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Soft faults in navigation sensors will lead to the degradation of the accuracy and reliability of integrated navigation system. To
solve this problem, a wavelet analysis and signal singularities based soft fault detection method are given out. To find signal
singularities and detect the faults, the modulus maxima values are calculated after the wavelet transform of original signal. By
calculating the Lipschitz exponent using themodulusmaxima value at the fault point, the fault types are distinguished.Then, a fault-
tolerant federated filtering algorithm for the calibration of INS/GPS/DVL integrated navigation system is proposed. Simulations
are conducted and results show that sensor soft faults can be detected accurately. By effectively isolating the fault and refactoring
information, the accuracy and reliability of navigation system are improved.

1. Introduction

Higher standards for the accuracy and reliability of naviga-
tion systems are required with the development of modern
ship, aircraft, and land vehicle. Device redundancy and
estimator based analytical redundancy are the two most
effective methods of improving the accuracy and reliability
of system [1].

Device redundancy appears to be a simple and efficient
approach to improve the performance of navigation system
[2]. Both system level and sensor level redundancy are
considerable, and most of the system redundancies are in
the formof integrated navigation system.And INS/GPS/DVL
integrated navigation system is widely used in vehicles. Iner-
tial navigation system (INS) has been usually selected as the
core of integrated systems for its outstanding characters, such
as high-accuracy, self-contained, and jam-proof. Meanwhile,
global position system (GPS) andDoppler velocity log (DVL)
commonly play the external auxiliary roles, because their
navigation errors do not accumulate with time [3]. They also
provide the position and velocity for the calibration and reset
of INS. That means that the performance of GPS and DVL

will affect the calibration accuracy of INS directly as well as
the entire INS/GPS/DVL integrated navigation system. As
for the entire calibration process for INS, it is necessary to
guarantee the accuracy and reliability of external information
[4]. Otherwise, the gyroscope drifts cannot be estimated and
the error of external information will be introduced.

Estimator based analytical redundancymethod is another
effective solution [5, 6]. The estimated information predicted
by using system mathematical model is introduced, then
conduct data fusion by estimator (i.e., Kalman filter) so that
almost all outputs of different kinds of sensors can be fully
used.However, the fault of sensorsmight happen, whichmust
be detected and processed. Kalman filter based fault detection
methods are commonly used in integrated navigation system,
especially 𝜒2 detection method.

In 𝜒2 detection method, faults are detected by comparing
the assumptive mean and variance with those of constructed
n-dimension Gaussian variables, which is easy to realize.
However, this method insensitive and large-delay for the
detection of soft faults, and the type of fault cannot be
accurately determined. In the integrated system, there are two
most common sensor faults: (1) step error caused by clock
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jumping and power fluctuation in GPS; (2) slope error caused
by clock drift and the inaccuracy of rail parameter model [7].

To solve the problems above, a sensor fault detec-
tion method based on wavelet analysis and signal sin-
gularities is put forward, and a fault-tolerant federated
filter for INS/GPS/DVL integrated navigation system is
designed. In Section 2, signal fault detection method based
on wavelet modulus maxima is introduced, and the relation-
ships between signal singularity and modulus maxima are
given out, and by searching modulus maxima the fault can
be accurately positioned. In Section 3, fault type detection
method based on the calculation of signal Lipschitz exponent
is proposed. In Section 4, by utilizing the proposed fault
detection method, a fault-tolerant federated filter for the
calibration progress in INS/GPS/DVL integrated navigation
system is designed. And in Section 5, simulations for fault-
tolerant federated filter in calibration application are con-
ducted. Finally, the conclusions are given in Section 6.

2. Signal Singularity Detection Method Based
on Wavelet Analysis

2.1. Wavelet Transform and Modulus Maxima. Wavelet anal-
ysis is an efficient signal analysis tool and has been widely
used in signal process [8, 9]. Wavelet transform appears to be
extremely sensitive for the signal singularities, which makes
it highly appropriate for the fault signal detection. In this
transform, the original signal is processed by using wavelet
as follows:

𝜓
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(𝑡) =
1
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𝜓 (

𝑡 − 𝑢

𝑠
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where the 𝜓(𝑡) is mother wavelet, 𝑠 is scale parameter, and 𝑢

is translation parameter.
By (1), with the decrease of |𝑠|, the locality and resolution

in time domain of wavelet function are improved, and
resolution in frequency domain is reduced.

Assuming that wavelet 𝜓(𝑡) and the sensor output signal
𝑓(𝑡) ∈ L2(R) are both real functions, scale parameter 𝑠 > 0.
The continuous wavelet transform for 𝑓(𝑡) can be calculated
as follows:
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where “∗” denotes the convolution operation and 𝜃
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Due to the high-sampling ratio and nature discrete

characters for the output signals of navigation systems, the
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Figure 1: Signal singularities detection based on wavelet modulus
maxima.

continuouswavelet transform leads to extremely heavy calcu-
lation burden. It seems impossible to implement continuous
wavelet transform in practical signal processing. Therefore,
binary wavelet transform is selected in this paper, which can
be seen as a compromise between continuous and discrete
wavelet transforms. And let 𝑠 = 2

𝑗; the binary wavelet can
be expressed as

𝜓
2
𝑗
,𝑢
(𝑡) = 2

−𝑗/2
𝜓 [2
−𝑗
(𝑡 − 𝑢)] 𝑗 ∈ 𝑍, 𝑢 ∈ 𝑅. (3)

Accordingly, the binary wavelet transform is

𝑊
𝑓
(2
𝑗
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−𝑗/2
∫
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−∞

𝑓 (𝑡) 𝜓 [2
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(
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𝑠
)] 𝑑𝑡. (4)

Signal singularities, which are the most important local
information of signals, can be inferred by searching the
modulus maxima. By calculating the modulus maxima on
different scales, the entire modulus maxima curve can be
obtained, and then we can observe the local signal singu-
larities. The relationships among the original signal and the
modulus maxima are shown in Figure 1.

As shown in Figure 1, if the characteristics of signal
changes, their corresponding wavelet modulus appears as
maxima.This character can be utilized to detect and position
the sensor faults.

2.2. Fault Positioning Based on Modulus Maxima Searching.
To detect the singularity of fault signal, we have to obtain
the curves of modulus maxima. And ad hoc algorithm is
commonly used in searching the points of modulus maxima
[10].

The specific steps of the algorithm are shown as follows.

(1) Choose Morlet wavelet basis and scale 2𝑗 and process
the sensor output signal by using binary discrete
wavelet transform.The chosen scale should guarantee
that the signal extrema are dominated on the largest
scale and keep all the important singularities of
signal. In order to make the output signal meet the
requirement of real time for the integrated navigation
system, 𝑗 = 5 is set.

(2) Assuming that the largest amplitude of extrema is𝑀
on the largest scale, the extrema whose amplitudes
are smaller than 𝑀/𝑗 should be eliminated, that is,
because these extrema are mainly caused by noise.
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(3) For arbitrary extremum 𝑥
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amplitude is the manifold point of 𝑥
0
. However, once

the amplitude of themanifold point is twice that of𝑥
0
,

this point will be treated as the extrema of noise and
have to be eliminated [11].

(4) Repeat the process above until the scale is 22.
(5) Eliminate the maximum points on scale 21, and use

the extrema on scale 2
2. So far, the search for the

modulus maxima on scales 2𝑗 ∼ 2
1 is completed.

Through the steps above, the modulus maxima on each
scale can be obtained as well as the modulus maxima curve.
According to the modulus maxima on fine scale, we can
accurately position the singular points and the moments of
sensor faults that occurred. However, only with these wavelet
modulus maxima, we still could not identify the types of
sensor faults.

3. Fault Type Detection Based on
Lipschitz Exponent

3.1. Lipschitz Exponent Characteristics of Signal Faults. Sin-
gularity refers to the signal with discontinuous points or
its derivative function is not continuous. Mathematically,
signal singularity is described by Lipschitz exponent [12].The
type of sensor faults could be identified based on Lipschitz
exponent.

TheLipschitz exponent𝛼 of signal𝑓(𝑡) at 𝑡 = ℎ
0
is defined

as follows.There are two constants𝑀, ℎ
0
(𝑀 > 0, ℎ

0
> 0) and
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0
, inequation is established

as
󵄨󵄨󵄨󵄨𝑓 (ℎ
0
+ ℎ) − 𝑔

𝑛
(ℎ
0
)
󵄨󵄨󵄨󵄨 ≤ 𝑀|ℎ|

𝛼
. (5)

For any point ℎ
0
, the polynomial 𝑔

𝑛
(ℎ) is uniquely deter-

mined. If 𝑓(𝑡) is 𝑛(𝑛 = ⌊𝛼⌋) order continuously differentiable
at point ℎ

0
and its neighborhood, the 𝑔

𝑛
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Taylor expansion of 𝑓(𝑡) at point ℎ
0
. If function 𝑓(𝑡) has

uniform Lipschitz exponent in any neighborhood of ℎ
0
point

and 𝛼 < 𝑛, 𝑓(𝑡) is 𝑛 order differentiable in this neighborhood
of point ℎ

0
. Therefore, a great Lipschitz exponent 𝛼 means

better smoothness of signal and the smaller 𝛼 characterizes
the singularities of 𝑓(𝑡).

As for the most typical sensor errors, the relationships
between slope error, step error, random noise error, and
Lipschitz exponents are given out.

(1) Assuming that 𝑓(𝑡) is a step signal, we have

󵄨󵄨󵄨󵄨𝑓 (ℎ
0
+ ℎ) − 𝑔

𝑛
(ℎ
0
)
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0
. (6)

According to (5), the Lipschitz exponent 𝛼 of step signal
at ℎ
0
point is 0.
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Figure 2:The conical surface composed ofmodulusmaxima points.

(2) Assuming that 𝑓(𝑡) is a slope signal, we have

󵄨󵄨󵄨󵄨𝑓 (ℎ
0
+ ℎ) − 𝑔

𝑛
(ℎ
0
)
󵄨󵄨󵄨󵄨 ≤ 𝑂|ℎ|

1
. (7)

According to (5), the Lipschitz exponent 𝛼 of slope signal
at ℎ
0
point is 1.

However, the Lipschitz exponents related to random
noise are usually less than 0, because Gaussian white noise
is a random distribution whose singularities are almost
everywhere. On this condition, the Lipschitz exponents are
negative and could be denoted as 𝛼 = −0.5 − 𝜀, ∀𝜀 > 0.

3.2. Calculation of Signal Lipschitz Exponent. By analyzing
the relationship between the modulus maxima and signal
singularity, it is found that the attenuation of |𝑊

𝑓
(𝑠, 𝑢)|

could be controlled by its local maxima.Therefore, according
to the relationship between wavelet modulus maxima and
signal Lipschitz exponent, the calculation of signal Lipschitz
exponent can be realized [13].

Assuming that the compactly supported set of wavelet
function 𝜓 is [−𝐶, 𝐶] (𝐶 > 0) and when 𝑠 < 𝑠

0
, all the

modulus maxima points which converge to the point V are
located in the conical surface, which is denoted as |𝑢−V| ≤ 𝐶𝑠,
as shown in Figure 2.

Assuming the signal 𝑓(𝑡) ∈ L2(R) and its modulus
maximum values distribute within a conical surface. That is

󵄨󵄨󵄨󵄨󵄨
𝑊
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where 𝐴 is a constant.
󵄨󵄨󵄨󵄨󵄨
𝑊
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(𝑠, 𝑢)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐴𝑎
𝛼+0.5

. (9)

Calculating the logarithm for both sides of (9) and using
binary wavelet transform, it can be obtained that

log
2

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑓
(2
𝑗
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ log
2
𝐴 + 𝑗 (𝛼 + 0.5) . (10)

Equation (10) shows that the Lipschitz exponent value at
point 𝑡

0
of𝑓(𝑡)depends on the attenuation of |𝑊

𝑓
(𝑠, 𝑢)|under

fine scales. Andwhen 𝑡 = 𝑡
0
, we get the following conclusions.

(a) If Lipschitz exponent 𝛼 > 0, the modulus maxima is
proportional to the scale.
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(b) If Lipschitz exponent 𝛼 < 0, the modulus maxima is
inversely proportional to the scale.

(c) If Lipschitz exponent 𝛼 = 0, the modulus maxima is
uncorrelated with the scale.

And for the next scale 𝑗 + 1, we have

log
2

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑓
(2
𝑗+1

, 𝑡
𝑗+1

)
󵄨󵄨󵄨󵄨󵄨
≤ log
2
𝐴 + (𝑗 + 1) (𝛼 + 0.5) . (11)

Assuming that the equalities hold up in both (10) and (11),
the formula for the calculation of the Lipschitz exponents is
as follows:

𝛼 = log
2

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑓
(2
𝑗+1

, 𝑡
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)
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2

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑓
(2
𝑗
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨
− 0.5. (12)

Through the steps above, calculate the modulus max-
ima on every scale and draw the modulus maxima curve.
According to the modulus maxima on fine scale, we can
find the singular point position, namely, the moment of fault
occurrence.

Select the modulus maxima point on every scale calcu-
lated in step (6) and the logarithm of decomposition scale
as ordinate and abscissa, respectively. The slope of curve is
estimated by linear least squares, and Lipschitz exponent
can be obtained by subtracting 0.5 from the curve slope.
According to the Lipschitz exponent, we can distinguish the
fault type, and the fault information is provided for fault
detection and isolationmodule to dispose of the sensors with
faults.

4. Design for Fault-Tolerant Filtering Scheme

To maintain the high accuracy of INS/GPS/DVL integrated
navigation system for long term operation, comprehensive
calibration is one of the key technologies [14]. External
information of INS such as position provided by GPS is
introduced to estimate the gyroscope drifts and reset the
navigation information. Usually, this progress might last for
hours. Moreover, during the entire calibration phase, the
accuracy of external information must be maintained at a
stable level. However, the GPS signals appear to be easily
influenced by dynamic environment or human disturbances.

In order to guarantee the accuracy and reliability of
INS/GPS/DVL integrated navigation system, a fault detection
method based fault-tolerant filtering scheme for the calibra-
tion phase is presented. In this scheme, decentralized filter
is adopted; the fault detection method mentioned above is
used to process the outputs of the two subintegrated systems
INS/GPS and INS/DVL. And the diagram of this fault-
tolerant filtering algorithm is given in Figure 3.

As shown in Figure 3, position measurement ZIG is the
position difference between GPS and INS outputs, and veloc-
ity measurement ZID is the velocity difference between DVL
and INS outputs.Then,ZIG andZID are processed through the
fault detection method based on binary wavelet transform
and Lipschitz exponent. Once faults are detected, the faults
can be quickly and accurately positioned and then the type
of fault would be obtained. Consequently, the fault sensor
would be isolated, and the corresponding output would be

reconstructed to formmeasurement information ZIG and ZID
which are sent to subfilters. That means that the integrated
navigation system exhibits better fault-tolerant ability. With
more precise external navigation information, the integrated
system could normally output precise navigation information
and even sensor soft fault occurs.

4.1. State and Measurement Equations for Subfilter. Consid-
ering that the outputs from the sensors are different, we use
indirect method to estimate the navigation parameters. The
state vector of INS is selected as

X
𝐼
= [𝛿𝜑𝐼 𝛿𝜆𝐼 𝛿𝑉

𝑥
𝛿𝑉
𝑦
𝛼 𝛽 𝛾 𝜀

𝑥
𝜀
𝑦

𝜀
𝑧
𝜀
𝑟𝑥

𝜀
𝑟𝑦

𝜀
𝑟𝑧]
𝑇

,

(13)

where 𝛿𝜑, 𝛿𝜆 are the position errors of INS; 𝛿𝑉
𝑥
, 𝛿𝑉
𝑦
are the

velocity errors of INS; 𝛼, 𝛽 and 𝛾 are attitude errors of INS;
𝜀
𝑥
, 𝜀
𝑦
and 𝜀
𝑧
are the gyro constant drifts; 𝜀

𝑟𝑥
, 𝜀
𝑟𝑦
and 𝜀
𝑟𝑧
are

the gyro random drifts.
The state vector of GPS is selected as

X
𝐺
= [𝛿𝜑𝐺 𝛿𝜆

𝐺]
𝑇

, (14)

where 𝛿𝜑
𝐺
, 𝛿𝜆
𝐺
are the position error of GPS.

Position integratedmode is used for INS/GPS subfilter, so
the state equation and measurement equation are given by

[
Ẋ
𝐼

Ẋ
𝐺

] = [
F
𝐼

0
0 F
𝐺

] [
X
𝐼

X
𝐺
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W
𝐼

W
𝐺

] ,

Z
𝐼𝐺
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𝜑
𝐼
− 𝜑
𝐺

𝜆
𝐼
− 𝜆
𝐺

] = H
𝐼𝐺
[
X
𝐼

X
𝐺

] + V
𝐼𝐺
,

(15)

where F
𝐼
is INS state transitionmatrix in [15];W

𝐼
,W
𝐺
are the

system noise matrixes for INS and GPS, respectively; V
𝐼𝐺

is
measurement noise matrix; andH

𝐼𝐺
is state transitionmatrix

for INS/GPS measurement equation. Consider

W
𝐼
= [𝜔𝑔𝑥 𝜔

𝑔𝑦
𝜔
𝑔𝑧]
𝑇

,

W
𝐺
= [𝜔𝜑 𝜔

𝜆]
𝑇

,

(16)

where 𝜔
𝑔𝑥
, 𝜔
𝑔𝑦

and 𝜔
𝑔𝑧

are system white noises of INS and
𝜔
𝜑
, 𝜔
𝜆
are system white noise of GPS. Consider

H
𝐼𝐺

= [
1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1
] . (17)

Using first order Markov process to complete the approx-
imate fitting, GPS state transitionmatrix F

𝐺
can be expressed

as follows:

F
𝐺
= diag( 1

𝜏GPS𝜑
,

1

𝜏GPS𝜆
) , (18)

where 𝜏GPS𝜑 and 𝜏GPS𝜆 are the correlation times.
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Figure 3: The fault-tolerant federated filter based on fault detection method for INS/GPS/DVL integrated navigation system.

Velocity matching method is used in INS/DVL subfilter,
and the state equation and measurement equation are given
by

[
Ẋ
𝐼

Ẋ
𝐷

] = [
F
𝐼

0
0 F
𝐷
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𝐷
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(19)

where X
𝐷

= [𝛿𝑉𝐷𝑥 𝛿𝑉
𝐷𝑦

𝛿𝑘]
𝑇 is state vector of DVL
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𝐷𝑥
, 𝛿𝑉
𝐷𝑦

are velocity error, and
𝛿𝑘 is scale error. F
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is DVL state transition matrix:

F
𝐷
= diag( 1

𝜏
𝐷𝑥

,
1

𝜏
𝐷𝑦

,
1

𝜏
𝑘

) , (20)

where 𝜏
𝐷𝑥
, 𝜏
𝐷𝑦

and 𝜏
𝑘
are Markov correlation time, W

𝐷
is

systemnoisematrix,𝜔
𝐷𝑥
,𝜔
𝐷𝑦

are drivenwhite noise, andV
𝐼𝐷

is measure noise matrix. Consider

W
𝐺
= [𝜔𝐷𝑥 𝜔

𝐷𝑦]
𝑇

,

H
𝐼𝐷

=[
0 0 1 0 0 0 −𝑉

𝑦
0 0 0 0 0 0 −1 0 −𝑉

𝑥

0 0 0 1 0 0 𝑉
𝑥

0 0 0 0 0 0 0 −1 −𝑉
𝑦

].

(21)

4.2. INS/GPS/DVL Global Filter. To make the integrated
filter realizable for computer calculation, it is necessary
to discretize the state equation and measurement equation
mentioned above and then we have

X
𝑘
= Φ
𝑘,𝑘−1

X
𝑘
+ Γ
𝑘−1

W
𝑘−1

,

Z
𝑘
= H
𝑘
X
𝑘
+ V
𝑘
.

(22)

Assuming that the local estimates are unrelated, the global
estimate can be expressed as

X̂
𝑔
= P
𝑔
(P−1
11
X̂
1
+ P−1
22
X̂
2
) ,

P
𝑔
= (P−1
11

+ P−1
22
)
−1

.

(23)

Local estimates (X̂
1
, X̂
2
) from the subfilters and their

covariance matrix (P
1
,P
2
) are sent to master filter, and the

obtained results would integrate with master filter estimates
to get the global optimal estimates. Besides, global estimate
X̂
𝑔
and its covariance matrix P

𝑔
, which are amplified to be

𝛽
𝑖

−1P
𝑔
(𝛽
𝑖
≤ 1), are feed back to sub filters, and estimates of

subfilter are reset as

X̂
𝑖
= X̂
𝑔
,

P
𝑖𝑖
= 𝛽
−1

𝑖
P
𝑔
.

(24)

5. Simulation

5.1. Simulation for Fault Positioning. Compared with the
detection step error, slope error is more difficult to be
detected. Consequently, the slope error is selected to be
researched to verify the efficience of the proposed fault
detection method.

(1) Simulation conditions:
During 100∼200 sampling points, the slope error is
added to the sensor signal.

(2) Simulation results:

As a comparison, the fault detection method based on
Gaussian wavelet transform is applied to faults detection; its
fault detection result is shown in Figure 4.
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Figure 4: Slope error detection based on Gaussian wavelet transform.
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Figure 5: Slope error detection by binary wavelet transform.

It is obvious that there is a time delay for the fault
detection algorithm based on Gaussian wavelet transform in
Figure 4. And the sensor faults cannot be efficiently detected
until the soft faults accumulate to a certain degree.

And the simulation result of the proposed fault detection
method based on binary wavelet transform and modulus
maxima is shown in Figure 5.

As known from Figure 5, the proposed fault detection
method can efficiently detect the slope error of sensor fault
and exhibits excellent accuracy for the fault positioning and
sensational resolution in time domain. However, with the
increase of the scale, multiple extrema appear in the signal
which are caused by noise, and some of extrema would
attenuate sharply or even disappear. However, those extrema
which have appeared in all scales would not attenuate. And
they are corresponding to the real singularities of signal.

5.2. Simulation for Fault Type Detection. The step fault and
slope fault are selected to analyze the fault type detection
performance of the proposed fault detection method.

During 100∼200 sampling points, the constant error (to
form the step fault) and slope error are added in the sensor

Table 1: Lipschitz exponent 𝛼.

Step fault Slope fault
Theoretical value of 𝛼 0 1
Modulus maxima attenuation ratio 0.4737 1.5143
Measured value of 𝛼 −0.0263 1.0143

signals, respectively. The logarithm of modulus maxima is
calculated at 𝑢 = 100, as shown in Figure 6.

In Figure 6, the logarithm curves of modulus maxima
exhibit obvious attenuation ratio at 𝑢 = 100. In order to
identify the fault type, the attenuate ratio for logarithm curves
of modulus maxima with respect to the scales at 𝑢 = 100

should be obtained. By using linear least square method, the
slope of curve on each scale of the curve can be estimated,
and the Lipschitz exponent can be obtained by subtracting
0.5 from the slope. As for the two kinds of faults, the scopes of
modulus maxima curves and Lipschitz exponents at 𝑢 = 100

are shown in Table 1.
According to Table 1, the measured Lipschitz exponents

with respect to step fault and slope fault approximate to
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(b) The drift estimation results when GPS has slope faults

Figure 7: Gyro drifts estimation result.

their ideal values, respectively. By calculating the Lipschitz
exponent of signal, the fault type can be detected.

In conclusion, by searching wavelet modulus maxima on
different scales, the fault detectionmethod based onmodulus
maxima can accurately position fault points and distinguish
the fault type through Lipschitz exponent which is calculated
by the attenuation of wavelet modulus maxima.

5.3. Simulation for Fault-Tolerant Filter

(1) Assuming that initial latitude is 𝜑
0
= 30
∘ and initial

longitude is 𝜆
0
= 120

∘, gyro constant drift is 0.01∘/h;
heading angel is 45

∘ and east velocity and north
velocity are 5 kn; simulation time is 5.5 h.

(2) INS/DVL/GPS integrated system is applied to cali-
bration. After 4-hour system work, inertial system is

calibrated by the gyro drift estimated and system error
information.

(3) Two conditions are involved in the calibration simu-
lation: (a) GPS without any fault; (b) GPS with slope
fault.

For the two conditions, the drift estimated results for east
and azimuth gyroscopes are given in Figure 7.

It is obvious from Figure 7 that on the no-faults condi-
tion the gyro drifts and position information can be well
estimated, especially since the estimation error for east gyro
drift is less than 10%. On the other hand, when slope fault
occurs, we cannot obtain the position measurement, and
the gyro drift estimation performance decreases, especially
since the estimate accuracy of the azimuth gyro drift is
seriously restricted by limited available information.Through
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the detection and isolation of slope faults in INS/GPS subin-
tegrated system, such a single system fault will have no effect
on the output of SINS/DVL system but slightly decrease for
the position estimation comparing with the situation without
GPS faults.

6. Conclusion

This current work has presented a sensor fault detection
method based on binary wavelet transform, modulus max-
ima, and Lipschitz exponent. In this method, after binary
wavelet transform of original signal, sensor faults can be
accurately positioned by searching modulus maxima, and
the type of fault can be obtained by calculation of the
Lipschitz exponents. To guarantee the performance during
calibration phase for INS navigation errors, a developed
fault-tolerant federated filter for INS/GPS/DVL integrated
navigation system is proposed. Simulation shows that even
when GPS slope faults occur, INS/GPS/DVL system could
keep on providing reliable position information only with a
slight drop of positioning accuracy.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank all the editors and anony-
mous reviewers for improving this paper. Funding for this
work was provided by the National Nature Science Founda-
tion of China under Grants no. 61374007 and 61104036 and
the Fundamental Research Funds for the Central Universities
under the Grant of HEUCFX41309.

References
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