈ {1, 2, . . . , 𝑚}, 𝑗

0
∈ {1, 2, . . . , 𝑘

𝑖
0

}, and other matrices are
all zero-matrices, which simulate the erasure of vector 𝑓

𝑖
0
𝑗
0

.
Denote the set of all these matrix vectors byD.
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Definition 15. Let W = {(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
be a Parseval

fusion frame system with local Parseval frames. Let ΘW

denote the analysis operator of the associated fusion frame,
and Θ

𝐹
𝑖

the analysis operator of the local frames for 1 ≤

𝑖 ≤ 𝑚. Then the associated 1-erasure of local frame vector
reconstruction error is defined to be

𝑒
∗

1
(W) = max{



𝑚

∑

𝑖=1

V2
𝑖
Θ
∗

𝐹
𝑖

𝐷
𝑖
Θ
𝐹
𝑖



: (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑚
) ∈ D} .

(20)

The following theorem characterizes the optimal Parseval
fusion frame systems with subspaces of fixed dimensions and
local Parseval frames having fixed numbers of frame vectors
under one local frame vector erasure.

Theorem 16 (c.f. [18], Theorem 4.3). Let W = {(𝑊
𝑖
, V
𝑖
,

{𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
be a Parseval fusion frame system with local

Parseval frames for an 𝑛-dimension Hilbert space F𝑛. Then the
following are equivalent:

(i) The Parseval fusion frame system satisfies 𝑒∗
1
(W) =

min{𝑒∗
1
({(�̃�
𝑖
, Ṽ
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
) : {(�̃�

𝑖
, Ṽ
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
is

a Parseval fusion frame system with local Parseval
frames satisfying dim �̃�

𝑖
= dim𝑊

𝑖
, for all 1 ≤ 𝑖 ≤ 𝑚}.

(ii) We have


𝑓
𝑖𝑗



2

=
dim𝑊

𝑖

𝑘
𝑖

, ∀1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘
𝑖
. (21)

Moreover, let 𝑓 ∈ H and 𝑓 be the reconstructed vector.
Then we have the following error bound


𝑓 − 𝑓


≤
max {dim𝑊

𝑖
: 1 ≤ 𝑖 ≤ 𝑚}

min {𝑘
𝑖
: 1 ≤ 𝑖 ≤ 𝑚}

𝑓
 . (22)

The following proposition can be easily obtained by using
the above theorem together with Proposition 2.1 of [9] and
Theorem 8. We omit its proof.

Proposition 17. Let 𝐺
𝑖
= {𝑔
𝑖𝑗
}
𝑘
𝑖

𝑗=1
be the optimal Parseval

frames with 1-erasure of F 𝑙𝑖 for 𝑖 = 1, 2, . . . , 𝑚, let {(𝑊
𝑖
, V
𝑖
, )}
𝑚

𝑖=1

be a Parseval fusion frame of F𝑛 endowed with an orthonormal
basis {𝑒

𝑖𝑗
}
𝑙
𝑖

𝑗=1
for each subspace𝑊

𝑖
. Set 𝐿

𝑖
= (𝑒
𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑙
𝑖

)
∗,

and 𝐹
𝑖
= {𝑓
𝑖𝑗
= 𝐿
∗

𝑖
𝑔
𝑖𝑗
}
𝑘
𝑖

𝑗=1
for all 1 ≤ 𝑖 ≤ 𝑚. Then W =

{(𝑊
𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
is an optimal Parseval fusion frame system

with local Parseval frames for one local frame vector erasure
described in Theorem 16.

The above proposition provide amethod for constructing
the optimal Parseval fusion frame systems for one local frame
vector erasure described in Theorem 16. First, we construct
the optimal Parseval frames for 1-erasure in Hilbert space F 𝑙𝑖
for 𝑖 = 1, 2, . . . , 𝑚. Then, by using the algorithm presented
by the above subsection we can derive the required optimal
Parseval fusion frame system W = {(𝑊

𝑖
, V
𝑖
, {𝑓
𝑖𝑗
}
𝑘
𝑖

𝑗=1
)}
𝑚

𝑖=1
.

Finally, we give a concrete example.

Example 18. Consider Hilbert spaceH = R4, and let

𝑆 =

[
[
[
[
[
[
[
[
[
[

[

22

3
−
2

3
−
2

3
0

−
2

3

22

3
−
2

3
0

−
2

3
−
2

3

22

3
0

0 0 0 6

]
]
]
]
]
]
]
]
]
]

]

. (23)

The eigenvalues of 𝑆 are 𝜆
1
= 𝜆
2
= 8, 𝜆

3
= 𝜆
4
= 6, and the

corresponding orthonormal eigenvectors are given by

𝑒
1
=

[
[
[
[
[
[
[
[
[
[

[

−
√2

2

√2

2

0

0

]
]
]
]
]
]
]
]
]
]

]

, 𝑒
2
=

[
[
[
[
[
[
[
[
[
[
[
[

[

−
√6

6

−
√6

6

2√6

6

0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑒
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
√3

6

−
√3

6

−
√3

6

√3

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝑒
4
=

[
[
[
[
[
[
[
[
[
[
[
[

[

1

2

1

2

1

2

1

2

]
]
]
]
]
]
]
]
]
]
]
]

]

.

(24)

Let𝑊
1
= span{𝑒

1
, 𝑒
2
},𝑊
2
= span{𝑒

1
, 𝑒
3
},𝑊
3
= span{𝑒

1
, 𝑒
4
},

𝑊
4
= span{𝑒

2
, 𝑒
3
},𝑊
5
= span{𝑒

2
, 𝑒
4
}, and𝑊

6
= span{𝑒

3
, 𝑒
4
}.

According to the condition (7), we need positive solutions for
the following equations:

V
1
+ V
2
+ V
3
= 8, V

1
+ V
4
+ V
5
= 8,

V
2
+ V
4
+ V
6
= 6, V

3
+ V
5
+ V
6
= 6.

(25)

These equations have infinite many positive solutions which
can be expressed as

V
1
= 𝑏 + 2, V

2
= 𝑎,

V
3
= V
4
= −𝑎 − 𝑏 + 6,

V
5
= 𝑎, V

6
= 𝑏,

(26)

where 𝑎 + 𝑏 < 2, 𝑎 > 0, 𝑏 > 0. For example, we can take
𝑎 = 𝑏 = 2, then we have V

1
= 4, V

2
= V
3
= V
4
= V
5
= V
6
= 2.

Then we get a fusion frame {(𝑊
𝑖
, V
𝑖
)}
4

𝑖=1
.

We can obtain a harmonic Parseval frame𝐺 = {𝑔
1
, 𝑔
2
, 𝑔
3
}

for F2 by using Example 4.1 in [8], where 𝑔
1
= (√6/3, 0)

𝑇,
𝑔
2

= (−√6/6,√2/2)
𝑇, and 𝑔

3
= (−√6/6, −√2/2)

𝑇.
Since all vectors in 𝐺 have the same norm √6/3, it is an
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optimal Parseval frame for 1-erasure by Proposition 2.1 of [9].
Set

𝐿
1
=

[
[
[
[

[

−
√2

2

√2

2
0 0

−
√6

6
−
√6

6

2√6

6
0

]
]
]
]

]

,

𝐿
2
=

[
[
[
[

[

−
√2

2

√2

2
0 0

−
√3

6
−
√3

6
−
√3

6

√3

2

]
]
]
]

]

,

𝐿
3
=
[
[
[

[

−
√2

2

√2

2
0 0

1

2

1

2

1

2

1

2

]
]
]

]

,

𝐿
4
=

[
[
[
[

[

−
√6

6
−
√6

6

2√6

6
0

−
√3

6
−
√3

6
−
√3

6

√3

2

]
]
]
]

]

,

𝐿
5
=
[
[
[

[

−
√6

6
−
√6

6

2√6

6
0

1

2

1

2

1

2

1

2

]
]
]

]

,

𝐿
6
=
[
[
[

[

−
√3

6
−
√3

6
−
√3

6

√3

2

1

2

1

2

1

2

1

2

]
]
]

]

.

(27)

We compute {𝑓
𝑖𝑗
}
6,3

𝑖=1,𝑗=1
as follows:

𝑓
11
= 𝐿
∗

1
𝑔
1
= (−

√3

3
,
√3

3
, 0, 0)

𝑇

,

𝑓
12
= 𝐿
∗

1
𝑔
2
= (0, −

√3

3
,
√3

3
, 0)

𝑇

,

𝑓
13
= 𝐿
∗

1
𝑔
3
= (

√3

3
, 0, −

√3

3
, 0)

𝑇

,

𝑓
21
= 𝐿
∗

2
𝑔
1
= (−

√3

3
,
√3

3
, 0, 0)

𝑇

,

𝑓
22
= 𝐿
∗

2
𝑔
2
= (

2√3 − √6

12
, −
2√3 + √6

12
, −
√6

12
,
√6

4
)

𝑇

,

𝑓
23
= 𝐿
∗

2
𝑔
3
= (

2√3 + √6

12
, −
2√3 − √6

12
,
√6

12
, −
√6

4
)

𝑇

,

𝑓
31
= 𝐿
∗

3
𝑔
1
= (−

√3

3
,
√3

3
, 0, 0)

𝑇

,

𝑓
32
= 𝐿
∗

3
𝑔
2
= (

2√3 + 3√2

12
, −
2√3 − 3√2

12
,
√2

4
,
√2

4
)

𝑇

,

𝑓
33
= 𝐿
∗

3
𝑔
3
= (

2√3 − 3√2

12
, −
2√3 + 3√2

12
, −
√2

4
, −
√2

4
)

𝑇

,

𝑓
41
= 𝐿
∗

4
𝑔
1
= (−

1

3
, −
1

3
,
2

3
, 0)

𝑇

,

𝑓
42
= 𝐿
∗

4
𝑔
2
= (

2 − √6

12
,
2 − √6

12
, −
4 + √6

12
,
√6

4
)

𝑇

,

𝑓
43
= 𝐿
∗

4
𝑔
3
= (

2 + √6

12
,
2 + √6

12
, −
4 − √6

12
, −
√6

4
)

𝑇

,

𝑓
51
= 𝐿
∗

5
𝑔
1
= (−

1

3
, −
1

3
,
2

3
, 0)

𝑇

,

𝑓
52
= 𝐿
∗

5
𝑔
2
= (

2 + 3√2

12
,
2 + 3√2

12
, −
4 − 3√2

12
,
√2

4
)

𝑇

,

𝑓
53
= 𝐿
∗

5
𝑔
3
= (

2 − 3√2

12
,
2 − 3√2

12
, −
4 + 3√2

12
, −
√2

4
)

𝑇

,

𝑓
61
= 𝐿
∗

6
𝑔
1
= (−

√2

6
, −
√2

6
, −
√2

6
,
√2

2
)

𝑇

,

𝑓
62
= 𝐿
∗

6
𝑔
2
= (

√2

3
,
√2

2
,
√2

3
, 0)

𝑇

𝑓
63
= 𝐿
∗

6
𝑔
3
= (−

√2

6
, −
√2

6
, −
√2

6
, −
√2

2
)

𝑇

.

(28)

Then W = {(𝑊
𝑗
, V
𝑗
, {𝑓
𝑖𝑗
}
3

𝑗=1
)}
6

𝑗=1
is an optimal Parseval

fusion frame system with local Parseval frames under one
local frame vector erasure in the sense of Theorem 16 by
Proposition 17.

The original gray image of windmill is shown in Figure 1.
We encode the data of the image by using the local frames of
the Parseval fusion frame system given by this example.Then
we decode the coded data, where first element of every local
vector is deleted by using the Parseval fusion frame of this
example. The reconstructed image is shown in Figure 2. One
can observe the reconstruction effect by comparing the two
figures.

4. Conclusion

We studied the method for constructing a fusion frame
system in a finite-dimensional Hilbert space F𝑛 according
to its fusion frame operator matrix in this paper. The
corresponding algorithm was given. Then we obtained the
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Figure 1: The original gray image of windmill.

Figure 2:The reconstructed gray image of windmill.The data of the
original image is encoded by the local frames of the Parseval fusion
frame system computed by Example 18.The first coefficient of every
local vector is deleted.The remained data is decoded by the Parseval
fusion frame of Example 18.

matrix representations of its local frame operators and inverse
frame operators and researched the related characteristics of
these fusion frame systems. We provided methods to get the
optimal fusion frame systems for erasures in some special
sense in signal transmission. Finally, we constructed a fusion
frame system as an example by our method and successfully
applied it in image coding.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors wish to thank the anonymous reviewers for
their valuable comments and suggestions that have improved

the presentation of this paper. This work was supported
by the National Natural Science Foundation of China
(11271001 and 61370147), 973 Program (2013CB329404), and
Sichuan Province Science and Technology Research Project
(12ZC1802).

References

[1] I. Cidon, H. Kodesh, and M. Sidi, “Erasure, capture, and
random power level selection in multiple-access systems,” IEEE
Transactions on Communications, vol. 36, no. 3, pp. 263–271,
1988.

[2] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros,
“Capacity of wireless erasure networks,” IEEE Transactions on
Information Theory, vol. 52, no. 3, pp. 789–804, 2006.

[3] D. Han, K. Kornelson, D. Larson, and E. Weber, Frames for
Undergraduates, vol. 40 of Mathematical Library Book Series,
American Mathematical Society, Providence, RI, USA, 2007.

[4] E. J. Candès and D. L. Donoho, “New tight frames of curvelets
and optimal representations of objects with piecewise 𝐶2 sin-
gularities,” Communications on Pure and Applied Mathematics,
vol. 57, no. 2, pp. 219–266, 2004.

[5] B. G. Bodmann and V. I. Paulsen, “Frame paths and error
bounds for sigma-delta quantization,” Applied and Computa-
tional Harmonic Analysis, vol. 22, no. 2, pp. 176–197, 2007.

[6] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities
of quantum erasure channels,” Physical Review Letters, vol. 78,
no. 16, pp. 3217–3220, 1997.

[7] B. G. Bodmann andV. I. Paulsen, “Frames, graphs and erasures,”
Linear Algebra and its Applications, vol. 404, pp. 118–146, 2005.
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