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We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all
curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates

of these operators.

1. Bernstein Type Operators

In this paper, using the weakly Picard operators technique
and the contraction principle, we study the convergence
of the iterates of some operators introduced in [1]. Similar
operators with the ones from [1] were studied in [2, 3] and
[4], where the authors construct interpolation and Bernstein-
type operators on triangles and squares with one and all
curved sides. They studied the operators, their product and
Boolean sum, as well as their interpolation properties, the
order of accuracy, and the remainder of the corresponding
approximation formulas.

We recall some results regarding Bernstein-type opera-
tors on a triangle with all curved sides from [1].

We denote by Tj, the triangle with all curved sides, which
has the vertices V; = (0,h), V, = (h,0), V5 = (0,0), and the
three curved sides y,, y, (along the coordinate axis), and v,
(opposite to the vertex V3); h € R, . We have that y, is defined
by (x, f1(x)), with £,(0) = f,(h) =0, f1(x) < 0,forx € [0, h];
y, is defined by (g, (y), ¥), with g,(0) = g,(h) = 0, g,(y) <0,
for y € [0, h] and y; is defined by the one-to-one functions f;
and g;, where gj is the inverse of the function f;; thatis, y =
f5(x) and x = g;(y), with x, y € [0, ] and £;(0) = g3(0)' =h
(see Figure 1). In the sequel we denote by e;;(x, y) = x'y’, for

i,jeN.
_ Let F be a real-valued function defined on
T, and (g,(»),¥),(g5(y),y), respectively, and let

(x, f1(x)), (x, f3(x)) be the points in which the parallel

lines to the coordinate axes, passing through the point

(x, y) € Ty, intersecting the sides y;, y,, and y;. We consider
the uniform partitions of the intervals [g,(y), g;(¥)] and

[f1(x), f3(x)], x, y € [0, h]:

respectively,
W= {rwe L2 omk o

and the Bernstein-type operators B}, and B, defined by
(B,,F) (% y)

= ipm,i (x,y)F (92 (y) + iw,y) ©

i=0
with
pm,i (X, y)

(el b sl

(4)
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Remark 1. In Figures 2(a) and 2(b) we plot the points
(9.(0) +i((g5 (») = g2 (¥))/m), ), i = 0,m and, respectively,
(x, f1(x) + j((f5 (x) = f; (x))/n), j = 0,n, for x, y € [0, h].

Theorem 2. IfF is a real-valued function defined on T, , then
(i) B,,F=F ony, Uy,

(ii) B)F = F ony, Uys,

(iii) (BXe;)(x, y) = x',i=0,1,
(Brexn)(x, y) = x* + [x = g, (D]lgs (») - x]/m,
(Be)(x:y) = ¥ (Brei)(x, ), i = 0,1,2; j €N,
=y, j=01
=y + [y = fi QIf; () -

= x'(Bleg)(x, ), j=0,1,2 i €N.

(iv) (B)ey;)(x, y)
(Byep)(x, y)
(Bye;)(x, y)

Let P, = B, B), respectively, and let Q,,,, = B} B,, be the

products of the operators B}, and B).
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We have

(PnF) (%, y)

,:Z()];)pml X, y n,j xl,y) )
F('xi’fl (xi)+jM)

with x; = g,(y) +i((g5(y) — g,(y))/m), respectively,

(QunF) (%, 7)

= iipm,i (x, J’j)%,j (x, )
(92 (yj) 2 (yJ)ng (yj)>)’j>s

= f1(x) +]((f3(x) -
Theorem 3. If F is a real-valued function defined on T, then

(i) (P, F)(V3) =
(i) (QuuF)(V3) =

with y; f1(x)/n).

F(V3), P,,,F = F, ony, and
=F(V;),Q,,,,F =F, ony;.

We consider the Boolean sums of the operators B, and
Bﬁ: ; that is,

Spm = B, ® B! = B, + B - B* B, )
respectively,
T,.:= B ®B = B’ + BY - B/B". (10)

Theorem 4. IfF is a real-valued function defined on T}, then
SmnF'aTh = F|aT,,’
(11

Tan|aTh = F|8Th'

2. Weakly Picard Operators

We recall some results regarding weakly Picard operators that
will be used in the sequel (see, e.g., [5]).

Let (X, d) be a metric spaceand A : X — X an operator.
We denote by Fy := {x € X | A(x) = x}, the fixed points
set of A; I(A) == {Y ¢ X | A(Y) ¢ Y,Y #0}, the family
of the nonempty invariant subsets of A; A° := 14, A" :=
A AT = A0 A", neN.

Definition 5. The operator A : X — X is a Picard operator
if there exists x™ € X such that

(i) Fy = {x"}
(ii) the sequence (A" (x,)),cn converges to x™ for all x, €
X.
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FIGURE 2: (a) Points of A? , for m = 4. (b) Points of A’;, forn = 4.

Definition 6. The operator A is a weakly Picard operator if the
sequence (A"(x)),en converges, for all x € X, and the limit
(which may depend on x) are a fixed point of A.

Definition 7. If A is a weakly Picard operator, then we
consider the operator A, A® : X — X, defined by

A% (x) = lim A" (x). (12)

Theorem 8. An operator A is a weakly Picard operator if and
only if there exists a partition of X, X = Jycp X, such that

(a) X, € I(A),VA e A;
(b) Alx, : X) — X is a Picard operator, VA € A.

3. Iterates of Bernstein Type Operators

Let F be a real-valued function defined on Tj; h € R,.

Using the weakly Picard operators technique and the
contraction principle, we study the convergence of the iterates
of the Bernstein-type operators (3) and (5) and of their
product and Boolean sum operators (7), (8), (9) and (10). The
same approach for some other linear and positive operators
leads to similar results in [6-12].

The limit behavior for the iterates of some classes of
positive linear operators was also studied, for example, in [13—
23]. In the papers [19-21] new methods were introduced (e.g.,
Korovkin type technique) for the study of the asymptotic
behavior of the iterates of positive linear operators, positive
linear operators preserving the affine functions and defined
on the space of bounded real-valued functions on [0, 1]. This
techniques enlarge the class of operators for which the limit
of the iterates can be computed. In [13, 14] some methods
were proposed to determine the degree of convergence
for the iterates of certain positive linear operators towards

the first Bernstein operator. Using the spectrum of the
operators involved in [15], convergence results were proved
for overiterates of certain (generalized) Bernstein-Stancu
operators (see, e.g., [24-26]). In [16, 17] new techniques were
introduced (infinite products, rates of convergence), based on
the results from [18], in order to prove that infinite products of
certain positive linear operators weakly converge to the first
Bernstein operator.

Now we study the convergence of the iterates of the
Bernstein-type operators (3) and (5).

Theorem 9. The operators B, and B, are weakly Picard
operators and

(B,,"F) (. )

_F9:(0).0)-Fl().y)
9:(»)-9.(») (13)

L 930F(9:(9).7) -9 () F(95(5).y)
95(y)— 9, (»)

>

(B, F) (x, y)
_F(x () - F(x f, ()
f3(0) = fi (%) 7 (14)
+ f3 (x)F(x’fl (x)) - fi (x)F(x,f3 (x))
f3(0) = f1(x) '

Proof. Taking into account the interpolation properties of B;,,
and B) (from Theorem 2), let us consider

e _ = N
Xol g, = {FeC(@)IF (@) =0l

F(g5(»).y) = ¢l,}, forye(oh],



4
X‘ﬁwm ={FeC(Ty) I F(x fi(x) =y,
F(x, f5(x)) = 1//]}/3}, for x € [0, h]
(15)
and denote
¢l, — ¢l
F(l) 8 = Y3 }’z
ohotly 7 00 0 ()
9 ¢l, - 9.(») ¢l,
a(-9.0)
| | (16)
vy, — ¥
F® y) = T
oty ) TR

£, - fi@yl],
f3 (x) - f1 (x) '

with ¢, v € C(T),).
We have the following properties:

@) x%  and x?

ol 91, Vi, 0, are closed subsets of C(T},);

.. 1) . . . X 2) :
(ii) X¢|y2»¢ly3 is an invariant subset of B, and X Vi, 9, is
an invariant subset of B, for ¢, v € C(T},) and n,m €
N*;

= _ ~ 1) = _
(iii) C(T},) = U‘PEC(Th)X(I’|y2)¢|y3 and C(T,) =

) it T ).
Uyece, lem i, 2re partitions of C(T},);

: (1) 1 () @
(W) Fgolyz’@lys ¢ X(Plyz’(Plys n FBf” and F""ﬂ’wlys ¢ XWln’wln "

Fpy, where Fg: and Fgy denote the fixed points sets of
B;, and B).

The statements (i) and (iii) are obvious.
(ii), by linearity of Bernstein operators and Theorem 2, it

(1) 1) (2) (2) .
follows that VFcplyz><ply3 € leyzxplm and Vleﬂ i, € leﬂ i,
we have
B* FY x,y) = FY %),
" (Pln’q)lys ( )/) <P|y2»¢|y3 ( )/)
(2) (2) a7
B'FY x,y) = F? xy).
ol N =2 Ey) Ly, ()
So, xW and X are invariant subsets of B* and,
<P|y2»<{’|y3 wlh ’W|V3 m

respectively, of B, for ¢,y € C(T),) and n,m € N*.
(iv), we prove that

B | o XW —x
m|X""n"”'y3 <p|y2,(p|y3 ‘P|y2»<l’|y3
(18)
By X% o —x®
anwYI’W'B wlh’u"va Wln’wlm

are contractions for ¢,y € C(T,) and n,m € N*.
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Let F,G ¢ X\
9l,,9

L From (3) we have
173 V3

B, (F) (x, y) - B}, (G) (x, y)|
= |B,, (F-G) (x,y)|

B 1_<1_ x-9,(y) )”’_( x=9,() )m‘
9:(») — g,(y) 95(y) — g,(y)
1
IF =Gl = (1= 55 ) IF = Gl
(19)
where | - ||, denotes the Chebyshev norm. So,
1B, (E)(x, ») = B (G)(x. )],
1 o (20)
s(l——7)||F—G||DO, VE,G € X )
2m-1 lvz’ |1/3
that is, B} | o) is a contraction for ¢ € C (Th).
Plyy Plys
Analogouyslyywe have
|B,, (F) (x, y) - B, (G) (x, y)|
=B} (F-G)(x, )]
< ’1_(1_ y— i) >_< Y= fix) )
- J3(x) = f1(x) J3(x) = fi(x)
1
IF = Gleo < (1= 57 ) IF = Gl
(21)
whence
IB)(F)(x, y) - B, (G)(x, ¥)| .,
(22)
< (1 - L_) IF-Gl,, VFGeXx®? ,
2n! V'n’ |V3
that is, B) | x® is a contraction for y € C(Th).
Yy ¥lys
On the other hand, ((¢l,, — ¢, )/(g5(y) = g(»))() +

Gl —8(09L,)/(6:() - g:(0) € X)) (l,, -

YL = AENO + (FEL, — AEVL )R -

fi(x) e X2

. x y. .
yl, v, AT fixed points of B}, and B,; that is,

e ( ol, ¢l L9 ) ¢l, - 2. (») <P|y3>
"\ g (»)-9.(») g:(y) -9, (»)
_ b, el e (),
() -9 (») $0)-90)
y( W'h - wl% 34 £ 1//|V1 ~hH) ‘/’|y3 )
"\ fi(0)-fi(x) f3(x) = f1 (%)

vl -l
AR

f3(x) l//lyl - f1(x) ‘//ly3

R P I

(23)
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From the contraction pr1nc1ple, | ol (x,y) = ((goly3 -
ol,)/(g:(y) = g.(MN)x + (g:(V)el,, - gz(y)¢|y3)/(g3(y) -
9,()) is the unique fixed point of B}, in X(ll) and

v2’ Ivs
B, |

is a Picard operator, with
Ply, Plys

(B, F) (x.y)

F(g;(),y)-F(g,(») ,y)x
95 (y) -9, (») (24)

95 (V)F(g,(9),9)~9,(y) F(g5(y), y)
g:(y) -9, (»)

+

and, similarly, F | W, (%, y) ((wl, = wl,)/(f3(x) -
L))y + (f3(x)W|yl LGl )/(f3(x) = fi(x)) is the
unique fixed point of B) 1nX(2) i, and B/ IX(z‘ ‘ isa Picard
operator, with o
oo F(x f;(x)) - F (%, f, (%))
BY°F)(x,y) =
(BY°F) (x,y) ACEA
+ f3 () F(x, f; () = f1 (%) F (x, f5 (%))
()= fi (%) '
(25)

Consequently, taking into account (ii), by Theorem 8 it
follows that the operators B), and B are weakly Picard
operators. U

Now we study the convergence of the product and
Boolean sum operators (7) and (9).
Theorem 10. The operator P, is a weakly Picard operator and
(PonF) (%, 7)

1
(95 (¥) = 9. W] [f5 (%) = f, (%)]

x [95 () f5 (x0) F (x5 f1 (%0)) + 92 (¥) f1 (x1)
X F(xy, f3(x1)) = g5 () fi (x1)
XF (%o, f3 (x0)) = 92 (¥) f3 (x0) F

X

(95 () = 9. (W] [ fs () = fr ()]
x [f1 (x1) F (x50, f5 (x0)) + f5 (%0) F (%1 f1 (x1))
= f3(x0) F (0, f1 (%))

~f1 (x0) F (x5, f5 (31))]

. y
[9:(») =9 W] [f5 () -

x [g5 (¥) F (x0, f3 (x0))

(%15 fi (x1))]

+

fi ()]

+ 9, (¥) F (x1, f1 (%1)) — 95 (»)

XF (x5 f1 (%0)) = 92 () F (%1, f5 (x1))]
+ X
(95 (¥) = 9. W] [ s (x) = f1 (%)]

X [F (x5 f1 (%0)) + F (%15 f3 (%))
~F (%o, f3 (%0)) = F (%1, fi (x1))],
with xy = g, (¥), x,

=g5(y).
(26)

Proof. Let X, 5.5 = {F € C(T,) | Flxp fi(x))) =
“’F(xpfl(xl)) = B, F(xy, f3(x1)) =y, Fxy, f3(x,)) = 6}

and denote
Fopypo (%,9)
= (g5 (0) f3 (x0) a + g, () fi (x1) y
=95 (¥) f1 (x1) 8 = g, (¥) f3 (x0) B)
x([g: (=g W] - i)™

Fi(x) 0+ f3(x0) B— f3(x0) = £ (xo))’x (27)
[9: (") =g W] [fs &) = fr ()]

g3 (»)0+9,(y)B-gs(y)a-g,(»)y

[9: () = 9. W] [ () = f1 (x)]
. a+y-p-6 .
[9: () = 9. W] [f5 () = f1 (x)]

with «, 3,7,0 € R.
We remark that
(i) Xepyoisa closed subset of C(Th)'
(ii) X p8y,6 is an invariant subset of P, for a, B, 7,6 € R
and n,m € N*;
(i) C(T},) = U, iy Xapys 18 @ partition of C(T);

(iv) Fypys € Xapyo N Fp , where Fp denote the fixed
points sets of P,,,,

The statements (i) and (iii) are obvious.
(ii), similarly with the proof of Theorem 9, by linearity of
Bernstein operators and Theorem 3, it follows that X, 5., 5 is

an invariant subset of P,,,, for «, 8,9,8 € R and n,m € N*.
(iv), we prove that

ch,/.?,y,(? - th,ﬁ,y,@ (28)

Pmn IXa,ﬁ,y,& :

is a contraction for o, 3,7,8 € Rand n,m € N*. Let F,G €
Xp,y.5- From [7, Lemma 8] it follows that

|Pmn(F)(x’y)_

1
< <1 - W) IF = Glloo

Py (G) (%, )| = |Ps (F = G) (x, )|

(29)



So,

"Pmn(F)(x’ )’) - Pmn(G)('x’ y)"oo
) (30)
< <1 _ W> IF~Glo VE.G € X, g0

thatis, P, |« s 18 @ contraction fora, 3,9,0 € R.
35

From the contraction principle we have that F, g, s is the

unique fixed point of P, in X, g, 5 and P, | x i is a Picard
it e %P5Y>

operator, so (26) holds. Consequently, taking into account
(ii), by Theorem 8 it follows that the operator P,,, is a weakly
Picard operator. O

Remark 11. We have a similar result for the operator Q,,,,,.

Theorem 12. The operator S, is a weakly Picard operator and
(SoF) (%)
_F(g:(»).7)-F(g.(y).y)
9 () - 9:(»)

L9 (»)F(9:(»),9) -9, (y)F(g5 (), »)
9s(») -9, (»)

+ F(x, f;(x)) = F (x fi (x))
f3 (x)_f1 (x)

+ f3 (x)F(x’fl (x)) - fi (X)F(x’fs (x))
(0= fi (%)
1
(95 (¥) = 9. (W] [ fs %) = f1 (x)]

x [95 () f (x0) F (x5 f1 (%0)) + 92 (¥) f1 (x1)
x F(xy, f5(x1)) = g5 (¥) fi (x1) F (x0, f5 (%))
-9, (¥) 3 (x0) F (x4, f1 (x1))]

X

a0 - g M@ - fi ()]
X [f1 (x1) F (%o, f3 (%)) + 5 (50) F (%1, £ (%1))
~f3 (x0) F (x5 f1 (%)) = f1 (x0) F (%1, f5 (x1))]

y
(95 (¥) = 9. W] [ (%) = fi ()]

x [g5 () F (xo. f3 (%0)) + g5 (¥) F (1 f1 (x1))
=95 (9) F (%0, fi (x0)) = 92 (9) F (x1, f5 (31))]
Xy
[9: (1) = 9. ] [f () = f1 (0]
x [F (xo0 f1 (%)) + F (1, f3 (%))
=F (x0, f3 (x0)) = F (x1, fi (x1))]
with xy = g, (¥) %, = g5 (¥) -

(31)
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Proof. The proof follows the same steps as in the previous
theorems but using the following inequality:

”Smn(F)(‘x’ )’) - Smn(G)(‘x’ y)noo

1 1 1
< [1 - (zm—l + on-1 - W)] ”F_GHOO’

in order to prove that §,,, is a contraction. O

(32)

Remark 13. We have a similar result for the operator T,,,.
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