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The relative order of growth gives a quantitative assessment of how different functions scale each other and to what extent they are
self-similar in growth. In this paper for any two positive integers p and q, we wish to introduce an alternative definition of relative
(𝑝, 𝑞)th order which improves the earlier definition of relative (𝑝, 𝑞)th order as introduced by Lahiri and Banerjee (2005). Also
in this paper we discuss some growth rates of entire functions on the basis of the improved definition of relative (𝑝, 𝑞)th order
with respect to another entire function and extend some earlier concepts as given by Lahiri and Banerjee (2005), providing some
examples of entire functions whose growth rate can accordingly be studied.

1. Introduction

A single valued function of one complex variable which
is analytic in the finite complex plane is called an integral
(entire) function. For example, exp, sin, cos, and so forth
are all entire functions. In 1926 Rolf Nevanlinna initiated
the value distribution theory of entire functions which is
a prominent branch of Complex Analysis and is the prime
concern of this paper. Perhaps the Fundamental Theorem of
Classical Algebra which states that “If 𝑓 is a polynomial of
degree 𝑛 with real or complex coefficients, then the equation
𝑓(𝑧) = 0 has at least one root” is the most well known
value distribution theorem, and consequently any such given
polynomial can take any given, real or complex, value. In the
value distribution theory one studies how an entire function
assumes some values and, conversely, what is the influence in
some specific manner of taking certain values on a function.
It also deals with various aspects of the behavior of entire
functions, one of which is the study of their comparative
growth.

For any entire function𝑓, the so-calledmaximummodu-
lus function, denoted by𝑀𝑓, is defined on each nonnegative
real value 𝑟 as

𝑀𝑓 (𝑟) = max
|𝑧|=𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 . (1)

And given two entire functions 𝑓 and 𝑔 the ratio
𝑀𝑓(𝑟)/𝑀𝑔(𝑟) as 𝑟 → ∞ is called the growth of 𝑓

with respect to 𝑔 in terms of their maximummoduli.
The order of an entire function 𝑓 which is generally used

in computational purpose is defined in terms of the growth
of 𝑓 with respect to the exponential function as

𝜌𝑓 = lim sup
𝑟→∞

log log 𝑀𝑓 (𝑟)
log log 𝑀exp 𝑧 (𝑟)

= lim sup
𝑟→∞

log log 𝑀𝑓 (𝑟)
log (𝑟)

.

(2)

Bernal [1, 2] introduced the relative order between
two entire functions to avoid comparing growth just with
exp 𝑧. Extending the notion of relative order as cited in the
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reference, in this paper we extend some results related to
the growth rates of entire functions on the basis of avoiding
some restriction, introducing a new type of relative order
(𝑝, 𝑞), and revisiting ideas developed by a number of authors
including Lahiri and Banerjee [3].

2. Notation and Preliminary Remarks

Our notation is standard within the theory of Nevanlinna’s
value distribution of entire functions. For short, given a real
function ℎ and whenever the corresponding domain and
range allow it, we will use the notation

ℎ
[0]
(𝑥) = 𝑥,

ℎ
[𝑘]
(𝑥) = ℎ (ℎ

[𝑘−1]
(𝑥)) for 𝑘 = 1, 2, 3, . . .

(3)

omitting the parenthesis when ℎ happens to be the log or
exp function. Taking this into account the order (resp., lower
order) of an entire function 𝑓 is given by

𝜌𝑓 = lim sup
𝑟→∞

log[2]𝑀𝑓 (𝑟)
log 𝑟

,

(resp. 𝜆𝑓 = lim inf
𝑟→∞

log[2]𝑀𝑓 (𝑟)
log 𝑟

) .

(4)

Let us recall that Juneja et al. [4] defined the order (𝑝, 𝑞)
and lower order (𝑝, 𝑞) of an entire function 𝑓, respectively,
as follows:

𝜌𝑓 (𝑝, 𝑞) = lim sup
𝑟→∞

log[𝑝]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

𝜆𝑓 (𝑝, 𝑞) = lim inf
𝑟→∞

log[𝑝]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

(5)

where 𝑝, 𝑞 are any two positive integers with 𝑝 ≥ 𝑞. These
definitions extended the generalized order 𝜌[𝑙]

𝑓
and general-

ized lower order 𝜆[𝑙]
𝑓
of an entire function 𝑓 considered in [5]

for each integer 𝑙 ≥ 2 since these correspond to the particular
case 𝜌[𝑙]

𝑓
= 𝜌𝑓(𝑙, 1) and 𝜆

[𝑙]
𝑓
= 𝜆𝑓(𝑙, 1). Clearly 𝜌𝑓(2, 1) = 𝜌𝑓

and 𝜆𝑓(2, 1) = 𝜆𝑓.
In this connection let us recall that if 0 < 𝜌𝑓(𝑝, 𝑞) < ∞,

then the following properties hold:

𝜌𝑓 (𝑝 − 𝑛, 𝑞) = ∞, for 𝑛 < 𝑝,

𝜌𝑓 (𝑝, 𝑞 − 𝑛) = 0, for 𝑛 < 𝑞,

𝜌𝑓 (𝑝 + 𝑛, 𝑞 + 𝑛) = 1, for 𝑛 = 1, 2, . . . .

(6)

Similarly for 0 < 𝜆𝑓(𝑝, 𝑞) < ∞, one can easily verify that

𝜆𝑓 (𝑝 − 𝑛, 𝑞) = ∞, for 𝑛 < 𝑝,

𝜆𝑓 (𝑝, 𝑞 − 𝑛) = 0, for 𝑛 < 𝑞,

𝜆𝑓 (𝑝 + 𝑛, 𝑞 + 𝑛) = 1, for 𝑛 = 1, 2, . . . .

(7)

Recalling that for any pair of integer numbers 𝑚, 𝑛 the
Kronecker function is defined by 𝛿𝑚,𝑛 = 1 for 𝑚 = 𝑛 and
𝛿𝑚,𝑛 = 0 for 𝑚 ̸= 𝑛, the aforementioned properties provide
the following definition.

Definition 1 (see [4]). An entire function 𝑓 is said to have
index-pair (1, 1) if 0 < 𝜌𝑓(1, 1) < ∞. Otherwise, 𝑓 is said
to have index-pair (𝑝, 𝑞) ̸= (1, 1), 𝑝 ≥ 𝑞 ≥ 1, if 𝛿𝑝−𝑞,0 <

𝜌𝑓(𝑝, 𝑞) < ∞ and 𝜌𝑓(𝑝 − 1, 𝑞 − 1) ∉ R+.

Definition 2 (see [4]). An entire function 𝑓 is said to have
lower index-pair (1, 1) if 0 < 𝜆𝑓(1, 1) < ∞. Otherwise, 𝑓
is said to have lower index-pair (𝑝, 𝑞) ̸= (1, 1), 𝑝 ≥ 𝑞 ≥ 1, if
𝛿𝑝−𝑞,0 < 𝜆𝑓(𝑝, 𝑞) < ∞ and 𝜆𝑓(𝑝 − 1, 𝑞 − 1) ∉ R+.

An entire function 𝑓 of index-pair (𝑝, 𝑞) is said to be of
regular (𝑝, 𝑞)-growth if its (𝑝, 𝑞)th order coincides with its
(𝑝, 𝑞)th lower order; otherwise 𝑓 is said to be of irregular
(𝑝, 𝑞)-growth.

Given a nonconstant entire function 𝑓 defined in the
open complex plane C its maximum modulus function 𝑀𝑓
is strictly increasing and continuous. Hence there exists
its inverse function 𝑀−1𝑓 : (|𝑓(0)|,∞) → (0,∞) with
lim𝑠→∞𝑀

−1
𝑓 (𝑠) = ∞.

Then Bernal [1, 2] introduced the definition of relative
order of 𝑓 with respect to 𝑔, denoted by 𝜌𝑔(𝑓) as follows:

𝜌𝑔 (𝑓) = inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (𝑟
𝜇
) , ∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

.

(8)

This definition coincides with the classical one [6] if 𝑔 =

exp 𝑧. Similarly one can define the relative lower order of 𝑓
with respect to 𝑔 denoted by 𝜆𝑔(𝑓) as

𝜆𝑔 (𝑓) = lim inf
𝑟→∞

log𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

. (9)

Lahiri and Banerjee [7] gave a more generalized concept
of relative order in the following way.

Definition 3 (see [7]). If 𝑘 ≥ 1 is a positive integer, then the
𝑘th generalized relative order of 𝑓 with respect to 𝑔, denoted
by 𝜌𝑘𝑓(𝑔), is defined by

𝜌
𝑘
𝑔 (𝑓) = inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (exp

[𝑘−1]
𝑟
𝜇
) ,

∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log[𝑘]𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

.

(10)

Clearly, 𝜌1𝑔(𝑓) = 𝜌𝑔(𝑓) and 𝜌
1
exp 𝑧(𝑓) = 𝜌𝑓.

In the case of relative order, it was then natural for Lahiri
and Banerjee [3] to define the relative (𝑝, 𝑞)th order of entire
functions as follows.
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Definition 4 (see [3]). Let𝑝 and 𝑞 be any two positive integers
with 𝑝 > 𝑞. The relative (𝑝, 𝑞)th order of 𝑓 with respect to 𝑔
is defined by

𝜌
(𝑝,𝑞)
𝑔 (𝑓) = inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (exp

[𝑝−1]
(𝜇 log[𝑞]𝑟)) ,

∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
.

(11)

Then 𝜌(𝑝,𝑞)exp 𝑧(𝑓) = 𝜌𝑓(𝑝, 𝑞) and 𝜌
(𝑘+1,1)
𝑔 (𝑓) = 𝜌𝑘𝑔(𝑓) for any 𝑘 ≥

1.

In this paper we give an alternative definition of (𝑝, 𝑞)th
relative order 𝜌(𝑝,𝑞)𝑔 (𝑓) of an entire function 𝑓 with respect to
another entire function 𝑔, in the light of index-pair. Our next
definition avoids the restriction 𝑝 > 𝑞 and gives the more
natural particular case 𝜌(𝑘,1)𝑔 (𝑓) = 𝜌𝑘𝑔(𝑓).

Definition 5. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞, 𝑚 are
positive integers such that 𝑚 ≥ max(𝑝, 𝑞). Then the (𝑝, 𝑞)th
relative order of 𝑓 with respect to 𝑔 is defined as

𝜌
(𝑝,𝑞)
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
. (12)

The (𝑝, 𝑞)th relative lower order of 𝑓 with respect to 𝑔 is
defined by

𝜆
(𝑝,𝑞)
𝑔 (𝑓) = lim inf

𝑟→∞

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
. (13)

The previous definitions are easily generated as particular
cases; for example, if 𝑓 and 𝑔 have got index-pair (𝑚, 1) and
(𝑚, 𝑘), respectively, then Definition 5 reduces to Definition 3.
If the entire functions 𝑓 and 𝑔 have the same index-pair
(𝑝, 1), where 𝑝 is any positive integer, we get the definition of
relative order introduced by Bernal [1] and if 𝑔 = exp[𝑚−1]𝑧,
then 𝜌𝑔(𝑓) = 𝜌

[𝑚]
𝑓

and 𝜌(𝑝,𝑞)𝑔 (𝑓) = 𝜌𝑓(𝑚, 𝑞). And if 𝑓 is an
entire function with index-pair (2, 1) and 𝑔 = exp 𝑧, then
Definition 5 becomes the classical one given in [6].

3. Some Examples

In this section we present some examples of entire functions
in connection with definitions given in the previous section.

Example 6 (order of exp). Given any natural number 𝑛, the
exponential function 𝑓(𝑧) = exp 𝑧𝑛 has got𝑀𝑓(𝑟) = exp 𝑟𝑛,
and therefore log[2]𝑀𝑓(𝑟)/ log 𝑟 is constantly equal to 𝑛 and,
consequently,

𝜌𝑓 = 𝜆𝑓 = 𝑛. (14)

Example 7 (generalized order). Given any natural numbers
𝑘, 𝑛, the function 𝑓(𝑧) = exp[𝑘]𝑧𝑛 has got𝑀𝑓(𝑟) = exp[𝑘]𝑟𝑛.
Therefore log[𝑘]𝑀𝑓(𝑟)/ log 𝑟 is constantly equal to 𝑛 for each
natural 𝑘 ≥ 2, following that

𝜌
[𝑘+1]
𝑓 = 𝜆

[𝑘+1]
𝑓 = 𝑛. (15)

Note that 𝜌[𝑙]
𝑓
= 𝜆
[𝑙]
𝑓
= +∞ for 2 ≤ 𝑙 ≤ 𝑘 and 𝜌[𝑙]

𝑓
= 𝜆
[𝑙]
𝑓
= 0 for

𝑙 > 𝑘 + 1.

Example 8 (index-pair). Given any four positive integers 𝑘,
𝑛, 𝑝, 𝑞 with 𝑝 ≥ 𝑞, then function 𝑓(𝑧) = exp[𝑘]𝑧𝑛 generates a
constant quotient log[𝑝]𝑀𝑓(𝑟)/log

[𝑞]
𝑟, and clearly

𝜌𝑓 (𝑝, 𝑞) = 𝜆𝑓 (𝑝, 𝑞) = 𝑛, for (𝑝, 𝑞) = (𝑘 + 1, 1) (16)

but

𝜌𝑓 (𝑝, 𝑞) = 𝜆𝑓 (𝑝, 𝑞)

=

{{

{{

{

1, ∀ (𝑝, 𝑞) such that 𝑝 = 𝑞 + 𝑘, 𝑞 > 1,

∞, ∀ (𝑝, 𝑞) such that 𝑝 < 𝑞 + 𝑘,

0, ∀ (𝑝, 𝑞) such that 𝑝 > 𝑞 + 𝑘.

(17)

Thus 𝑓 is a regular function with growth (𝑘 + 1, 1).

Example 9 (regular function of growth (1,1)). Given any posi-
tive integer 𝑛, and nonnull real number 𝑎, the power function
𝑓(𝑧) = 𝑎𝑧𝑛 generates a constant quotient log[𝑝]𝑀𝑓(𝑟)/log

[𝑞]
𝑟,

and clearly

𝜌𝑓 (𝑝, 𝑞) = 𝜆𝑓 (𝑝, 𝑞) = 𝑛, for (𝑝, 𝑞) = (1, 1) (18)

but

𝜌𝑓 (𝑝, 𝑞) = 𝜆𝑓 (𝑝, 𝑞)

=

{{

{{

{

1, ∀ (𝑝, 𝑞) such that 𝑝 = 𝑞, 𝑞 > 1,

∞, ∀ (𝑝, 𝑞) such that 𝑝 < 𝑞,

0, ∀ (𝑝, 𝑞) such that 𝑝 > 𝑞.

(19)

Thus 𝑓 is a regular function with growth (1, 1).

Example 10 (relative order between functions). From the
above examples it follows that given the natural numbers 𝑚,
𝑛 the functions

𝑓 (𝑧) = exp 𝑧𝑚, 𝑔 (𝑧) = exp 𝑧𝑛 (20)

are of regular growth (2, 1). In order to find their relative
order of growth we evaluate

log𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

=
log [log [exp 𝑟𝑚]]1/𝑛

log 𝑟
, (21)

which happens to be constant. Its upper and lower limits
provide

𝜌𝑔 (𝑓) = 𝜆𝑔 (𝑓) =
𝑚

𝑛
. (22)
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Example 11 (relative order (𝑝, 𝑞) between functions). Let 𝑘,
𝑚, 𝑛 be any three positive integers and let 𝑓(𝑧) = exp[𝑘]𝑧𝑚

and 𝑔 = exp[𝑘]𝑧𝑛. Then 𝑓 and 𝑔 are regular functions with
(𝑘 + 1, 1)-growth for which

𝜌𝑓 (𝑘 + 1, 1) = 𝑚, 𝜌𝑔 (𝑘 + 1, 1) = 𝑛. (23)

In order to find out their (1, 1) relative order we evaluate

log𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

=
log (1/𝑛) {log[𝑘] (exp[𝑘]𝑟𝑚)}

1/𝑛

log 𝑟
, (24)

which happens to be constant. By taking limits, we easily get
that

𝜌
(1,1)
𝑔 (𝑓) = 𝜆

(1,1)
𝑔 (𝑓) =

𝑚

𝑛
. (25)

The orders obtained in the last two examples will be easy
consequences of the results given in Section 4.

4. Results

In this section we state the main results of the paper. We
include the proof of the first main theorem for the sake of
completeness. The others are basically omitted since they are
easily proven with the same techniques or with some easy
reasoning.

Theorem 12. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞, 𝑚 are
all positive integers such that𝑚 ≥ 𝑝 and𝑚 ≥ 𝑞. Then

𝜆𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
≤ 𝜆
(𝑝,𝑞)
𝑔 (𝑓) ≤ min{

𝜆𝑓 (𝑚, 𝑞)

𝜆𝑔 (𝑚, 𝑝)
,
𝜌𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
}

≤ max{
𝜆𝑓 (𝑚, 𝑞)

𝜆𝑔 (𝑚, 𝑝)
,
𝜌𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
} ≤ 𝜌

(𝑝,𝑞)
𝑔 (𝑓)

≤
𝜌𝑓 (𝑚, 𝑞)

𝜆𝑔 (𝑚, 𝑝)
.

(26)

Proof. From the definitions of 𝜌𝑓(𝑚, 𝑞) and 𝜆𝑓(𝑚, 𝑞)we have
for all sufficiently large values of 𝑟 that

𝑀𝑓 (𝑟) ≤ exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) + 𝜀) log
[𝑞]
𝑟} , (27)

𝑀𝑓 (𝑟) ≥ exp[𝑚] {(𝜆𝑓 (𝑚, 𝑞) − 𝜀) log
[𝑞]
𝑟} (28)

and also for a sequence of values of 𝑟 tending to infinity we
get that

𝑀𝑓 (𝑟) ≥ exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) − 𝜀) log
[𝑞]
𝑟} , (29)

𝑀𝑓 (𝑟) ≤ exp[𝑚] {(𝜆𝑓 (𝑚, 𝑞) + 𝜀) log
[𝑞]
𝑟} . (30)

Similarly from the definitions of 𝜌𝑔(𝑚, 𝑝) and 𝜆𝑓(𝑚, 𝑞) it
follows for all sufficiently large values of 𝑟 that

𝑀𝑔 (𝑟) ≤ exp[𝑚] {(𝜌𝑔 (𝑚, 𝑝) + 𝜀) log
[𝑝]
𝑟}

i.e., 𝑟 ≤ 𝑀
−1
𝑔 [exp[𝑚] {(𝜌𝑔 (𝑚, 𝑝) + 𝜀) log

[𝑝]
𝑟}]

i.e., 𝑀−1𝑔 (𝑟) ≥ exp[𝑝] [
log[𝑚]𝑟

(𝜌𝑔 (𝑚, 𝑝) + 𝜀)
] ,

(31)

𝑀𝑔 (𝑟) ≥ exp[𝑚] {(𝜆𝑔 (𝑚, 𝑝) − 𝜀) log
[𝑝]
𝑟}

i.e., 𝑀−1𝑔 (𝑟) ≤ exp[𝑝] [
log[𝑚]𝑟

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
]

(32)

and for a sequence of values of 𝑟 tending to infinity we obtain
that

𝑀𝑔 (𝑟) ≥ exp[𝑚] {(𝜌𝑔 (𝑚, 𝑝) − 𝜀) log
[𝑝]
𝑟}

i.e., 𝑀−1𝑔 (𝑟) ≤ exp[𝑝] [
log[𝑚]𝑟

(𝜌𝑔 (𝑚, 𝑝) − 𝜀)
] ,

(33)

𝑀𝑔 (𝑟) ≤ exp[𝑚] {(𝜆𝑔 (𝑚, 𝑝) + 𝜀) log
[𝑝]
𝑟}

i.e., 𝑀−1𝑔 (𝑟) ≥ exp[𝑝] [
log[𝑚]𝑟

(𝜆𝑔 (𝑚, 𝑝) + 𝜀)
] .

(34)

Now from (29) and in view of (31), for a sequence of values of
𝑟 tending to infinity we get that

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≥ log[𝑝]𝑀−1𝑔 [exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) − 𝜀) log
[𝑞]
𝑟}]

i.e., log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≥ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) − 𝜀) log

[𝑞]
𝑟}

(𝜌𝑔 (𝑚, 𝑝) + 𝜀)
]

=
(𝜌𝑓 (𝑚, 𝑞) − 𝜀)

(𝜌𝑔 (𝑚, 𝑝) + 𝜀)
log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≥
(𝜌𝑓 (𝑚, 𝑞) − 𝜀)

(𝜌𝑔 (𝑚, 𝑝) + 𝜀)
.

(35)

As 𝜀(> 0) is arbitrary, it follows that

𝜌
(𝑝,𝑞)
𝑔 (𝑓) ≥

𝜌𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
. (36)
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Analogously from (28) and in view of (34) it follows for a
sequence of values of 𝑟 tending to infinity that

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≥ log[𝑝]𝑀−1𝑔 [exp[𝑚] {(𝜆𝑓 (𝑚, 𝑞) − 𝜀) log
[𝑞]
𝑟}]

i.e., log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≥ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜆𝑓 (𝑚, 𝑞) − 𝜀) log

[𝑞]
𝑟}

(𝜆𝑔 (𝑚, 𝑝) + 𝜀)
]

=
(𝜆𝑓 (𝑚, 𝑞) − 𝜀)

(𝜆𝑔 (𝑚, 𝑝) + 𝜀)
log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≥
(𝜆𝑓 (𝑚, 𝑞) − 𝜀)

(𝜆𝑔 (𝑚, 𝑝) + 𝜀)
.

(37)

Since 𝜀(> 0) is arbitrary, we get from above that

𝜌
(𝑝,𝑞)
𝑔 (𝑓) ≥

𝜆𝑓 (𝑚, 𝑞)

𝜆𝑔 (𝑚, 𝑝)
. (38)

Again in view of (32) we have from (27) for all sufficiently
large values of 𝑟 that

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≤ log[𝑝]𝑀−1𝑔 [exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) + 𝜀) log
[𝑞]
𝑟}]

i.e., log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≤ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) + 𝜀) log

[𝑞]
𝑟}

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
]

=
(𝜌𝑓 (𝑚, 𝑞) + 𝜀)

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≤
(𝜌𝑓 (𝑚, 𝑞) + 𝜀)

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
.

(39)

Since 𝜀(> 0) is arbitrary, we obtain that

𝜌
(𝑝,𝑞)
𝑔 (𝑓) ≤

𝜌𝑓 (𝑚, 𝑞)

𝜆𝑔 (𝑚, 𝑝)
. (40)

Again from (28) and in view of (31) with the same reasoning
we get that

𝜆
(𝑝,𝑞)
𝑔 (𝑓) ≥

𝜆𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
. (41)

Also in view of (33), we get from (27) for a sequence of values
of 𝑟 tending to infinity that

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≤ log[𝑝]𝑀−1𝑔 [exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) + 𝜀) log
[𝑞]
𝑟}]

i.e., log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≤ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜌𝑓 (𝑚, 𝑞) + 𝜀) log

[𝑞]
𝑟}

(𝜌𝑔 (𝑚, 𝑝) − 𝜀)
]

=
(𝜌𝑓 (𝑚, 𝑞) + 𝜀)

(𝜌𝑔 (𝑚, 𝑝) − 𝜀)
log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≤
(𝜌𝑓 (𝑚, 𝑞) + 𝜀)

(𝜌𝑔 (𝑚, 𝑝) − 𝜀)
.

(42)

Since 𝜀(> 0) is arbitrary, we get from above that

𝜆
(𝑝,𝑞)
𝑔 (𝑓) ≤

𝜌𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
. (43)

Similarly from (30) and in view of (32) it follows for a
sequence of values of 𝑟 tending to infinity that

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≤ log[𝑝]𝑀−1𝑔 [exp[𝑚] {(𝜆𝑓 (𝑚, 𝑞) + 𝜀) log
[𝑞]
𝑟}]

i.e., log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

≤ log[𝑝]exp[𝑝] [
log[𝑚]exp[𝑚] {(𝜆𝑓 (𝑚, 𝑞) + 𝜀) log

[𝑞]
𝑟}

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
]

=
(𝜆𝑓 (𝑚, 𝑞) + 𝜀)

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
log[𝑞]𝑟

i.e.,
log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≤
(𝜆𝑓 (𝑚, 𝑞) + 𝜀)

(𝜆𝑔 (𝑚, 𝑝) − 𝜀)
.

(44)

As 𝜀(> 0) is arbitrary, from above we obtain that

𝜆
(𝑝,𝑞)
𝑔 (𝑓) ≤

𝜆𝑓 (𝑚, 𝑞)

𝜆𝑔 (𝑚, 𝑝)
. (45)

The theorem follows from (36), (38), (40), (41), (43), and (45).

Corollary 13. Let 𝑓 be an entire function with index-pair
(𝑚, 𝑞) and let 𝑔 be an entire of regular (𝑚, 𝑝)-growth, where
𝑝, 𝑞, 𝑚 are all positive integers such that 𝑚 ≥ 𝑝 and 𝑚 ≥ 𝑞.
Then

𝜆
(𝑝,𝑞)
𝑔 (𝑓) =

𝜆𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
, 𝜌

(𝑝,𝑞)
𝑔 (𝑓) =

𝜌𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
. (46)
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In addition, if 𝜌𝑓(𝑚, 𝑞) = 𝜌𝑔(𝑚, 𝑝), then

𝜌
(𝑝,𝑞)
𝑔 (𝑓) = 𝜆

(𝑞,𝑝)

𝑓
(𝑔) = 1. (47)

Remark 14. The first part of Corollary 13 improves [8, Theo-
rem 2.1 andTheorem 2.2].

Corollary 15. Let 𝑓 and 𝑔 be any two entire functions with
regular (𝑚, 𝑞)-growth and regular (𝑚, 𝑝)-growth, respectively,
where 𝑝, 𝑞, 𝑚 are all positive integers with 𝑚 ≥ max{𝑝, 𝑞}.
Then

𝜆
(𝑝,𝑞)
𝑔 (𝑓) = 𝜌

(𝑝,𝑞)
𝑔 (𝑓) =

𝜌𝑓 (𝑚, 𝑞)

𝜌𝑔 (𝑚, 𝑝)
. (48)

Corollary 16. Let 𝑓 and 𝑔 be any two entire functions
with regular (𝑚, 𝑞)th growth and regular (𝑚, 𝑝)th growth,
respectively, where 𝑝, 𝑞, 𝑚 are all positive integers with 𝑚 ≥ 𝑝

and𝑚 ≥ 𝑞. Also suppose that 𝜌𝑓(𝑚, 𝑞) = 𝜌𝑔(𝑚, 𝑝). Then

𝜆
(𝑝,𝑞)
𝑔 (𝑓) = 𝜌

(𝑝,𝑞)
𝑔 (𝑓) = 𝜆

(𝑞,𝑝)

𝑓
(𝑔) = 𝜌

(𝑞,𝑝)

𝑓
(𝑔) = 1. (49)

Corollary 17. Let 𝑓 and 𝑔 be any two entire functions with
regular growth (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞, 𝑚
are all positive integers such that𝑚 ≥ max{𝑝, 𝑞}. Then

𝜌
(𝑝,𝑞)
𝑔 (𝑓) ⋅ 𝜌

(𝑞,𝑝)

𝑓
(𝑔) = 𝜆

(𝑝,𝑞)
𝑔 (𝑓) ⋅ 𝜆

(𝑞,𝑝)

𝑓
(𝑔) = 1. (50)

Corollary 18. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑚, 𝑝), respectively, where 𝑝, 𝑞,𝑚 are all
positive integers such that𝑚 ≥ 𝑝 and𝑚 ≥ 𝑞. If either𝑓 is not of
regular (𝑚, 𝑞)th growth or 𝑔 is not of regular (𝑚, 𝑝)th growth,
then

𝜆
(𝑝,𝑞)
𝑔 (𝑓) ⋅ 𝜆

(𝑞,𝑝)

𝑓
(𝑔) < 1 < 𝜌

(𝑝,𝑞)
𝑔 (𝑓) ⋅ 𝜌

(𝑞,𝑝)

𝑓
(𝑔) . (51)

Remark 19. Corollaries 17 and 18 can be regarded as an
extension of the Corollaries of [8, Theorems 2.1 and 2.2].

Corollary 20. Let 𝑓 be an entire function with index-pair
(𝑚, 𝑞), where 𝑚, 𝑞 are positive integers with 𝑚 ≥ 𝑞. Then for
any entire function 𝑔,

(i) 𝜆(𝑝,𝑞)𝑔 (𝑓) = ∞ when 𝜌𝑔(𝑚, 𝑝) = 0,

(ii) 𝜌(𝑝,𝑞)𝑔 (𝑓) = ∞ when 𝜆𝑔(𝑚, 𝑝) = 0,

(iii) 𝜆(𝑝,𝑞)𝑔 (𝑓) = 0 when 𝜌𝑔(𝑚, 𝑝) = ∞,

(iv) 𝜌(𝑝,𝑞)𝑔 (𝑓) = 0 when 𝜆𝑔(𝑚, 𝑝) = ∞,

where 𝑝 is any positive integer with𝑚 ≥ 𝑝.

Remark 21. The first part of Corollary 20 improves [8, Theo-
rem 2.3].

Corollary 22. Let 𝑔 be an entire function with index-pair
(𝑚, 𝑝), where 𝑚, 𝑝 are positive integers with 𝑚 ≥ 𝑝. Then for
any entire function 𝑓,

(i) 𝜌(𝑝,𝑞)𝑔 (𝑓) = 0 when 𝜌𝑓(𝑚, 𝑞) = 0,

(ii) 𝜆(𝑝,𝑞)𝑔 (𝑓) = 0 when 𝜆𝑓(𝑚, 𝑞) = 0,

(iii) 𝜌(𝑝,𝑞)𝑔 (𝑓) = ∞ when 𝜌𝑓(𝑚, 𝑞) = ∞,

(iv) 𝜆(𝑝,𝑞)𝑔 (𝑓) = ∞ when 𝜆𝑓(𝑚, 𝑞) = ∞,

where 𝑞 is any positive integer such that𝑚 ≥ 𝑞.

Example 23 (relative order between polynomials). To sim-
plify let us consider any two given natural numbers 𝑚 and
𝑛 and 𝑎 ∈ R, 𝑎 ̸= 0, so that

𝑓 (𝑧) = 𝑧
𝑚
, 𝑔 (𝑧) = 𝑎𝑧

𝑛
. (52)

Then

𝜌𝑓 (1, 1) = 𝜆𝑓 (1, 1) = 𝑚, 𝜌𝑔 (1, 1) = 𝜆𝑔 (1, 1) = 𝑛.

(53)

Now

𝜌
(1,1)
𝑔 (𝑓) = 𝜆

(1,1)
𝑔 (𝑓) =

𝜌𝑓 (1, 1)

𝜌𝑔 (1, 1)
=
𝑚

𝑛
. (54)

Example 24 (relative order between exponentials of the same
order). Let 𝑛 be any natural number and 𝑎 any positive real
number and consider

𝑓 (𝑧) = exp 𝑧𝑛, 𝑔 (𝑧) = exp (𝑎𝑧)𝑛. (55)

In this case𝑓 and𝑔 are two entire functionswith regular (2, 1)
growth; thus

𝜆
(1,1)
𝑔 (𝑓) = 𝜌

(1,1)
𝑔 (𝑓) =

𝜌𝑓 (2, 1)

𝜌𝑔 (2, 1)
=
𝑛

𝑛
= 1. (56)

Clearly

𝜌
(1,1)
𝑓 (𝑔) = 𝜆

(1,1)
𝑓 (𝑔) = 1. (57)

Example 25 (relative order between exponential and power
function). Let𝑚, 𝑛 be any two natural numbers and consider

𝑓 = exp 𝑧𝑚, 𝑔 = 𝑧
𝑛
. (58)

Then

𝜌𝑓 = 𝜆𝑓 = 𝑚, 𝜌𝑔 = 𝜆𝑔 = 0. (59)

Now

𝜌
(1,1)
𝑔 (𝑓) = 𝜆

(1,1)
𝑔 (𝑓) = ∞,

𝜌
(1,1)
𝑓 (𝑔) = 𝜆

(1,1)
𝑓 (𝑔) = 0.

(60)

When 𝑓 and 𝑔 are any two entire functions with index-
pair (𝑚, 𝑞) and (𝑛, 𝑝), respectively, where 𝑝, 𝑞, 𝑚, 𝑛 are all
positive integers such that 𝑚 ≥ 𝑞 and 𝑛 ≥ 𝑝, but 𝑚 ̸= 𝑛, the
next definition enables studying their relative order.
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Definition 26. Let 𝑓 and 𝑔 be any two entire functions with
index-pair (𝑚, 𝑞) and (𝑛, 𝑝), respectively, where 𝑝, 𝑞,𝑚, 𝑛 are
all positive integers such that𝑚 ≥ 𝑞 and 𝑛 ≥ 𝑝. If𝑚 > 𝑛, then
the relative (𝑝+𝑚−𝑛, 𝑞)th order (resp., relative (𝑝+𝑚−𝑛, 𝑞)th
lower) of 𝑓 with respect to 𝑔 is defined as

(i)

𝜌
(𝑝+𝑚−𝑛,𝑞)
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑝+𝑚−𝑛]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

(resp. 𝜆(𝑝+𝑚−𝑛,𝑞)𝑔 (𝑓) = lim inf
𝑟→∞

log[𝑝+𝑚−𝑛]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
) .

(61)

If𝑚 < 𝑛, then the relative (𝑝, 𝑞+𝑛−𝑚)th order (resp., relative
(𝑝, 𝑞 + 𝑛 − 𝑚)th lower) of 𝑓 with respect to 𝑔 is defined as

(ii)

𝜌
(𝑝, 𝑞+𝑛−𝑚)
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞+𝑛−𝑚]𝑟
,

(resp. 𝜆(𝑝, 𝑞+𝑛−𝑚)𝑔 (𝑓) = lim inf
𝑟→∞

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞+𝑛−𝑚]𝑟
) .

(62)

The following result is easy to check.

Theorem27. Under the hypothesis of Definition 26, for𝑚 > 𝑛:
(i)

𝜌
(𝑝+𝑚−𝑛, 𝑞)
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑚]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

𝜆
(𝑝+𝑚−𝑛, 𝑞)
𝑔 (𝑓) = lim inf

𝑟→∞

log[𝑚]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

(63)

and for𝑚 < 𝑛:
(ii)

𝜌
(𝑝, 𝑞+𝑛−𝑚)
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑝]𝑟
log[𝑛]𝑀𝑔 (𝑟)

,

𝜆
(𝑝, 𝑞+𝑛−𝑚)
𝑔 (𝑓) = lim inf

𝑟→∞

log[𝑝]𝑟
log[𝑛]𝑀𝑔 (𝑟)

.

(64)

The next example will make an alternative use of
Theorem 27.

Example 28 (relative order between exponentials of different
order). Let

𝑓 (𝑧) = exp[27]𝑧5, 𝑔 (𝑧) = exp[50]𝑧17. (65)

In this case 𝑓 and 𝑔 are entire functions of regular growth
(𝑚, 𝑝) = (28, 1) and (𝑛, 𝑞) = (51, 1), respectively, with

𝜌𝑓 (28, 1) = 𝜆𝑓 (28, 1) = 5, 𝜌𝑔 (51, 1) = 𝜆𝑔 (51, 1) = 17.

(66)

Now

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞+𝑛−𝑚]𝑟
=
log [log[50] (exp[27]𝑟5)]

1/17

log[24]𝑟
(67)

and by taking lim sup and lim inf, we get

𝜌
(𝑝,𝑞+𝑛−𝑚)
𝑔 (𝑓) =

1

17
= 𝜆
(𝑝,𝑞+𝑛−𝑚)
𝑔 (𝑓) . (68)

Obviously, the same limit is achieved if, by usingTheorem 27,
we consider the quotient

log[𝑝]𝑟
log[𝑛]𝑀𝑔 (𝑟)

=
log 𝑟

log[51]𝑀𝑔 (𝑟)
. (69)

Reciprocally, in order to evaluate 𝜌
(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔) and

𝜆
(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔), we would take limits in either

log[24]𝑀−1𝑓 𝑀𝑔 (𝑟)
log 𝑟

=
log[24][log[27] (exp[50]𝑟17)]

1/5

log 𝑟
or

log[51]𝑀𝑔 (𝑟)
log 𝑟

,

(70)

obtaining that

𝜌
(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔) = 17 = 𝜆

(𝑝+𝑚−𝑛,𝑞)

𝑓
(𝑔) . (71)

5. Conclusion

The main aim of the paper is to extend and modify the
notion of order to relative order of higher dimensions in case
of entire functions as the relative order of growth gives a
quantitative assessment of how different functions scale each
other and to what extent they are self-similar in growth, and
in this connection we have established some theorems. In
fact, some works on relative order of entire functions and
the growth estimates of composite entire functions on the
basis of it have been explored in [8–15]. Actually we are
trying to generalize the growth properties of composite entire
functions on the basis of relative (𝑝, 𝑞)th order and relative
(𝑝, 𝑞)th lower order and, analogously, we may also define
relative (𝑝, 𝑞)th order of meromorphic functions in order to
establish related growth properties, improving the results of
[16–18]. For any two positive integers 𝑝 and 𝑞, we are trying
to establish the concepts of relative (𝑝, 𝑞)th type and relative
(𝑝, 𝑞)th weak type of entire and meromorphic functions,
too, in order to determine the relative growth of two entire
or meromorphic functions having the same nonzero finite
relative (𝑝, 𝑞)th order or relative (𝑝, 𝑞)th lower order with
respect to another entire function, respectively.Moreover, the
notion of relative order, relative type, and relative weak type
of higher dimensionsmay also be applied in the field of slowly
changing functions and also in case of entire ormeromorphic
functions of several complex variables.
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The results of this paper in connection with Nevanlinna’s
value distribution theory of entire functions on the basis
of relative (𝑝, 𝑞)th order and relative (𝑝, 𝑞)th lower order
may have a wide range of applications in complex dynamics,
factorization theory of entire functions of single complex
variable, the solution of complex differential equations, and
so forth. In fact complex dynamics is a thrust area in modern
function theory and it is solely based on the study of fixed
points of entire functions as well as the normality of them.
For further details in the progress of research in complex
dynamics via Nevanlinna’s value distribution theory one
may see [19–24]. Factorization theory of entire functions
is another branch of applications of Nevanlinna’s theory
which actually deals with how a given entire function can
be factorized into other simpler entire functions in the sense
of composition. Also Nevanlinna’s value distribution theory
has immense applications into the study of the properties of
the solutions of complex differential equations and is still an
active area of research.
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