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We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all
curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates
of these operators.

1. Bernstein Type Operators

In this paper, using the weakly Picard operators technique
and the contraction principle, we study the convergence
of the iterates of some operators introduced in [1]. Similar
operators with the ones from [1] were studied in [2, 3] and
[4], where the authors construct interpolation and Bernstein-
type operators on triangles and squares with one and all
curved sides. They studied the operators, their product and
Boolean sum, as well as their interpolation properties, the
order of accuracy, and the remainder of the corresponding
approximation formulas.

We recall some results regarding Bernstein-type opera-
tors on a triangle with all curved sides from [1].

We denote by ̃𝑇ℎ the triangle with all curved sides, which
has the vertices 𝑉1 = (0, ℎ), 𝑉2 = (ℎ, 0), 𝑉3 = (0, 0), and the
three curved sides 𝛾1, 𝛾2 (along the coordinate axis), and 𝛾3
(opposite to the vertex𝑉3); ℎ ∈ R+. We have that 𝛾1 is defined
by (𝑥, 𝑓1(𝑥)), with𝑓1(0) = 𝑓1(ℎ) = 0,𝑓1(𝑥) ≤ 0, for 𝑥 ∈ [0, ℎ];
𝛾2 is defined by (𝑔2(𝑦), 𝑦), with 𝑔2(0) = 𝑔2(ℎ) = 0, 𝑔2(𝑦) ≤ 0,
for 𝑦 ∈ [0, ℎ] and 𝛾3 is defined by the one-to-one functions𝑓3
and 𝑔3, where 𝑔3 is the inverse of the function 𝑓3; that is, 𝑦 =
𝑓3(𝑥) and 𝑥 = 𝑔3(𝑦), with 𝑥, 𝑦 ∈ [0, ℎ] and 𝑓3(0) = 𝑔3(0) = ℎ
(see Figure 1). In the sequel we denote by 𝑒𝑖𝑗(𝑥, 𝑦) = 𝑥

𝑖
𝑦

𝑗, for
𝑖, 𝑗 ∈ N.

Let 𝐹 be a real-valued function defined on
̃

𝑇ℎ and (𝑔2(𝑦), 𝑦), (𝑔3(𝑦), 𝑦), respectively, and let
(𝑥, 𝑓1(𝑥)), (𝑥, 𝑓3(𝑥)) be the points in which the parallel

lines to the coordinate axes, passing through the point
(𝑥, 𝑦) ∈

̃

𝑇ℎ, intersecting the sides 𝛾1, 𝛾2, and 𝛾3. We consider
the uniform partitions of the intervals [𝑔2(𝑦), 𝑔3(𝑦)] and
[𝑓1(𝑥), 𝑓3(𝑥)], 𝑥, 𝑦 ∈ [0, ℎ]:

Δ

𝑥

𝑚
= {𝑔2 (𝑦) + 𝑖

𝑔3 (𝑦) − 𝑔2 (𝑦)

𝑚



















𝑖 = 0,𝑚} , (1)

respectively,

Δ

𝑦

𝑛
= {𝑓1 (𝑥) + 𝑗

𝑓3 (𝑥) − 𝑓1 (𝑥)

𝑛

















𝑗 = 0, 𝑛} , (2)

and the Bernstein-type operators 𝐵𝑥
𝑚
and 𝐵𝑦

𝑛
defined by

(𝐵

𝑥

𝑚
𝐹) (𝑥, 𝑦)

=

𝑚

∑

𝑖=0

𝑝𝑚,𝑖 (𝑥, 𝑦) 𝐹(𝑔2 (𝑦) + 𝑖

𝑔3 (𝑦) − 𝑔2 (𝑦)

𝑚

, 𝑦) ,

(3)

with

𝑝𝑚,𝑖 (𝑥, 𝑦)

= (

𝑚

𝑖

) [

𝑥 − 𝑔2(𝑦)

𝑔3(𝑦) − 𝑔2(𝑦)

]

𝑖

[1 −

𝑥 − 𝑔2(𝑦)

𝑔3(𝑦) − 𝑔2(𝑦)

]

𝑚−𝑖

,

(4)
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Figure 1: Triangle ̃𝑇ℎ.

respectively,

(𝐵

𝑦

𝑛
𝐹) (𝑥, 𝑦)

=

𝑛

∑

𝑗=0

𝑞𝑛,𝑗 (𝑥, 𝑦) 𝐹(𝑥, 𝑓1 (𝑥) + 𝑗

𝑓3 (𝑥) − 𝑓1 (𝑥)

𝑛

) ,

(5)

with

𝑞𝑛,𝑗 (𝑥, 𝑦) = (
𝑛

𝑗

) [

𝑦 − 𝑓1(𝑥)

𝑓3(𝑥) − 𝑓1(𝑥)

]

𝑗

[1 −

𝑦 − 𝑓1(𝑥)

𝑓3(𝑥) − 𝑓1(𝑥)

]

𝑛−𝑗

.

(6)

Remark 1. In Figures 2(a) and 2(b) we plot the points
(𝑔2(𝑦) + 𝑖((𝑔3 (𝑦) −𝑔2 (𝑦))/𝑚), 𝑦), 𝑖 = 0,𝑚 and, respectively,
(𝑥, 𝑓1(𝑥) + 𝑗((𝑓3 (𝑥) − 𝑓1 (𝑥))/𝑛), 𝑗 = 0, 𝑛, for 𝑥, 𝑦 ∈ [0, ℎ].

Theorem 2. If 𝐹 is a real-valued function defined on ̃𝑇ℎ , then

(i) 𝐵𝑥
𝑚
𝐹 = 𝐹 on 𝛾2 ∪ 𝛾3,

(ii) 𝐵𝑦
𝑛
𝐹 = 𝐹 on 𝛾1 ∪ 𝛾3,

(iii) (𝐵𝑥
𝑚
𝑒𝑖0)(𝑥, 𝑦) = 𝑥

𝑖, 𝑖 = 0, 1,

(𝐵

𝑥

𝑚
𝑒20)(𝑥, 𝑦) = 𝑥

2
+ [𝑥 − 𝑔2 (𝑦)][𝑔3 (𝑦) − 𝑥]/𝑚,

(𝐵

𝑥

𝑚
𝑒𝑖𝑗)(𝑥, 𝑦) = 𝑦

𝑗
(𝐵

𝑥

𝑚
𝑒𝑖0)(𝑥, 𝑦), 𝑖 = 0, 1, 2; 𝑗 ∈ N,

(iv) (𝐵𝑦
𝑛
𝑒0𝑗)(𝑥, 𝑦) = 𝑦

𝑗
, 𝑗 = 0, 1,

(𝐵

𝑦

𝑛
𝑒02)(𝑥, 𝑦) = 𝑦

2
+ [𝑦 − 𝑓1 (𝑥)][𝑓3 (𝑥) − 𝑦]/𝑛,

(𝐵

𝑦

𝑛
𝑒𝑖𝑗)(𝑥, 𝑦) = 𝑥

𝑖
(𝐵

𝑦

𝑛
𝑒0𝑗)(𝑥, 𝑦), 𝑗 = 0, 1, 2; 𝑖 ∈ N.

Let 𝑃𝑚𝑛 = 𝐵
𝑥

𝑚
𝐵

𝑦

𝑛
, respectively, and let 𝑄𝑛𝑚 = 𝐵

𝑦

𝑛
𝐵

𝑥

𝑚
be the

products of the operators 𝐵𝑥
𝑚
and 𝐵𝑦

𝑛
.

We have

(𝑃𝑚𝑛𝐹) (𝑥, 𝑦)

=

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

𝑝𝑚,𝑖 (𝑥, 𝑦) 𝑞𝑛,𝑗 (𝑥𝑖, 𝑦)

× 𝐹(𝑥𝑖, 𝑓1 (𝑥𝑖) + 𝑗

𝑓3 (𝑥𝑖) − 𝑓1 (𝑥𝑖)

𝑛

)

(7)

with 𝑥𝑖 = 𝑔2(𝑦) + 𝑖((𝑔3(𝑦) − 𝑔2(𝑦))/𝑚), respectively,

(𝑄𝑛𝑚𝐹) (𝑥, 𝑦)

=

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

𝑝𝑚,𝑖 (𝑥, 𝑦𝑗) 𝑞𝑛,𝑗 (𝑥, 𝑦)

× 𝐹(𝑔2 (𝑦𝑗) + 𝑖

𝑔3 (𝑦𝑗) − 𝑔2 (𝑦𝑗)

𝑚

, 𝑦𝑗) ,

(8)

with 𝑦𝑗 = 𝑓1(𝑥) + 𝑗((𝑓3(𝑥) − 𝑓1(𝑥))/𝑛).

Theorem 3. If 𝐹 is a real-valued function defined on ̃𝑇ℎ, then

(i) (𝑃𝑚𝑛𝐹)(𝑉3) = 𝐹(𝑉3), 𝑃𝑚𝑛𝐹 = 𝐹, on 𝛾3 and
(ii) (𝑄𝑛𝑚𝐹)(𝑉3) = 𝐹(𝑉3), 𝑄𝑛𝑚𝐹 = 𝐹, on 𝛾3.

We consider the Boolean sums of the operators 𝐵𝑥
𝑚
and

𝐵

𝑦

𝑛
; that is,

𝑆𝑚𝑛 := 𝐵
𝑥

𝑚
⊕ 𝐵

𝑦

𝑛
= 𝐵

𝑥

𝑚
+ 𝐵

𝑦

𝑛
− 𝐵

𝑥

𝑚
𝐵

𝑦

𝑛
, (9)

respectively,

𝑇𝑛𝑚 := 𝐵
𝑦

𝑛
⊕ 𝐵

𝑥

𝑚
= 𝐵

𝑦

𝑛
+ 𝐵

𝑥

𝑚
− 𝐵

𝑦

𝑛
𝐵

𝑥

𝑚
. (10)

Theorem 4. If 𝐹 is a real-valued function defined on ̃𝑇ℎ, then

𝑆𝑚𝑛𝐹






𝜕�̃�ℎ
= 𝐹|

𝜕�̃�ℎ
,

𝑇𝑛𝑚𝐹






𝜕�̃�ℎ
= 𝐹|

𝜕�̃�ℎ
.

(11)

2. Weakly Picard Operators

We recall some results regarding weakly Picard operators that
will be used in the sequel (see, e.g., [5]).

Let (𝑋, 𝑑) be a metric space and𝐴 : 𝑋 → 𝑋 an operator.
We denote by 𝐹𝐴 := {𝑥 ∈ 𝑋 | 𝐴(𝑥) = 𝑥}, the fixed points
set of 𝐴; 𝐼(𝐴) := {𝑌 ⊂ 𝑋 | 𝐴(𝑌) ⊂ 𝑌, 𝑌 ̸= 0}, the family
of the nonempty invariant subsets of 𝐴; 𝐴0 := 1𝑋, 𝐴

1
:=

𝐴, . . . , 𝐴

𝑛+1
:= 𝐴 ∘ 𝐴

𝑛
, 𝑛 ∈ N.

Definition 5. The operator 𝐴 : 𝑋 → 𝑋 is a Picard operator
if there exists 𝑥∗ ∈ 𝑋 such that

(i) 𝐹𝐴 = {𝑥
∗
};

(ii) the sequence (𝐴𝑛(𝑥0))𝑛∈N converges to 𝑥∗ for all 𝑥0 ∈
𝑋.
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Figure 2: (a) Points of Δ𝑥
𝑚
, for𝑚 = 4. (b) Points of Δ𝑛

𝑦
, for 𝑛 = 4.

Definition 6. Theoperator𝐴 is a weakly Picard operator if the
sequence (𝐴𝑛(𝑥))𝑛∈N converges, for all 𝑥 ∈ 𝑋, and the limit
(which may depend on 𝑥) are a fixed point of 𝐴.

Definition 7. If 𝐴 is a weakly Picard operator, then we
consider the operator 𝐴∞, 𝐴∞ : 𝑋 → 𝑋, defined by

𝐴

∞
(𝑥) := lim

𝑛→∞
𝐴

𝑛
(𝑥) . (12)

Theorem 8. An operator 𝐴 is a weakly Picard operator if and
only if there exists a partition of 𝑋,𝑋 = ⋃

𝜆∈Λ
𝑋𝜆, such that

(a) 𝑋𝜆 ∈ 𝐼(𝐴), ∀𝜆 ∈ Λ;

(b) 𝐴|𝑋𝜆 : 𝑋𝜆 → 𝑋𝜆 is a Picard operator, ∀𝜆 ∈ Λ.

3. Iterates of Bernstein Type Operators

Let 𝐹 be a real-valued function defined on ̃𝑇ℎ; ℎ ∈ R+.
Using the weakly Picard operators technique and the

contraction principle, we study the convergence of the iterates
of the Bernstein-type operators (3) and (5) and of their
product and Boolean sum operators (7), (8), (9) and (10).The
same approach for some other linear and positive operators
leads to similar results in [6–12].

The limit behavior for the iterates of some classes of
positive linear operators was also studied, for example, in [13–
23]. In the papers [19–21] newmethods were introduced (e.g.,
Korovkin type technique) for the study of the asymptotic
behavior of the iterates of positive linear operators, positive
linear operators preserving the affine functions and defined
on the space of bounded real-valued functions on [0, 1]. This
techniques enlarge the class of operators for which the limit
of the iterates can be computed. In [13, 14] some methods
were proposed to determine the degree of convergence
for the iterates of certain positive linear operators towards

the first Bernstein operator. Using the spectrum of the
operators involved in [15], convergence results were proved
for overiterates of certain (generalized) Bernstein-Stancu
operators (see, e.g., [24–26]). In [16, 17] new techniques were
introduced (infinite products, rates of convergence), based on
the results from [18], in order to prove that infinite products of
certain positive linear operators weakly converge to the first
Bernstein operator.

Now we study the convergence of the iterates of the
Bernstein-type operators (3) and (5).

Theorem 9. The operators 𝐵𝑥
𝑚

and 𝐵

𝑦

𝑛
are weakly Picard

operators and

(𝐵

𝑥,∞

𝑚
𝐹) (𝑥, 𝑦)

=

𝐹 (𝑔3 (𝑦) , 𝑦) − 𝐹 (𝑔2 (𝑦) , 𝑦)

𝑔3 (𝑦) − 𝑔2 (𝑦)

𝑥

+

𝑔3 (𝑦) 𝐹 (𝑔2 (𝑦) , 𝑦) − 𝑔2 (𝑦) 𝐹 (𝑔3 (𝑦) , 𝑦)

𝑔3 (𝑦) − 𝑔2 (𝑦)

,

(13)

(𝐵

𝑦,∞

𝑛
𝐹) (𝑥, 𝑦)

=

𝐹 (𝑥, 𝑓3 (𝑥)) − 𝐹 (𝑥, 𝑓1 (𝑥))

𝑓3 (𝑥) − 𝑓1 (𝑥)

𝑦

+

𝑓3 (𝑥) 𝐹 (𝑥, 𝑓1 (𝑥)) − 𝑓1 (𝑥) 𝐹 (𝑥, 𝑓3 (𝑥))

𝑓3 (𝑥) − 𝑓1 (𝑥)

.

(14)

Proof. Taking into account the interpolation properties of 𝐵𝑥
𝑚

and 𝐵𝑦
𝑛
(fromTheorem 2), let us consider

𝑋

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

= {𝐹 ∈ 𝐶 (

̃

𝑇ℎ) | 𝐹 (𝑔2 (𝑦) , 𝑦) = 𝜑







𝛾2
,

𝐹 (𝑔3 (𝑦) , 𝑦) = 𝜑







𝛾3
} , for 𝑦 ∈ [0, ℎ] ,
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𝑋

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

= {𝐹 ∈ 𝐶 (

̃

𝑇ℎ) | 𝐹 (𝑥, 𝑓1 (𝑥)) = 𝜓







𝛾1
,

𝐹 (𝑥, 𝑓3 (𝑥)) = 𝜓







𝛾3
} , for 𝑥 ∈ [0, ℎ]

(15)

and denote

𝐹

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

(𝑥, 𝑦) :=

𝜑







𝛾3
− 𝜑







𝛾2

𝑔3 (𝑦) − 𝑔2 (𝑦)

𝑥

+

𝑔3 (𝑦) 𝜑






𝛾2
− 𝑔2 (𝑦) 𝜑







𝛾3

𝑔3 (𝑦) − 𝑔2 (𝑦)

,

𝐹

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

(𝑥, 𝑦) :=

𝜓







𝛾3
− 𝜓







𝛾1

𝑓3 (𝑥) − 𝑓1 (𝑥)

𝑦

+

𝑓3 (𝑥) 𝜓






𝛾1
− 𝑓1 (𝑥) 𝜓







𝛾3

𝑓3 (𝑥) − 𝑓1 (𝑥)

,

(16)

with 𝜑, 𝜓 ∈ 𝐶(

̃

𝑇ℎ).

We have the following properties:

(i) 𝑋(1)
𝜑|
𝛾2
,𝜑|
𝛾3

and𝑋(2)
𝜓|
𝛾1
,𝜓|
𝛾3

are closed subsets of 𝐶(̃𝑇ℎ);

(ii) 𝑋(1)
𝜑|
𝛾2
,𝜑|
𝛾3

is an invariant subset of 𝐵𝑥
𝑚
and 𝑋(2)

𝜓|
𝛾1
,𝜓|
𝛾3

is

an invariant subset of 𝐵𝑦
𝑛
, for 𝜑, 𝜓 ∈ 𝐶(

̃

𝑇ℎ) and 𝑛,𝑚 ∈

N∗;

(iii) 𝐶(̃𝑇ℎ) = ⋃

𝜑∈𝐶(�̃�ℎ)
𝑋

(1)

𝜑|
𝛾2
,𝜑|
𝛾3

and 𝐶(

̃

𝑇ℎ) =

⋃

𝜓∈𝐶(�̃�ℎ)
𝑋

(2)

𝜓|
𝛾1
,𝜓|
𝛾3

are partitions of 𝐶(̃𝑇ℎ);

(iv) 𝐹(1)
𝜑|
𝛾2
,𝜑|
𝛾3

∈ 𝑋

(1)

𝜑|
𝛾2
,𝜑|
𝛾3

∩ 𝐹𝐵𝑥
𝑚
and 𝐹(2)

𝜓|
𝛾1
,𝜓|
𝛾3

∈ 𝑋

(2)

𝜓|
𝛾1
,𝜓|
𝛾3

∩

𝐹

𝐵
𝑦

𝑛
, where 𝐹𝐵𝑥

𝑚
and 𝐹
𝐵
𝑦

𝑛
denote the fixed points sets of

𝐵

𝑥

𝑚
and 𝐵𝑦

𝑛
.

The statements (i) and (iii) are obvious.
(ii), by linearity of Bernstein operators andTheorem 2, it

follows that ∀𝐹(1)
𝜑|
𝛾2
,𝜑|
𝛾3

∈ 𝑋

(1)

𝜑|
𝛾2
,𝜑|
𝛾3

and ∀𝐹(2)
𝜓|
𝛾1
,𝜓|
𝛾3

∈ 𝑋

(2)

𝜓|
𝛾1
,𝜓|
𝛾3

;
we have

𝐵

𝑥

𝑚
𝐹

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

(𝑥, 𝑦) = 𝐹

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

(𝑥, 𝑦) ,

𝐵

𝑦

𝑛
𝐹

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

(𝑥, 𝑦) = 𝐹

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

(𝑥, 𝑦) .

(17)

So, 𝑋(1)
𝜑|
𝛾2
,𝜑|
𝛾3

and 𝑋(2)
𝜓|
𝛾1
,𝜓|
𝛾3

are invariant subsets of 𝐵𝑥
𝑚
and,

respectively, of 𝐵𝑦
𝑛
, for 𝜑, 𝜓 ∈ 𝐶(

̃

𝑇ℎ) and 𝑛,𝑚 ∈ N∗.
(iv), we prove that

𝐵

𝑥

𝑚







𝑋
(1)

𝜑|𝛾2
,𝜑|𝛾3

: 𝑋

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

→ 𝑋

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

,

𝐵

𝑦

𝑛







𝑋
(2)

𝜓|𝛾1
,𝜓|𝛾3

: 𝑋

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

→ 𝑋

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

,

(18)

are contractions for 𝜑, 𝜓 ∈ 𝐶(

̃

𝑇ℎ) and 𝑛,𝑚 ∈ N∗.

Let 𝐹, 𝐺 ∈ 𝑋

(1)

𝜑|
𝛾2
,𝜑|
𝛾3

. From (3) we have









𝐵

𝑥

𝑚
(𝐹) (𝑥, 𝑦) − 𝐵

𝑥

𝑚
(𝐺) (𝑥, 𝑦)









=









𝐵

𝑥

𝑚
(𝐹 − 𝐺) (𝑥, 𝑦)









≤

















1 − (1 −

𝑥 − 𝑔2(𝑦)

𝑔3(𝑦) − 𝑔2(𝑦)

)

𝑚

− (

𝑥 − 𝑔2(𝑦)

𝑔3(𝑦) − 𝑔2(𝑦)

)

𝑚
















‖𝐹 − 𝐺‖∞ ≤ (1 −

1

2

𝑚−1
) ‖𝐹 − 𝐺‖∞,

(19)

where ‖ ⋅ ‖∞ denotes the Chebyshev norm. So,








𝐵

𝑥

𝑚
(𝐹)(𝑥, 𝑦) − 𝐵

𝑥

𝑚
(𝐺)(𝑥, 𝑦)







∞

≤ (1 −

1

2

𝑚−1
) ‖𝐹 − 𝐺‖∞, ∀𝐹, 𝐺 ∈ 𝑋

(1)

𝜑
|

𝛾2
, 𝜑
|

𝛾3

,

(20)

that is, 𝐵𝑥
𝑚
|

𝑋
(1)

𝜑|𝛾2
,𝜑|𝛾3

is a contraction for 𝜑 ∈ 𝐶(̃𝑇ℎ).

Analogously we have








𝐵

𝑦

𝑛
(𝐹) (𝑥, 𝑦) − 𝐵

𝑦

𝑛
(𝐺) (𝑥, 𝑦)









=









𝐵

𝑦

𝑛
(𝐹 − 𝐺) (𝑥, 𝑦)









≤

















1 − (1 −

𝑦 − 𝑓1(𝑥)

𝑓3(𝑥) − 𝑓1(𝑥)

)

𝑛

− (

𝑦 − 𝑓1(𝑥)

𝑓3(𝑥) − 𝑓1(𝑥)

)

𝑛
















‖𝐹 − 𝐺‖∞ ≤ (1 −

1

2

𝑛−1
) ‖𝐹 − 𝐺‖∞,

(21)

whence








𝐵

𝑦

𝑛
(𝐹)(𝑥, 𝑦) − 𝐵

𝑦

𝑛
(𝐺)(𝑥, 𝑦)







∞

≤ (1 −

1

2

𝑛−1
) ‖𝐹 − 𝐺‖∞, ∀𝐹, 𝐺 ∈ 𝑋

(2)

𝜓
|

𝛾1
, 𝜓
|

𝛾3

,

(22)

that is, 𝐵𝑦
𝑛
|

𝑋
(2)

𝜓|𝛾1
,𝜓|𝛾3

is a contraction for 𝜓 ∈ 𝐶(

̃

𝑇ℎ).

On the other hand, ((𝜑|
𝛾3
− 𝜑|

𝛾2
)/(𝑔3(𝑦) − 𝑔2(𝑦)))(⋅) +

(𝑔3(𝑦)𝜑|𝛾2
− 𝑔2(𝑦)𝜑|𝛾3

)/(𝑔3(𝑦) − 𝑔2(𝑦)) ∈ 𝑋
(1)

𝜑|
𝛾2
,𝜑|
𝛾3

, ((𝜓|
𝛾3
−

𝜓|

𝛾1
)/(𝑓3(𝑥) − 𝑓1(𝑥)))(⋅) + (𝑓3(𝑥)𝜓|𝛾1

− 𝑓1(𝑥)𝜓|𝛾3
)/(𝑓3(𝑥) −

𝑓1(𝑥)) ∈ 𝑋
(2)

𝜓|
𝛾1
,𝜓|
𝛾3

are fixed points of 𝐵𝑥
𝑚
and 𝐵𝑦

𝑛
; that is,

𝐵

𝑥

𝑚
(

𝜑







𝛾3
− 𝜑







𝛾2

𝑔3 (𝑦) − 𝑔2 (𝑦)

(⋅) +

𝑔3 (𝑦) 𝜑






𝛾2
− 𝑔2 (𝑦) 𝜑







𝛾3

𝑔3 (𝑦) − 𝑔2 (𝑦)

)

=

𝜑







𝛾3
− 𝜑







𝛾2

𝑔3 (𝑦) − 𝑔2 (𝑦)

(⋅) +

𝑔3 (𝑦) 𝜑






𝛾2
− 𝑔2 (𝑦) 𝜑







𝛾3

𝑔3 (𝑦) − 𝑔2 (𝑦)

,

𝐵

𝑦

𝑛
(

𝜓







𝛾3
− 𝜓







𝛾1

𝑓3 (𝑥) − 𝑓1 (𝑥)

(⋅) +

𝑓3 (𝑥) 𝜓






𝛾1
− 𝑓1 (𝑥) 𝜓







𝛾3

𝑓3 (𝑥) − 𝑓1 (𝑥)

)

=

𝜓







𝛾3
− 𝜓







𝛾1

𝑓3 (𝑥) − 𝑓1 (𝑥)

(⋅) +

𝑓3 (𝑥) 𝜓






𝛾1
− 𝑓1 (𝑥) 𝜓







𝛾3

𝑓3 (𝑥) − 𝑓1 (𝑥)

.

(23)
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From the contraction principle, 𝐹(1)
𝜑|
𝛾2
,𝜑|
𝛾3

(𝑥, 𝑦) := ((𝜑|

𝛾3
−

𝜑|

𝛾2
)/(𝑔3(𝑦) − 𝑔2(𝑦)))𝑥 + (𝑔3(𝑦)𝜑|𝛾2

− 𝑔2(𝑦)𝜑|𝛾3
)/(𝑔3(𝑦) −

𝑔2(𝑦)) is the unique fixed point of 𝐵𝑥
𝑚

in 𝑋

(1)

𝜑|
𝛾2
,𝜑|
𝛾3

and
𝐵

𝑥

𝑚
|

𝑋
(1)

𝜑|𝛾2
,𝜑|𝛾3

is a Picard operator, with

(𝐵

𝑥,∞

𝑚
𝐹) (𝑥, 𝑦)

=

𝐹 (𝑔3 (𝑦) , 𝑦) − 𝐹 (𝑔2 (𝑦) , 𝑦)

𝑔3 (𝑦) − 𝑔2 (𝑦)

𝑥

+

𝑔3 (𝑦) 𝐹 (𝑔2 (𝑦) , 𝑦) − 𝑔2 (𝑦) 𝐹 (𝑔3 (𝑦) , 𝑦)

𝑔3 (𝑦) − 𝑔2 (𝑦)

,

(24)

and, similarly, 𝐹(2)
𝜓|
𝛾1
,𝜓|
𝛾3

(𝑥, 𝑦) := ((𝜓|

𝛾3
− 𝜓|

𝛾1
)/(𝑓3(𝑥) −

𝑓1(𝑥)))𝑦 + (𝑓3(𝑥)𝜓|𝛾1
− 𝑓1(𝑥)𝜓|𝛾3

)/(𝑓3(𝑥) − 𝑓1(𝑥)) is the
unique fixed point of𝐵𝑦

𝑛
in𝑋(2)
𝜓|
𝛾1
,𝜓|
𝛾3

and𝐵𝑦
𝑛
|

𝑋
(2)

𝜓|𝛾1
,𝜓|𝛾3

is a Picard

operator, with

(𝐵

𝑦,∞

𝑛
𝐹) (𝑥, 𝑦) =

𝐹 (𝑥, 𝑓3 (𝑥)) − 𝐹 (𝑥, 𝑓1 (𝑥))

𝑓3 (𝑥) − 𝑓1 (𝑥)

𝑦

+

𝑓3 (𝑥) 𝐹 (𝑥, 𝑓1 (𝑥)) − 𝑓1 (𝑥) 𝐹 (𝑥, 𝑓3 (𝑥))

𝑓3 (𝑥) − 𝑓1 (𝑥)

.

(25)

Consequently, taking into account (ii), by Theorem 8 it
follows that the operators 𝐵𝑥

𝑚
and 𝐵

𝑦

𝑛
are weakly Picard

operators.

Now we study the convergence of the product and
Boolean sum operators (7) and (9).

Theorem 10. Theoperator𝑃𝑚𝑛 is a weakly Picard operator and

(𝑃

∞

𝑚𝑛
𝐹) (𝑥, 𝑦)

=

1

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝑔3 (𝑦) 𝑓3 (𝑥0) 𝐹 (𝑥0, 𝑓1 (𝑥0)) + 𝑔2 (𝑦) 𝑓1 (𝑥1)

× 𝐹 (𝑥1, 𝑓3 (𝑥1)) − 𝑔3 (𝑦) 𝑓1 (𝑥1)

×𝐹 (𝑥0, 𝑓3 (𝑥0)) − 𝑔2 (𝑦) 𝑓3 (𝑥0) 𝐹 (𝑥1, 𝑓1 (𝑥1))]

+

𝑥

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝑓1 (𝑥1) 𝐹 (𝑥0, 𝑓3 (𝑥0)) + 𝑓3 (𝑥0) 𝐹 (𝑥1, 𝑓1 (𝑥1))

− 𝑓3 (𝑥0) 𝐹 (𝑥0, 𝑓1 (𝑥0))

−𝑓1 (𝑥0) 𝐹 (𝑥1, 𝑓3 (𝑥1))]

+

𝑦

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝑔3 (𝑦) 𝐹 (𝑥0, 𝑓3 (𝑥0))

+ 𝑔2 (𝑦) 𝐹 (𝑥1, 𝑓1 (𝑥1)) − 𝑔3 (𝑦)

×𝐹 (𝑥0, 𝑓1 (𝑥0)) − 𝑔2 (𝑦) 𝐹 (𝑥1, 𝑓3 (𝑥1))]

+

𝑥𝑦

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝐹 (𝑥0, 𝑓1 (𝑥0)) + 𝐹 (𝑥1, 𝑓3 (𝑥1))

−𝐹 (𝑥0, 𝑓3 (𝑥0)) − 𝐹 (𝑥1, 𝑓1 (𝑥1))] ,

with 𝑥0 = 𝑔2 (𝑦) , 𝑥1 = 𝑔3 (𝑦) .
(26)

Proof. Let 𝑋𝛼,𝛽,𝛾,𝛿 = {𝐹 ∈ 𝐶(

̃

𝑇ℎ) | 𝐹(𝑥0, 𝑓1(𝑥0)) =

𝛼, 𝐹(𝑥1, 𝑓1(𝑥1)) = 𝛽, 𝐹(𝑥1, 𝑓3(𝑥1)) = 𝛾, 𝐹(𝑥0, 𝑓3(𝑥0)) = 𝛿}

and denote

𝐹𝛼,𝛽,𝛾,𝛿 (𝑥, 𝑦)

:= (𝑔3 (𝑦) 𝑓3 (𝑥0) 𝛼 + 𝑔2 (𝑦) 𝑓1 (𝑥1) 𝛾

−𝑔3 (𝑦) 𝑓1 (𝑥1) 𝛿 − 𝑔2 (𝑦) 𝑓3 (𝑥0) 𝛽)

× ([𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)])
−1

+

𝑓1 (𝑥1) 𝛿 + 𝑓3 (𝑥0) 𝛽 − 𝑓3 (𝑥0) 𝛼 − 𝑓1 (𝑥0) 𝛾

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

𝑥

+

𝑔3 (𝑦) 𝛿 + 𝑔2 (𝑦) 𝛽 − 𝑔3 (𝑦) 𝛼 − 𝑔2 (𝑦) 𝛾

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

𝑦

+

𝛼 + 𝛾 − 𝛽 − 𝛿

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

𝑥𝑦

(27)

with 𝛼, 𝛽, 𝛾, 𝛿 ∈ R.
We remark that

(i) 𝑋𝛼,𝛽,𝛾,𝛿 is a closed subset of 𝐶(̃𝑇ℎ);
(ii) 𝑋𝛼,𝛽,𝛾,𝛿 is an invariant subset of 𝑃𝑚𝑛, for 𝛼, 𝛽, 𝛾, 𝛿 ∈ R

and 𝑛,𝑚 ∈ N∗;
(iii) 𝐶(̃𝑇ℎ) = ⋃𝛼,𝛽,𝛾,𝛿𝑋𝛼,𝛽,𝛾,𝛿 is a partition of 𝐶(̃𝑇ℎ);
(iv) 𝐹𝛼,𝛽,𝛾,𝛿 ∈ 𝑋𝛼,𝛽,𝛾,𝛿 ∩ 𝐹𝑃𝑚𝑛 , where 𝐹𝑃𝑚𝑛 denote the fixed

points sets of 𝑃𝑚𝑛.

The statements (i) and (iii) are obvious.
(ii), similarly with the proof of Theorem 9, by linearity of

Bernstein operators and Theorem 3, it follows that 𝑋𝛼,𝛽,𝛾,𝛿 is
an invariant subset of 𝑃𝑚𝑛, for 𝛼, 𝛽, 𝛾, 𝛿 ∈ R and 𝑛,𝑚 ∈ N∗.

(iv), we prove that

𝑃𝑚𝑛







𝑋𝛼,𝛽,𝛾,𝛿
: 𝑋𝛼,𝛽,𝛾,𝛿 → 𝑋𝛼,𝛽,𝛾,𝛿 (28)

is a contraction for 𝛼, 𝛽, 𝛾, 𝛿 ∈ R and 𝑛,𝑚 ∈ N∗. Let 𝐹, 𝐺 ∈

𝑋𝛼,𝛽,𝛾,𝛿. From [7, Lemma 8] it follows that









𝑃𝑚𝑛 (𝐹) (𝑥, 𝑦) − 𝑃𝑚𝑛 (𝐺) (𝑥, 𝑦)








=









𝑃𝑚𝑛 (𝐹 − 𝐺) (𝑥, 𝑦)








≤ (1 −

1

2

𝑚+𝑛−2
) ‖𝐹 − 𝐺‖∞.

(29)
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So,








𝑃𝑚𝑛(𝐹)(𝑥, 𝑦) − 𝑃𝑚𝑛(𝐺)(𝑥, 𝑦)






∞

≤ (1 −

1

2

𝑚+𝑛−2
) ‖𝐹 − 𝐺‖∞, ∀𝐹, 𝐺 ∈ 𝑋𝛼,𝛽,𝛾,𝛿,

(30)

that is, 𝑃𝑚𝑛|𝑋𝛼,𝛽,𝛾,𝛿 is a contraction for 𝛼, 𝛽, 𝛾, 𝛿 ∈ R.
From the contraction principle we have that 𝐹𝛼,𝛽,𝛾,𝛿 is the

unique fixed point of 𝑃𝑚𝑛 in𝑋𝛼,𝛽,𝛾,𝛿 and 𝑃𝑚𝑛|𝑋𝛼,𝛽,𝛾,𝛿 is a Picard
operator, so (26) holds. Consequently, taking into account
(𝑖𝑖), byTheorem 8 it follows that the operator 𝑃𝑚𝑛 is a weakly
Picard operator.

Remark 11. We have a similar result for the operator 𝑄𝑛𝑚.

Theorem 12. Theoperator 𝑆𝑚𝑛 is a weakly Picard operator and

(𝑆

∞

𝑚𝑛
𝐹) (𝑥, 𝑦)

=

𝐹 (𝑔3 (𝑦) , 𝑦) − 𝐹 (𝑔2 (𝑦) , 𝑦)

𝑔3 (𝑦) − 𝑔2 (𝑦)

𝑥

+

𝑔3 (𝑦) 𝐹 (𝑔2 (𝑦) , 𝑦) − 𝑔2 (𝑦) 𝐹 (𝑔3 (𝑦) , 𝑦)

𝑔3 (𝑦) − 𝑔2 (𝑦)

+

𝐹 (𝑥, 𝑓3 (𝑥)) − 𝐹 (𝑥, 𝑓1 (𝑥))

𝑓3 (𝑥) − 𝑓1 (𝑥)

𝑦

+

𝑓3 (𝑥) 𝐹 (𝑥, 𝑓1 (𝑥)) − 𝑓1 (𝑥) 𝐹 (𝑥, 𝑓3 (𝑥))

𝑓3 (𝑥) − 𝑓1 (𝑥)

−

1

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝑔3 (𝑦) 𝑓3 (𝑥0) 𝐹 (𝑥0, 𝑓1 (𝑥0)) + 𝑔2 (𝑦) 𝑓1 (𝑥1)

× 𝐹 (𝑥1, 𝑓3 (𝑥1)) − 𝑔3 (𝑦) 𝑓1 (𝑥1) 𝐹 (𝑥0, 𝑓3 (𝑥0))

−𝑔2 (𝑦) 𝑓3 (𝑥0) 𝐹 (𝑥1, 𝑓1 (𝑥1))]

−

𝑥

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝑓1 (𝑥1) 𝐹 (𝑥0, 𝑓3 (𝑥0)) + 𝑓3 (𝑥0) 𝐹 (𝑥1, 𝑓1 (𝑥1))

−𝑓3 (𝑥0) 𝐹 (𝑥0, 𝑓1 (𝑥0)) − 𝑓1 (𝑥0) 𝐹 (𝑥1, 𝑓3 (𝑥1))]

−

𝑦

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝑔3 (𝑦) 𝐹 (𝑥0, 𝑓3 (𝑥0)) + 𝑔2 (𝑦) 𝐹 (𝑥1, 𝑓1 (𝑥1))

−𝑔3 (𝑦) 𝐹 (𝑥0, 𝑓1 (𝑥0)) − 𝑔2 (𝑦) 𝐹 (𝑥1, 𝑓3 (𝑥1))]

−

𝑥𝑦

[𝑔3 (𝑦) − 𝑔2 (𝑦)] [𝑓3 (𝑥) − 𝑓1 (𝑥)]

× [𝐹 (𝑥0, 𝑓1 (𝑥0)) + 𝐹 (𝑥1, 𝑓3 (𝑥1))

−𝐹 (𝑥0, 𝑓3 (𝑥0)) − 𝐹 (𝑥1, 𝑓1 (𝑥1))] ,

with 𝑥0 = 𝑔2 (𝑦) , 𝑥1 = 𝑔3 (𝑦) .
(31)

Proof. The proof follows the same steps as in the previous
theorems but using the following inequality:









𝑆𝑚𝑛(𝐹)(𝑥, 𝑦) − 𝑆𝑚𝑛(𝐺)(𝑥, 𝑦)






∞

≤ [1 − (

1

2

𝑚−1
+

1

2

𝑛−1
−

1

2

𝑚+𝑛−2
)] ‖𝐹 − 𝐺‖∞,

(32)

in order to prove that 𝑆𝑚𝑛 is a contraction.

Remark 13. We have a similar result for the operator 𝑇𝑛𝑚.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References
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