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The main purpose of this paper is to investigate the growth order of the meromorphic solutions of complex functional difference
equation of the form (∑

𝜆∈𝐼
𝛼𝜆(𝑧)(∏

𝑛

]=1𝑓(𝑧 + 𝑐])
𝑙𝜆,] ))/(∑

𝜇∈𝐽
𝛽𝜇(𝑧)(∏

𝑛

]=1𝑓(𝑧 + 𝑐])
𝑚𝜇,] )) = 𝑄(𝑧, 𝑓(𝑝(𝑧))), where 𝐼 = {𝜆 =

(𝑙𝜆,1, 𝑙𝜆,2, . . . , 𝑙𝜆,𝑛) | 𝑙𝜆,] ∈ N⋃{0}, ] = 1, 2, . . . , 𝑛} and 𝐽 = {𝜇 = (𝑚𝜇,1, 𝑚𝜇,2, . . . , 𝑚𝜇,𝑛) | 𝑚𝜇,] ∈ N⋃{0}, ] = 1, 2, . . . , 𝑛} are two finite
index sets, 𝑐] (] = 1, 2, . . . , 𝑛) are distinct complex numbers, 𝛼𝜆(𝑧) (𝜆 ∈ 𝐼) and 𝛽𝜇(𝑧) (𝜇 ∈ 𝐽) are small functions relative to 𝑓(𝑧),

and 𝑄(𝑧, 𝑢) is a rational function in 𝑢 with coefficients which are small functions of 𝑓(𝑧), 𝑝(𝑧) = 𝑝𝑘𝑧
𝑘 + 𝑝𝑘−1𝑧

𝑘−1 + ⋅ ⋅ ⋅ + 𝑝0 ∈ C[𝑧]

of degree 𝑘 ≥ 1. We also give some examples to show that our results are sharp.

1. Introduction and Main Results

Let 𝑓(𝑧) be a function meromorphic in the complex plane
C. We assume that the reader is familiar with the standard
notations and results in Nevanlinna’s value distribution the-
ory ofmeromorphic functions such as the characteristic func-
tion 𝑇(𝑟, 𝑓), proximity function 𝑚(𝑟, 𝑓), counting function
𝑁(𝑟, 𝑓), and the first and secondmain theorems (see, e.g., [1–
4]). We also use 𝑁(𝑟, 𝑓) to denote the counting function of
the poles of 𝑓(𝑧) whose every pole is counted only once. The
notations 𝜌(𝑓) and 𝜇(𝑓) denote the order and the lower order
of𝑓(𝑧), respectively. 𝑆(𝑟, 𝑓) denotes any quantity that satisfies
the condition: 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)) as 𝑟 → ∞ possibly
outside an exceptional set of 𝑟 of finite linear measure. A
meromorphic function 𝑎(𝑧) is called a small function of 𝑓(𝑧)
or a small function relative to 𝑓(𝑧) if and only if 𝑇(𝑟, 𝑎(𝑧)) =
𝑆(𝑟, 𝑓).

Recently, some papers (see, e.g., [5–7]) focusing on com-
plex difference and functional difference equations emerged.
In 2005, Laine et al. [5] firstly considered the growth of
meromorphic solutions of the complex functional difference
equations by utilizing Nevanlinna theory. They obtained the
following result.

Theorem A. Suppose that 𝑓 is a transcendental meromorphic
solution of the equation

∑
{𝐽}

𝛼𝐽 (𝑧)(∏
𝑗∈𝐽

𝑓 (𝑧 + 𝑐𝑗)) = 𝑓 (𝑝 (𝑧)) , (1)

where {𝐽} is a collection of all subsets of {1, 2, . . . , 𝑛}, 𝑐𝑗’s are
distinct complex constants, and 𝑝(𝑧) is a polynomial of degree
𝑘 ≥ 2. Moreover, we assume that the coefficients𝛼𝐽(𝑧) are small
functions relative to 𝑓 and that 𝑛 ≥ 𝑘. Then

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) , (2)

where 𝛼 = log 𝑛/ log 𝑘.

In 2007, Rieppo [6] gave an estimation of growth of
meromorphic solutions of complex functional equations as
follows.

Theorem B. Suppose that 𝑓 is a transcendental meromorphic
function. Let 𝑄(𝑧, 𝑓), 𝑅(𝑧, 𝑓) be rational functions in 𝑓

with small meromorphic coefficients relative to 𝑓 such that
0 < 𝑞 := deg

𝑓
𝑄 ≤ 𝑑 := deg

𝑓
𝑅 and 𝑝(𝑧) = 𝑝𝑘𝑧

𝑘 + 𝑝𝑘−1𝑧
𝑘−1 +
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⋅ ⋅ ⋅ + 𝑝0 ∈ C[𝑧] of degree 𝑘 > 1. If 𝑓 is a solution of the
functional equation

𝑅 (𝑧, 𝑓 (𝑧)) = 𝑄 (𝑧, 𝑓 (𝑝 (𝑧))) , (3)

then 𝑞𝑘 ≤ 𝑑, and for any 𝜀, 0 < 𝜀 < 1, there exist positive real
constants 𝐾1 and 𝐾2 such that

𝐾1(log 𝑟)
𝛼−𝜀

≤ 𝑇 (𝑟, 𝑓) ≤ 𝐾2(log 𝑟)
𝛼+𝜀

, 𝛼 =
log 𝑑 − log 𝑞

log 𝑘
,

(4)

when 𝑟 is large enough.

Rieppo [6] also considered the growth order ofmeromor-
phic solutions of functional equation (3) when 𝑘 = 1 and got
the following.

Theorem C. Suppose that 𝑓 is a transcendental meromorphic
solution of (3), where 𝑝(𝑧) = 𝑎𝑧+𝑏, 𝑎, 𝑏 ∈ C, 𝑎 ̸= 0 and |𝑎| ̸= 1.
Then

𝜇 (𝑓) = 𝜌 (𝑓) =
log𝑑 − log 𝑞

log |𝑎|
. (5)

Two years later, Zheng et al. [7] extended Theorem A to
more general type and obtained a similar result of Theorem
C. In fact, they got the following two results.

TheoremD. Suppose that 𝑓 is a transcendental meromorphic
solution of the equation

∑
{𝐽}

𝛼𝐽 (𝑧)(∏
𝑗∈𝐽

𝑓 (𝑧 + 𝑐𝑗)) = 𝑄 (𝑧, 𝑓 (𝑝 (𝑧))) , (6)

where {𝐽} is a collection of all nonempty subsets of {1, 2, . . . , 𝑛},
𝑐𝑗 (𝑗 = 1, . . . , 𝑛) are distinct complex constants, 𝑝(𝑧) = 𝑝𝑘𝑧

𝑘 +

𝑝𝑘−1𝑧
𝑘−1 + ⋅ ⋅ ⋅ + 𝑝0 ∈ C[𝑧] of degree 𝑘 > 1, and 𝑄(𝑧, 𝑢) is a

rational function in 𝑢 of deg
𝑢
𝑄 = 𝑞(> 0). Also suppose that

all the coefficients of (6) are small functions relative to 𝑓. Then
𝑞𝑘 ≤ 𝑛, and

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) , (7)

where 𝛼 = (log 𝑛 − log 𝑞)/ log 𝑘.

Theorem E. Suppose that 𝑓 is a transcendental meromorphic
solution of (6), where {𝐽} is a collection of all nonempty subsets
of {1, 2, . . . , 𝑛}, 𝑐𝑗 (𝑗 = 1, . . . , 𝑛) are distinct complex constants,
𝑝(𝑧) = 𝑎𝑧 + 𝑏, 𝑎, 𝑏 ∈ C, and 𝑄(𝑧, 𝑢) is a rational function in 𝑢
of deg

𝑢
𝑄 = 𝑞(> 0). Also suppose that all the coefficients of (6)

are small functions relative to 𝑓.
(i) If 0 < |𝑎| < 1, then we have

𝜇 (𝑓) ≥
log 𝑞 − log 𝑛
− log |𝑎|

. (8)

(ii) If |𝑎| > 1, then we have 𝑞 ≤ 𝑛 and

𝜌 (𝑓) ≤
log 𝑛 − log 𝑞

log |𝑎|
. (9)

(iii) If |𝑎| = 1, 𝑞 > 𝑛, then we have 𝜌(𝑓) = 𝜇(𝑓) = ∞.

In this paper, we will consider a more general class
of complex functional difference equations. We prove the
following results, which generalize the above related results.

Theorem 1. Suppose that 𝑓(𝑧) is a transcendental meromor-
phic solution of the functional difference equation

∑
𝜆∈𝐼

𝛼𝜆 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑙𝜆,])

∑
𝜇∈𝐽

𝛽𝜇 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑚𝜇,])

= 𝑄 (𝑧, 𝑓 (𝑝 (𝑧))) , (10)

where 𝑐] (] = 1, . . . , 𝑛) are distinct complex constants, 𝐼 = {𝜆 =

(𝑙𝜆,1, 𝑙𝜆,2, . . . , 𝑙𝜆,𝑛) | 𝑙𝜆,] ∈ N⋃{0}, ] = 1, 2, . . . , 𝑛} and 𝐽 =

{𝜇 = (𝑚𝜇,1, 𝑚𝜇,2, . . . , 𝑚𝜇,𝑛) | 𝑚𝜇,] ∈ N⋃{0}, ] = 1, 2, . . . , 𝑛}

are two finite index sets, 𝑝(𝑧) = 𝑝𝑘𝑧
𝑘 + 𝑝𝑘−1𝑧

𝑘−1 + ⋅ ⋅ ⋅ + 𝑝0 ∈

C[𝑧] of degree 𝑘 > 1, and 𝑄(𝑧, 𝑢) is a rational function in 𝑢 of
deg
𝑢
𝑄 = 𝑞(> 0). Also suppose that all the coefficients of (10)

are small functions relative to 𝑓. Denoting

𝜎] = max
𝜆,𝜇

{𝑙𝜆,], 𝑚𝜇,]} (] = 1, 2, . . . , 𝑛) , 𝜎 =

𝑛

∑
]=1

𝜎]. (11)

Then 𝑞𝑘 ≤ 𝜎, and

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼+𝜀) , (12)

where 𝛼 = (log𝜎 − log 𝑞)/ log 𝑘.

Theorem 2. Suppose that 𝑓 is a transcendental meromorphic
solution of the equation

∑
𝜆∈𝐼

𝛼𝜆 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑙𝜆,])

∑
𝜇∈𝐽

𝛽𝜇 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑚𝜇,])

= 𝑄 (𝑧, 𝑓 (𝑎𝑧 + 𝑏)) ,

(13)

where 𝑐] (] = 1, . . . , 𝑛) are distinct complex constants, 𝐼 = {𝜆 =

(𝑙𝜆,1, 𝑙𝜆,2, . . . , 𝑙𝜆,𝑛) | 𝑙𝜆,] ∈ N⋃{0}, ] = 1, 2, . . . , 𝑛} and 𝐽 = {𝜇 =

(𝑚𝜇,1, 𝑚𝜇,2, . . . , 𝑚𝜇,𝑛) | 𝑚𝜇,] ∈ N⋃{0}, ] = 1, 2, . . . , 𝑛} are two
finite index sets, 𝑎, 𝑏 ∈ C, and 𝑄(𝑧, 𝑢) is a rational function in
𝑢 of deg

𝑢
𝑄 = 𝑞(> 0). Also suppose that all the coefficients of

(10) are small functions relative to 𝑓. Denoting

𝜎] = max
𝜆,𝜇

{𝑙𝜆,], 𝑚𝜇,]} (] = 1, 2, . . . , 𝑛) , 𝜎 =

𝑛

∑
]=1

𝜎]. (14)

(i) If 0 < |𝑎| < 1, then we have

𝜇 (𝑓) ≥
log 𝑞 − log𝜎
− log |𝑎|

. (15)

(ii) If |𝑎| > 1, then we have 𝑞 ≤ 𝜎 and

𝜌 (𝑓) ≤
log𝜎 − log 𝑞

log |𝑎|
. (16)

(iii) If |𝑎| = 1 and 𝑞 > 𝜎, then we have 𝜇(𝑓) = 𝜌(𝑓) = ∞.
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Next we will give some examples to show that our results
are best in some extent.

Example 3. Let 𝑐1 = arctan 2, 𝑐2 = −𝜋/4. Then it is easy to
check that 𝑓(𝑧) = tan 𝑧 solves the following equation:

𝑓(𝑧 + 𝑐1)
2
𝑓 (𝑧 + 𝑐2)

𝑓 (𝑧 + 𝑐1) + 𝑓(𝑧 + 𝑐2)
2

= (−4𝑓(
𝑧

2
)
8

+ 8𝑓(
𝑧

2
)
7

+ 28𝑓(
𝑧

2
)
6

− 56𝑓(
𝑧

2
)
5

− 32𝑓(
𝑧

2
)
4

+ 56𝑓(
𝑧

2
)
3

+ 28𝑓(
𝑧

2
)
2

− 8𝑓(
𝑧

2
) − 4)

× (3𝑓(
𝑧

2
)
8

+ 10𝑓(
𝑧

2
)
7

+ 16𝑓(
𝑧

2
)
6

+ 122𝑓(
𝑧

2
)
5

− 6𝑓(
𝑧

2
)
4

−122𝑓(
𝑧

2
)
3

+16𝑓(
𝑧

2
)
2

−10𝑓(
𝑧

2
) + 3)

−1

.

(17)

Obviously, we have

𝜇 (𝑓) = 𝜌 (𝑓) = 1 =
log 𝑞 − log𝜎
− log |𝑎|

, (18)

where 𝑞 = 8, 𝜎 = 4 and 𝑎 = 1/2.

Example 3 shows that the estimate in Theorem 2(i) is
sharp.

Example 4. It is easy to check that 𝑓(𝑧) = tan 𝑧 satisfies the
equation

𝑓(𝑧 + (𝜋/3))
2
𝑓 (𝑧 + (𝜋/6)) − 𝑓 (𝑧 + (𝜋/6))

𝑓 (𝑧 + (𝜋/3)) 𝑓(𝑧 + (𝜋/6))
2
− 𝑓 (𝑧 + (𝜋/3))

=
√3𝑓(2𝑧)

2
+ 4𝑓 (2𝑧) + √3

−√3𝑓(2𝑧)
2
+ 4𝑓 (2𝑧) − √3

.

(19)

Clearly, we have

𝜇 (𝑓) = 𝜌 (𝑓) = 1 =
log𝜎 − log 𝑞

log |𝑎|
, (20)

where 𝜎 = 4, 𝑞 = 2 and 𝑎 = 2.

Example 4 shows that the estimate in Theorem 2(ii) is
sharp.

Example 5. 𝑓(𝑧) = tan 𝑧 satisfies the equation of the form

𝑓(𝑧 + (𝜋/4))
2

𝑓 (𝑧 + (𝜋/4)) + 𝑓(𝑧 − (𝜋/4))
2

=
−(𝑓(𝑧/2)

2
− 2𝑓 (𝑧/2) − 1)

3

8𝑓 (𝑧/2) (𝑓(𝑧/2)
2
− 1) (𝑓(𝑧/2)

2
+ 2𝑓 (𝑧/2) − 1)

,

(21)

where 𝜎 = 4, 𝑞 = 6, and 𝑎 = 1/2. 𝜌(𝑓) = 𝜇(𝑓) = 1 >

log(3/2)/ log 2 = (log 𝑞 − log𝜎)/ − log |𝑎|.

Example 5 shows that the strict inequality in Theorem 2
may occur. Therefore, we do not have the same estimation as
inTheoremC for the growth order ofmeromorphic solutions
of (13).

The following Example shows that the restriction 𝑞 > 𝜎

in case (iii) in Theorem 2 is necessary.

Example 6. Meromorphic function 𝑓(𝑧) = tan 𝑧 solves the
following equation:

𝑓(𝑧 + (𝜋/4))
2

𝑓 (𝑧 + (𝜋/4)) + 𝑓(𝑧 − (𝜋/4))
2
=

(𝑓 (𝑧) + 1)
3

4𝑓 (𝑧) (1 − 𝑓 (𝑧))
,

(22)

where 𝑎 = 1 and 4 = 𝜎 > 𝑞 = 3, but 𝜌(𝑓) = 𝜇(𝑓) = 1.

Next, we give an example to show that case (iii) in
Theorem 2 may hold.

Example 7. Function 𝑓(𝑧) = 𝑧𝑒𝑒
𝑧

satisfies the following
equation:

(𝑧 + log 6) (𝑧 + log 2)5 [𝑓(𝑧 + log 4)4 + 𝑓 (𝑧 + log 4)]
(𝑧 + log 4) 𝑓 (𝑧 + log 6)

=
(𝑧 + log 4)3𝑓(𝑧 + log 2)6 + (𝑧 + log 2)6

𝑓 (𝑧 + log 2)
,

(23)

where 𝑎 = 1 and 𝑞 = 6 > 5 = 𝜎. Obviously, 𝜌(𝑓) = 𝜇(𝑓) = ∞.

2. Main Lemmas

In order to prove our results, we need the following lemmas.

Lemma 1 (see [4, 8]). Let 𝑓(𝑧) be a meromorphic function.
Then for all irreducible rational functions in 𝑓,

𝑅 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑄 (𝑧, 𝑓)
=

∑
𝑝

𝑖=0
𝑎𝑖 (𝑧) 𝑓

𝑖

∑
𝑞

𝑗=0
𝑏𝑗 (𝑧) 𝑓

𝑗
, (24)

such that the meromorphic coefficients 𝑎𝑖(𝑧), 𝑏𝑗(𝑧) satisfy

𝑇 (𝑟, 𝑎𝑖) = 𝑆 (𝑟, 𝑓) , 𝑖 = 0, 1, . . . , 𝑝,

𝑇 (𝑟, 𝑏𝑗) = 𝑆 (𝑟, 𝑓) , 𝑗 = 0, 1, . . . , 𝑞;
(25)

then one has

𝑇 (𝑟, 𝑅 (𝑧, 𝑓)) = max {𝑝, 𝑞} ⋅ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (26)

From the proof ofTheorem 1 in [9], we have the following
estimate for the Nevanlinna characteristic.

Lemma 2. Let 𝑓1, 𝑓2, . . . , 𝑓𝑛 be distinct meromorphic func-
tions and

𝐹 (𝑧) =
𝑃 (𝑧)

𝑄 (𝑧)
=

∑
𝜆∈𝐼

𝛼𝜆 (𝑧) 𝑓
𝑙𝜆,1

1
𝑓
𝑙𝜆,2

2
. . . 𝑓
𝑙𝜆,𝑛
𝑛

∑
𝜇∈𝐽

𝛽𝜇 (𝑧) 𝑓
𝑚𝜇,1

1
𝑓
𝑚𝜇,2

2
. . . 𝑓
𝑚𝜇,𝑛

𝑛

. (27)
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Then

𝑇 (𝑟, 𝐹 (𝑧)) ≤

𝑛

∑
]=1

𝜎]𝑇 (𝑟, 𝑓]) + 𝑆 (𝑟, 𝑓) , (28)

where 𝐼 = {𝜆 = (𝑙𝜆,1, 𝑙𝜆,2, . . . , 𝑙𝜆,𝑛) | 𝑙𝜆,] ∈ N⋃{0}, ] =

1, 2, . . . , 𝑛} and 𝐽 = {𝜇 = (𝑚𝜇,1, 𝑚𝜇,2, . . . , 𝑚𝜇,𝑛) | 𝑚𝜇,] ∈

N⋃{0}, ] = 1, 2, . . . , 𝑛} are two finite index sets, 𝜎] =

max𝜆,𝜇{𝑙𝜆,], 𝑚𝜇,]} (] = 1, 2, . . . , 𝑛). 𝛼𝜆(𝑧) = 𝑜(𝑇(𝑟, 𝑓])(𝜆 ∈ 𝐼))

and𝛽𝜇(𝑧) = 𝑜(𝑇(𝑟, 𝑓])(𝜇 ∈ 𝐽)) hold for all ] ∈ {1, 2, . . . , 𝑛} and
satisfy 𝑇(𝑟, 𝛼𝜆) = 𝑆(𝑟, 𝑓) (𝜆 ∈ 𝐼) and 𝑇(𝑟, 𝛽𝜇) = 𝑆(𝑟, 𝑓) (𝜇 ∈

𝐽).

Lemma 3 (see [7]). Let 𝑐 be a complex constant. Given 𝜀 > 0

and a meromorphic function 𝑓, one has

𝑇 (𝑟, 𝑓 (𝑧 ± 𝑐)) ≤ (1 + 𝜀) 𝑇 (𝑟 + |𝑐| , 𝑓) , (29)

for all 𝑟 > 𝑟0, where 𝑟0 is some positive constant.

Lemma 4 (see [4]). Let 𝑔 : (0, +∞) → R, ℎ : (0, +∞) → R

bemonotone increasing functions such that 𝑔(𝑟) ≤ ℎ(𝑟) outside
of an exceptional set 𝐸 of finite linear measure. Then, for any
𝛼 > 1, there exists 𝑟0 > 0 such that 𝑔(𝑟) ≤ ℎ(𝛼𝑟) for all 𝑟 > 𝑟0.

Lemma 5 (see [10]). Let 𝑓 be a transcendental meromorphic
function, and 𝑝(𝑧) = 𝑎𝑘𝑧

𝑘 + 𝑎𝑘−1𝑧
𝑘−1 + ⋅ ⋅ ⋅ + 𝑎1𝑧 + 𝑎0, 𝑎𝑘 ̸= 0,

be a nonconstant polynomial of degree 𝑘. Given 0 < 𝛿 < |𝑎𝑘|,
denote 𝜆 = |𝑎𝑘| + 𝛿 and 𝜇 = |𝑎𝑘| − 𝛿. Then given 𝜀 > 0 and
𝑎 ∈ C⋃{∞}, one has

𝑘𝑛 (𝜇𝑟
𝑘
, 𝑎, 𝑓) ≤ 𝑛 (𝑟, 𝑎, 𝑓 (𝑝 (𝑧))) ≤ 𝑘𝑛 (𝜆𝑟

𝑘
, 𝑎, 𝑓)

𝑁 (𝜇𝑟
𝑘
, 𝑎, 𝑓) + 𝑂 (log 𝑟) ≤ 𝑁 (𝑟, 𝑎, 𝑓 (𝑝 (𝑧)))

≤ 𝑁 (𝜆𝑟
𝑘
, 𝑎, 𝑓) + 𝑂 (log 𝑟)

(1 − 𝜀) 𝑇 (𝜇𝑟
𝑘
, 𝑓) ≤ 𝑇 (𝑟, 𝑓 (𝑝 (𝑧))) ≤ (1 + 𝜀) 𝑇 (𝜆𝑟

𝑘
, 𝑓) ,

(30)

for all 𝑟 large enough.

Lemma 6 (see [11]). Let 𝜙 : [𝑟0, +∞) → (0, +∞) be
positive and bounded in every finite interval, and suppose that
𝜙(𝜇𝑟
𝑚) ≤ 𝐴𝜙(𝑟) + 𝐵 holds for all 𝑟 large enough, where 𝜇 > 0,

𝑚 > 1, 𝐴 > 1 and 𝐵 are real constants. Then

𝜙 (𝑟) = 𝑂 ((log 𝑟)𝛼) , (31)

where 𝛼 = log𝐴/ log𝑚.

Lemma 7 (see [6]). Let 𝜙 : (𝑟0,∞) → (1,∞), where 𝑟0 ≥ 1,
be a monotone increasing function. If for some real constant
𝛼 > 1, there exists a real number 𝐾 > 1 such that 𝜙(𝛼𝑟) ≥

𝐾𝜙(𝑟), then

lim
𝑟→∞

log𝜙 (𝑟)
log 𝑟

≥
log𝐾
log𝛼

. (32)

Lemma 8 (see [12]). Let 𝜙 : (1,∞) → (0,∞) be a monotone
increasing function and let 𝑓 be a nonconstant meromorphic

function. If, for some real constant 𝛼 ∈ (0, 1), there exist real
constants 𝐾1 > 0 and 𝐾2 ≥ 1 such that

𝑇 (𝑟, 𝑓) ≤ 𝐾1𝜙 (𝛼𝑟) + 𝐾2𝑇 (𝛼𝑟, 𝑓) + 𝑆 (𝛼𝑟, 𝑓) , (33)

then

𝜌 (𝑓) ≤
log𝐾2
− log𝛼

+ lim
𝑟→∞

log𝜙 (𝑟)
log 𝑟

. (34)

3. Proof of Theorems

Proof of Theorem 1. We assume 𝑓(𝑧) is a transcendental
meromorphic solution of (10). Denoting 𝐶 =

max{|𝑐1|, |𝑐2|, . . . , |𝑐𝑛|}. According to Lemmas 1, 2, and 3
and the last assertion of Lemma 5, we get that for any 𝜀1 > 0,

𝑞 (1 − 𝜀1) 𝑇 (𝜇𝑟
𝑘
, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑞𝑇 (𝑟, 𝑓 (𝑝 (𝑧))) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑄 (𝑧, 𝑓 (𝑝 (𝑧))))

= 𝑇(𝑟,
∑
𝜆∈𝐼

𝛼𝜆 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑙𝜆,])

∑
𝜇∈𝐽

𝛽𝜇 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑚𝜇,])

)

≤

𝑛

∑
]=1

𝜎]𝑇 (𝑟, 𝑓 (𝑧 + 𝑐])) + 𝑆 (𝑟, 𝑓)

≤

𝑛

∑
]=1

𝜎] (1 + 𝜀1) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)

= (

𝑛

∑
]=1

𝜎]) (1 + 𝜀1) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)

= 𝜎 (1 + 𝜀1) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) ,

(35)

where 𝑟 is large enough and𝜇 = |𝑝𝑘|−𝛿 for some 0 < 𝛿 < |𝑝𝑘|.
Since 𝑇(𝑟 + 𝐶, 𝑓) ≤ 𝑇(𝛽𝑟, 𝑓) holds for 𝑟 large enough for
𝛽 > 1, we may assume 𝑟 to be large enough to satisfy

𝑞 (1 − 𝜀1) 𝑇 (𝜇𝑟
𝑘
, 𝑓) ≤ 𝜎 (1 + 𝜀1) 𝑇 (𝛽𝑟, 𝑓) (36)

outside a possible exceptional set of finite linear measure. By
Lemma 4, we know that whenever 𝛾 > 1,

𝑞 (1 − 𝜀1) 𝑇 (𝜇𝑟
𝑘
, 𝑓) ≤ 𝜎 (1 + 𝜀1) 𝑇 (𝛾𝛽𝑟, 𝑓) (37)

holds for all 𝑟 large enough. Denote 𝑡 = 𝛾𝛽𝑟; thus the
inequality (37) may be written in the form

𝑇(
𝜇

(𝛾𝛽)
𝑘
𝑡
𝑘
, 𝑓) ≤

𝜎 (1 + 𝜀1)

𝑞 (1 − 𝜀1)
𝑇 (𝑡, 𝑓) . (38)

By Lemma 6, we have

𝑇 (𝑟, 𝑓) = 𝑂 ((log 𝑟)𝛼1) , (39)
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where

𝛼1 =
log (𝜎 (1 + 𝜀1) /𝑞 (1 − 𝜀1))

log 𝑘

=
log𝜎 − log 𝑞

log 𝑘
+
log ((1 + 𝜀1) / (1 − 𝜀1))

log 𝑘
.

(40)

Denoting now 𝛼 = (log𝜎 − log 𝑞)/ log 𝑘 and 𝜀 = log((1 +

𝜀1)/(1 − 𝜀1))/ log 𝑘; thus we obtain the required form.
Finally, we show that 𝑞𝑘 ≤ 𝜎. If 𝑞𝑘 > 𝜎, then we have

𝛼 < 1. For sufficiently small 𝜀 > 0, we have 𝛼 + 𝜀 < 1, which
contradicts with the transcendency of 𝑓. Thus Theorem 1 is
proved.

Proof of Theorem 2. Suppose 𝑓(𝑧) is a transcendental mero-
morphic solution of (13). Denoting 𝐶 = max{|𝑐1|, |𝑐2|,
. . . , |𝑐𝑛|}.

(i) 0 < |𝑎| < 1. We may assume that 𝑞 > 𝜎, since the case
𝑞 ≤ 𝜎 is trivial by the fact that 𝜇(𝑓) ≥ 0. By Lemmas
1–3, we have for any 𝜀 > 0 and 𝛽 > 1,

𝑞𝑇 (𝑟, 𝑓 (𝑝 (𝑧))) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑄 (𝑧, 𝑓 (𝑝 (𝑧))))

= 𝑇(𝑟,
∑
𝜆∈𝐼

𝛼𝜆 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑙𝜆,])

∑
𝜇∈𝐽

𝛽𝜇 (𝑧) (∏
𝑛

]=1𝑓(𝑧 + 𝑐])
𝑚𝜇,])

)

≤

𝑛

∑
]=1

𝜎]𝑇 (𝑟, 𝑓 (𝑧 + 𝑐])) + 𝑆 (𝑟, 𝑓)

≤

𝑛

∑
]=1

𝜎] (1 + 𝜀) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)

= (

𝑛

∑
]=1

𝜎]) (1 + 𝜀) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)

= 𝜎 (1 + 𝜀) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)

≤ 𝜎 (1 + 𝜀) 𝑇 (𝛽𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(41)

where 𝑟 is large enough.
By the last assertion of Lemma 5 and (41), we obtain that,

for 𝜇 = |𝑎| − 𝛿 (0 < 𝛿 < |𝑎|, 0 < 𝜇 < 1), the following
inequality

𝑞 (1 − 𝜀) 𝑇 (𝜇𝑟, 𝑓) ≤ 𝜎 (1 + 𝜀) 𝑇 (𝛽𝑟, 𝑓) (42)

holds, where 𝑟 is large enough outside of a possible set of finite
linear measure. By Lemma 4, we get that for any 𝛾 > 1 and
sufficiently large 𝑟,

𝑞 (1 − 𝜀) 𝑇 (𝜇𝑟, 𝑓) ≤ 𝜎 (1 + 𝜀) 𝑇 (𝛾𝛽𝑟, 𝑓) . (43)

Therefore,

𝑞 (1 − 𝜀)

𝜎 (1 + 𝜀)
𝑇 (𝑟, 𝑓) ≤ 𝑇(

𝛾𝛽

𝜇
𝑟, 𝑓) . (44)

Since 𝛽 > 1, 𝛾 > 1, 0 < 𝜇 < 1 and 𝑞 > 𝜎, we have 𝛽𝛾/𝜇 > 1

and 𝑞(1 − 𝜀)/𝜎(1 + 𝜀) > 1 when 𝜀 is small enough. Using
Lemma 7, we see that

𝜇 (𝑓) ≥
log 𝑞 (1 − 𝜀) − log𝜎 (1 + 𝜀)

log 𝛾𝛽 − log 𝜇
. (45)

Letting 𝜀 → 0, 𝛿 → 0, 𝛽 → 1 and 𝛾 → 1, we have

𝜇 (𝑓) ≥
log 𝑞 − log𝜎
− log |𝑎|

. (46)

(ii) |𝑎| > 1. By the similar reasoning as is (i), we easily
obtain that

𝑞 (1 − 𝜀) 𝑇 (𝜇𝑟, 𝑓) ≤ 𝑞𝑇 (𝑟, 𝑓 (𝑝 (𝑧)))

≤ 𝜎 (1 + 𝜀) 𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)
(47)

for all 𝑟 large enough. We may select sufficiently small
numbers 𝛿 > 0 and 𝜀 > 0, such that 𝜇 = |𝑎| − 𝛿 > 1 and
(1/𝜇) + 𝜀 < 1. Thus we have

𝑇 (𝜇𝑟, 𝑓) ≤
𝜎 (1 + 𝜀)

𝑞 (1 − 𝜀)
𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) ; (48)

namely,

𝑇 (𝜇𝑟, 𝑓) ≤
𝜎 (1 + 𝜀)

𝑞 (1 − 𝜀)
𝑇 (𝑟 + 𝐶, 𝑓 (𝑧)) , (49)

where 𝑟 is large enough possibly outside of a set of finite linear
measure. By Lemma 4, we have for any 1 < 𝛾 < 𝜇,

𝑇 (𝜇𝑟, 𝑓) ≤
𝜎 (1 + 𝜀)

𝑞 (1 − 𝜀)
𝑇 (𝛾𝑟, 𝑓 (𝑧)) ; (50)

that is,

𝑇 (𝑟, 𝑓) ≤
𝜎 (1 + 𝜀)

𝑞 (1 − 𝜀)
𝑇(

𝛾

𝜇
𝑟, 𝑓 (𝑧)) (51)

holds for all sufficiently large 𝑟. By Lemma 8, we obtain

𝜌 (𝑓) ≤
log𝜎 − log 𝑞 + log (1 + 𝜀) − log (1 − 𝜀)

− log (𝛾/𝜇)
. (52)

Letting 𝜀 → 0, 𝛿 → 0 and 𝛾 → 1, we have

𝜌 (𝑓) ≤
log𝜎 − log 𝑞

log |𝑎|
. (53)

(iii) |𝑎| = 1 and 𝑞 > 𝜎. The proof of this case is completely
similar as in the case in (i). In fact, we set 𝜇 = |𝑎|−𝛿 =

1 − 𝛿 (0 < 𝛿 < 1, 0 < 𝜇 < 1). Similarly, we can get

𝜇 (𝑓) ≥
log 𝑞 − log𝜎
− log |𝑎|

. (54)

Since |𝑎| = 1, we have 𝜇(𝑓) = 𝜌(𝑓) = ∞.
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