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Project planning, defining the limitations and resources by leveling the resources available, have a great importance for the
management projects. All these activities directly affect the duration and the cost of the project. To get a competitive value on
the market, the project must be completed at the optimum time. In other to be competitive enough the optimum or near optimum
solutions of time cost tradeoff and the resource leveling and resource constrained scheduling problems should be obtained in the
planning phase of the project. One important aspect of the project management is activity crashing, that is, reducing activity time by
adding more resources such as workers and overtime. It is important to decide the optimal crash plan to complete the project within
the desired time period. The comparison of fuzzy simulated annealing and the genetic algorithm based on the crashing method
is introduced in this paper to evaluate project networks and determine the optimum crashing configuration that minimizes the
average project cost, caused by being late and crashing costs in the presence of vagueness and uncertainty. The evaluation results

based on a real case study indicate that the method can be reliably applied to engineering projects.

1. Introduction

The project has all the elements of business processes and an
enterprise that takes place in the future with appropriate risk
and uncertainty. The project includes the final objectives to
be achieved by involving the limited resources. The project
requires the coordination and implementation of techniques
while using the network planning. Good functioning of
the project as a system depends on how you implement
and achieve the objectives defined purposes in a dynamic
environment. However, it must be emphasized that the
system of this type of work includes the external and internal
disturbances. The project is characterized by great complex-
ity, the huge costs, and a large number of participants in the
implementation. In order to realize the project effectively, it is
necessary to manage it rationally. Because of practical impor-
tance, the literature discusses a lot of project management
and the tradeoft between duration and total project costs. The
special emphasis is placed on the temporal optimization of
costs. There are different combinations of choosing the time
and the cost of the project activities. The problem is which
one is the best. The goal of the optimization time cost is

the selection of the best combinations. In the projects, the
cost and the duration of activities are variable and uncertain
because they depend on many factors (inflation, economic
and social conditions, human factors, and natural events).
The project and its execution are associated with resources.
It is the management of these resources, a better use of the
project resources, that can positively affect the profitability of
the company.

The project management is the ability to plan and
monitor their activities and progress within the cost and
time and performance, with the goal of competitiveness. [1]
Since the 1950s, the critical path method (CPM) has been
demonstrated to be a useful tool in managing the projects
in an efficient manner to meet the challenge of managing
complicated projects (Kelly, 1961; Siemens, 1971) [2].

In the past, the scheduling of a project (overtime) was
done with little planning. The best-known “planning” tool
then was the Gantt bar chart, which specifies the starting
and finishing times for each activity on the horizontal time
scale. Its disadvantage is that the interdependency between
the different activities (which mainly controls the progress
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of the project) cannot be determined from the bar chart.
The growing complexities of today’s projects have demanded
more systematic and more effective planning techniques
with the objectives of optimizing the efficiency of executing
the project. The efficiency here implies affecting the utmost
reduction of the required time to complete the project while
accounting for the economic feasibility of using available
resources [2].

Shortening the duration of the project may be the result of
delays or some other reasons, for the need of an early ending.
The project manager, knowing the critical path, with the help
of your team can use several techniques to shorten the project.
Crashing is a technique for making cost and schedule time
tradeofs to obtain the greatest amount of time compression
for the least incremental cost. This technique is also known
as time cost tradeofls.

An important aspect of the project management is the
risk management. We are all exposed to daily risk at work
and privately and often subconsciously manage risks. This
question must be considered actively in the jobs they per-
form. The modern corporate structure management placed
significant emphasis on risk management. The risk can occur
in different forms or their activities influence the effectiveness
(performance), the various stakeholders, customers/service
users, and citizens. It is necessary to understand the way
in which these risks can be managed. This is the central
part of successful planning and avoidance of failure and
achieving goals, building public confidence, and meeting the
requirements of good corporate governance. That is the basis
of successful planning and avoidance of failure and achieving
goals, building public confidence, and meeting the demands
of good corporate governance to manage the risks that an
organization needs to know what risks it faces and hence
evaluate them. Identifying risks is the first step in building
a profile of the organization. Identifying risks can be initial
and permanent. Once identified, risks should be analyzed and
grouped according to a type of threat posed by the objectives
of the organization. The risk assessment is based on the
collected information about the risk. All actions undertaken
in order to solve (reduce) risks can be considered as controls.
In every organization there should be an effective screening
process and reporting on the risk management in order to
perform successful control.

The schedule/time risk essentially implies not completing
the project activities on time, resulting in a late completion
of the project. The late project completion generally has
negative effects on the company such as the penalty costs
and customer dissatisfaction. If a project is running late
project managers might be able to bring the project back on
track by incorporating additional resources. In the project
management, this method of mitigating risk is known as
crashing.

Sometimes the uncertainty in projects cannot be
described by randomness. In fact, the activities of some
projects may have been processed many times before, and
with historical data, the uncertainty of activity duration time
can be described by probability distributions. While the
activities of some other projects may be short of statistical
data, the duration times can be better described by fuzzy
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variables. With the development of that search on fuzziness,
the fuzzy set theory was also applied into the project
scheduling problem, originally by Prade. To the best of our
knowledge of the authors, the first work on the fuzzy time cost
tradeoff problem was done by Leu et al. In [3], the activity
durations were characterized by fuzzy numbers due to
environmental variation, and the fuzzy relationship between
the activity time and the activity cost was demonstrated
by membership function. Furthermore, the philosophy of
chance constrained programming was introduced as the
decision making criterion. Jin et al. [4] gave a GA-based
fully fuzzy optimal time-cost tradeoff model, in which
all parameters and variables were characterized by fuzzy
numbers and an example in ship building scheduling was
demonstrated. Eshtehardian et al. [5] built a multiobjective
fuzzy time-cost model, in which fuzzy logic theory was
introduced to represent accepted risk levels. Ghazanfari et
al. [6] and Ghazanfari et al. [7] applied possibilistic goal
programming to the time-cost tradeoff problem to determine
optimal duration for each activity in the form of triangular
fuzzy numbers. Ke et al. [8, 9] introduced credibility theory
into this optimization problem and built three types of
fuzzy models. Chen and Tsai [10] constructed membership
function of fuzzy minimum total crash cost based on Zadeh’s
extension principle and transformed the time cost tradeoft
problem to a pair of parametric mathematical programs.

Sometimes randomness and fuzziness may exist in the
same real project. For instance, Ke and Liu [11] introduced the
philosophy of random fuzzy programming into the project
scheduling problem. For the complicated environment with
randomness and fuzziness, fuzzy random programming is
also a very powerful tool for solving time-cost tradeoft
problem. Fuzzy random variable was first introduced by
Kwakernaak [12, 13].

A fuzzy linear programming (FLP) time-cost tradeoft
model is presented and solved by genetic algorithm (GA). The
results obtained by GA are compared with those of traditional
approach for solving FLP problems. The proposed method
solves the time-cost tradeoff problems within uncertain
environment and proves suitable through a real project for
the Serbian Postal Company.

This paper is organized in four sections including the first
section for the introduction of the problem. In Section 2 we
represent a project planning problem as a fuzzy optimization
problem and present the concept of fuzzy genetic algorithm
as a searching tool for obtaining an optimal solution and SA
algorithm. In Section 3, we apply the proposed methodology
on a real case study. Finally, in Section 4, we conclude this
paper with some perspectives on further developments.

2. Basics on the Approach Used for
Formulating and Solving the Project Time-
Cost Tradeoff Problem

In this section, the main features of the fuzzy approach
used in this paper to formulate and solve the project time-
cost tradeoft problem are introduced. We divided this sec-
tion into three subsections: in the first we introduced the
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main concepts of fuzzy optimization; the second subsection
presents the fuzzification model used in this paper; in the
third subsection we describe the solution approach and the
reasons for using the genetic algorithm.

2.1. Fuzzy Optimization. Fuzzy optimization problems are
concerned with the maximization or minimization of single
or multiple objectives while satisfying the problem con-
straints, which represent the model limited resources. Fuzzy
optimization’s main aim is to find the most satisfying solution
(decision alternative) within a fuzzy environment [14].

Bellman and Zadeh addressed the fuzzy optimization
problems in their paper on “Decision making in a fuzzy
environment” [15] where they consider that in a fuzzy
environment there is no distinction between the objectives
and the constraints. Following this symmetric fuzzy decision
concept, Zimmermann [16] developed the first approach for
solving fuzzy linear programming problems. This approach,
denoted maxmin, assumes that the decision maker stipulates
a goal for each of the objective functions and, hence, both
goals and constraints may be considered fuzzy constraints.
Further, Zimmermann proposes a crisp equivalent model
for maximizing the satisfaction of the intersection of the
constraints, which can be solved by traditional methods such
as the simplex algorithm. Zimmermann, as Bellman and
Zadeh did, points out that using flexible constraints blurs the
difference between single and multiple objective problems.

The fuzzification of the single or multiple objective
linear programming model usually includes four forms
of imprecision [17] (more subtle distinctions are made in
[18]:

(i) problems with fuzzy constraints;

(ii) problems with fuzzy objectives (goals imposed on the
objective functions);

(iii) pProblems with fuzzy coeflicients on the variables;

(iv) combinations of the above.

In this paper we discuss the fuzzification of a linear pro-
gramming model to deal with project crashing problems in
uncertain environments, where we have imprecision in the
constraints boundaries and also in the objective function.
Therefore, the fuzzy version of this problem with a fuzzy
objective and a set of fuzzy constraints, which are of the
“less or equal type” or “greater or equal” type, is generally
formalized as

minZ = ch,
Ax{5,3}B, @

x =0,

where Z represents a fuzzy goal, ¢’ is the vector of crisp costs,
A is the matrix that contains the fuzzy coefficients of the
objective and of the constraints, and B is the corresponding
vector of the fuzzy limits of the resources.

2.2. Flexible Fuzzification Model. Ribeiro and Pires [19]
proposed a method for fuzzy optimization problems that
include fuzzy coefficients either in the objective function
or in the constraints. The whole process is designated as
“flexible approach” for fuzzy optimization problems in its for-
malization: assuming the formulation of fuzzy optimization
problems defined in (1), we made a transformation into the
following system of equations:

. T
min Z=cx
X

max M =0 (p (c"x), 4 (Ax), i (Agx))

Subject to :

'x < Zy+ (1 — Uy (ch)) Po

Ax<b+(1-p(Ax)p, (G=1,...,m)

Akxzbk'F(].—[/lk(Akx))pk, (k=1,...,n)

(/40 (CTx) i (Aix) s (Akx)) €[0,1]

x = 0.

2)

It should be noted that all the fuzzy parameters are presented
with a tilde on the top. The N symbol represents the intersec-
tion of all membership values. The second objective repre-
sents the maximization of the intersection of all membership
value; that is, this goal gives the best value of the minimum
(intersection) of the violations constraints.

The most frequently used membership functions to rep-
resent the deviations accepted for the fuzzy objectives (goals),
constraints, and/or coeflicients are triangular functions. In
particular, let 4, denote the membership functions for the ith
or kth constraint. Let p, and p; and p, be the permissible
tolerances for the objective function and the constraints.
Then we may decide p, and y; or g to be nonincreasing or
nondecreasing as well as continuous membership functions
as follows:

1 Ax<b
w1250 <, ©

0 g Aix > b - p;,

1 Ax =,
#k=<l+m€%_hc b — pr < Apx < by (4)

0 ‘ Ax <b—p;

1 ch<Z0
#O=<1+Z°_—6Tx Zy<c'x < Zy+py (5)

0 & x> Zy + po-

Function (3) corresponds to the membership function for
constraints “less or equal,” function (4) is the membership



function for the constraints of the “greater or equal” type,
and function (5) is the membership function for objective
function of minimization type.

2.3. The Concept of Genetic Algorithm. The GAs, developed
by Holland in the 1960s and 1970s, are based on the fun-
damental concept of Darwin-type natural evolution. Gene
selection is a process that is based on the principles of ade-
quacy imposed by individual outer world (not the strongest
or the fastest one that survives). Implicitly, the idea is the
kind of progressive improvement over previous generations.
Between two successive generations, there are small changes,
but they are favorable to accumulate over many generations;
they produce big changes. GA operates on the principle
of accumulation of generations until the convergence level
that is considered optimal. By evaluation it selects the best
individuals of the population and by their reproduction,
recombination of their genes, you get the population. The
objective of GAs is to generate successive populations of
solutions whose roots (genes) are selected from the most
promising (highest accurate) solutions of the previous pop-
ulation. GAs combine random search procedures with highly
effective exploration techniques.

The genetic algorithm is a family of algorithms that use
some of the genetic principles that exist in nature, and all
for the purpose of the solutions of certain computational
problems. Those natural principles are inheritance, crossing,
mutation, survival of the fittest, migration, and so on. These
algorithms are used for solving various classes of problems,
especially in the optimization-finding optimal parameters
of a system. The genetic algorithm searches stochastically
and therefore is used with the search of the extreme of
space of large dimensions. Applying the mechanisms of
genetic algorithms, the information of these local extremes is
exchanged, and the aim of the algorithms is not to be finished
in one of them, but to recognize among them the one which
is also global at the same time. Exactly these qualities of the
genetic algorithm are the reason why this method is used in
the paper. That is why we need a model which effectively leads
to conclusions and helps in making better decisions for the
company, all for the purpose of better business and therefore
the ranking of companies.

The fundamental operators of GAs are as follows:

(a) the selection and reproduction of better individuals;
(b) genetic recombination (crossovers);

(c) the random mutation of individuals genes.

The selection is a fundamental operation which is performed
with the aid of a function for the evaluation of the fitness of
individuals. The straightforward duplication of selected indi-
viduals, reproducing them identical to those of the previous
population, entails no benefit in terms of the exploration of
solution spaces.

The recombination of genes can be accompanied by the
operation of mutation, which has a very low probability, so
as not to destroy entirely the genetic heritage accumulated
through previous selections. Performed in this way, the
mutation makes it possible to enrich the variety of individuals
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present in the population, preventing them from tending to
be too uniform, hence losing the capacity to evolve [20].

The fitness function is designed to evaluate the perfor-
mance of the individuals (e.g., functions) who make up
the populations, transforming the fitness of the solutions
proposed by the GAs into numeric values based on their
performance. The typical steps into which a GA procedure
proceeds are as follows:

(a) the initial population of individuals (or genomes)
is generated randomly (by random numbers, binary
strings of zeroes add ones are generated, all with the
same length);

(b) for every individual, fitness is calculated in relation
to the problem that has to be solved (i.e., the good
hypothetical solutions);

(c) the degree of homogeneity of the entire populations
fitness is calculated (bias);

(d) individuals are ordered on the basis of their fitness
and those suitable to generate the subsequent popu-
lation are selected;

(e) the successive population is generated on the basis
of reproduction of new individuals, starting from the
ones selected in the previous population;

(f) in the new population, the sequence is repeated from
point (b) onwards.

The evolutionary strategy has the theoretical ability of finding
the global optimum, but the success of the approach strongly
depends on some parameters. These parameters have to be
predetermined and influence the result of the optimization
as well as the computation time needed. The most important
parameters to be chosen are as follows:

(i) number of parents selected (u): the more robust the
algorithm gets, the more parents are selected, but also
needs more generations to find the solution, because
strong improvements are diluted by recombination;

(ii) number of descendants created (A): the number of
descendants influences the ability of the algorithm to
find the optimal solution; the more descendants are
created, the more robust the algorithm gets, but also
the number of function evaluations increases;

~

standard deviation (o0): the standard deviation of the
normal distribution influences the search region; for
large standard deviations the algorithm has the ability
to search a larger region; this enables algorithm to
escape local optima; Near the optimal solution only
small steps lead to a further improvement;

(iii

(iv) stopping criterion (g): as no gradient information
is available as a convergence criterion, a stopping
criterion has to be formulated; some possibilities are
maximum number of iterations or the best individual
stays the same for a given number of iterations or the
difference between the best and the worst individual
of one generation is below a certain stopping crite-
rion.
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/+ Initialization #/
(01) set N, = number constraints
(02) select an initial state x

(03) fori=1to N,

/* Genetic Algorithm */

(07) repeat

(18) until stop criteria

Algorithm for solving fuzzy optimization model

/+ Membership determination =/

(04) p(i):= membership value of the constraint R;(x)
(05) minl:= aggregation(p(1), ..., 4(N,))

(06) set numberOfGeneration = 0

(08) repeat

(09) createNextGeneration

(10) fori=1to N,

11) p(i):= membership value of the constraint R;(x)
(12) min2 = aggregation(u(1), ..., 4(N,))
(13) calculate delta = min2 — minl

(14) if delta > 0 then

15) UpdateNextPopulation;

(16) min2 = minl;

17) until not terminate(y, evaluate(y), 0(k))
(19) numberOfGeneration++;

ALGoriTHM I: Genetic algorithm pseudocode for maxmin approach.

The membership functions are then built with the tolerances
defined. Furthermore, the GA algorithm allows dealing with
any type of fuzzification.

When we use the GA algorithm for solving fuzzy opti-
mization problems, the decision maker can select the thresh-
olds levels (a-cuts) as well as the tolerances (deviations)
for each constraint parameter and/or for each objective
function’s coeflicient and/or for each constraint’s coefficient.
The membership functions are then built with the tolerances
defined. Furthermore, the GA algorithm allows dealing with
any type of fuzzification.

The objective of the genetic algorithm implementation
in this paper is to solve fuzzy optimization model presented
in the previous chapter by maximizing the aggregation of
the membership values of the goals and constraints. Its
implementation is defined by following (Algorithm 1).

The procedure createNextGeneration uses the four exter-
nal functions with the intuitive meaning:

let x' = recombine (x, theta(r));
let x" = mutate (x', theta(m));
let pom = evaluate(x”);

y = select (x", pom, s theta(s)).

At the recombine function, at the beginning, N,,/2 pairs f
individuals are chosen (N,,,,, is a population number). Then,
for each pair of individuals, with the given probability, in
advance, of theta (x) recombination, in an accidental way, a
position is chosen for the recombination and the exchange
of bit genetic codes of the given pairs of individuals, after
the given position, has been carried out. Schematically the
following can be shown.

Before the recombination:

XXX|XXXXX
YYY|YYYYY

After recombination:

XXX[YYYYY
YYY|XXXXX

The mutation function for the parameter input has a level
of mutation (theta(m)), that is, the probability and the
individual x’, while by the accidental choice the mask is
generated and, as a result, it returns the mutated individual
x"". For example consider the following.

If the level of the mutation theta(n1) = 0.2 and individual
x' = 010111000101 and if by the accidental choice the generated
mask is 001000000100, then

the mask is
001000000100

the individual before the mutation (x') is
010111000101

the individual after the mutation (x”') is

011111000001
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(01) set N, = number constraints
(02) set count temperature t = 0
(03) set initial temperature T > 0
(04) set the threshold & > 0

(05) select an initial state x

(06) for i =1 to N,

(08)  minl:= aggregation(u(1), ..., (N,))
(09) repeat
(10) fori=1to N,

(12) min2:= aggregation(u(1), ..
(13)  calculate A = min2 — minl
(14) if A > 0 then

i #(Nc))

(15) X=Y;
(16) minl = min2;
(17)  else

(19) ifexp(A/T) > p

(20) X=Y;

(21) minl = min2;
(22) else

(23) Y=X;

(24) min2 = minl;
(25) t=t+1

(26) until t > T

/* Algorithm for solving SA-fuzzy optimization model */

(07)  u(i):= membership value of the constraint and coefficient of objective function R;(x)

11) p(i):= membership value of the constraint and coefficient of objective function R;(y)

(18) Create random number p = rand(0, 1)

ALGORITHM 2

At the selection function, a simple roulette selection has been
used, and in an accidental way (theta(s)), “good” solutions (y)
are received from the population.

The procedure updateBestPopulation is used for providing
the best population found at the moment:

if (evaluate(y) < evaluate(x)), then x = y.

2.4. The Concept of Simulated Annealing. The SA is a search
technique that belongs to the general class of guided random
search techniques [21] which are based on enumerative tech-
niques but use additional information to guide the search.
Guided random search techniques are quite general in scope
and can solve complex problems. This type of algorithms play
an important role in the scope of local search techniques,
for two major reasons [22]: first, because they have been
proved successful when applied to a large number of practical
problems; second, some of those algorithms, such as the SA
algorithms, have a stochastic component, which facilitates
a theoretical analysis of its asymptotic convergence and
this made them quite popular among mathematicians. The
objective of an algorithm of this nature is to find the best
solution among a finite number of possible solutions. The SA
technique is particularly attractive, because it allows finding
near-optimal solutions with reasonable computational effort.
Notice that in this algorithm it is not possible to know
it the best solution found is indeed the global optimum.
This characteristic restricts its use to the cases where good

local optima are acceptable [23, 24]. The SA algorithm is an
algorithm used for the solution of optimization problems,
where the objective function corresponds to the energy of the
states of a solid. The SA algorithm requires the definition of
a neighborhood structure, as well as the parameters for the
cooling programming. A temperature parameter allows the
distinguishing among deep or slight alterations in the objec-
tive function. Drastic alterations occur at high temperatures
and small or slight modifications at low temperatures. It is an
“evolutionary” process that moves in small steps, from a state
to another, and there exists the problem of being “arrested”
by a local optimum. When we use the SA algorithm for
solving fuzzy optimization problems, the decision maker can
select the thresholds levels («-cuts) as well as the tolerances
(deviations) for each constraint parameter and/or for each
objective function’s coefficient and/or for each constraint’s
coeflicient. The membership functions are then built with the
tolerances defined. Furthermore, the SA algorithm allows the
dealing with any type of fuzzification. The objective of the
simulated annealing algorithm implementation in this paper
is to solve fuzzy optimization model presented in the previous
chapter by maximizing the aggregation of the membership
values of the goals and constraints.

Its implementation is defined by Algorithm 2.

Min represents the aggregation of the memberships of the
fuzzy constraints. As aggregation operator, the t-norm min
is used. The variable A represents the difference between the
previous Min and new Min. This represents the old and new
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energy states difference. The probability function of moving
to a smaller energy state is given by exponential of A divided
by the control parameter T. The smaller the temperature,
the less probability any change will occur. The algorithm
includes also N(t) as the number of generated neighbors. T'(t)
is decreasing function of temperature. The algorithm stops
when the temperature is less than a defined limit value. As
presented in previous chapter, the membership functions of
the fuzzy goal and constraints used in this application are
triangular functions [25].

The main disadvantage of the SA algorithm is the need
to define the initial states that satisfy the constraints, for
each variable. Another disadvantage is the choice of an
appropriate initial temperature value (T'), because it can imply
a longer search and consequently more computation time.
Relatively to the evaluation factor, time, it is convenient to
refer that the solution time of the algorithm did not show and
clearly predictable behaviour, but a behaviour that depended,
strongly, on the problem. This nature of convergence is a
typical aspect of nondeterministic search methods, such as
the SA [23].

The decreasing function of temperature in this research
was chosen based on testing of the implemented model
through the program in C#. For these selected parameters a
better optimization is obtained.

3. Fuzzy Genetic and SA as a Tool for Project
Time-Cost Tradeoff Problem Solving

Let us now introduce a linear programming formulation for
the optimal project crashing problem. Consider a project
network S = (V, P, t,¢) consisting of a finite set V' of nodes
(events) and a set P ¢ V x V of arcs with crisp activity
times, which are determined by functions ¢t : P — R* and
c: P — R",andattached to the arcs. Parameter t;; represents
the duration of an activity (i, j) € P and g; is the cost per
unit time of reducing the duration of the activity (i, j) € P.
The purpose of the time-cost tradeoft analysis of project is to
determine which activities in the network to shorten and by
how much such that the total crash cost is minimized while
achieving the desired project completion time at the same
time [10].

In the time-cost tradeoff analysis of project networks two
types of costs associated with each activity (i, j) € P are
estimated; normal costCZ. and crash costhj, associated with
normal time TZ‘ and crash time, estimate Ti‘j for each activity
(i, j) € P. The relationship between the normal cost and

the crash cost with respect to activity time is in this paper
assumed to be linear:

C n
c-Ch

AC,; = 21,
T

(6)

Let the duration of activity time T;; be determined to be
shortened for AT;;. By employing the relationship of (6),
the incremental direct cost for each activity (i, j) € P is

AC;;AT;;; thus, the total project cost of crashing activities is

Yoy, AC;;AT;;.

Therefore, the objective of the time-cost tradeoft analysis
is to minimize the total crash cost that can be expressed as

n n
min ) ) AC;AT;;. ?)
i=1j=1

Consequently, the time-cost tradeoff problem of a project
network with # nodes can be formulated as the following LP:

Z =min ) Y AC,ATy, (8)
i=1j=1
subject to
AT, <T;-T; i=1,...,n
j= i
€)
j: 1,...,”, iij)
T;-ATy-T; 2T}, i=1,...,n,
(10)
j=2,...,1’l, 1:/:_])
T, < PCT, (11)

where T; is the earliest time for node i and PCT is the
indicated project completion time. In this model, constraints
(9) represent crash time constraints. The time to complete
an activity can be reduced by increasing the resources or
by improving the productivity which also require additional
resources. But it is not possible to reduce the time required
to complete an activity after a certain threshold limit. Con-
straints (10) describe the network. As we mentioned, activities
of a project are interrelated; the starting of some activities
is dependent upon the completion of some other activities.
Since event 1 will start at the beginning of the project, we
begin by setting the occurrence time for event 1 to equal to
zero. Constraint (11) is the project completion constraint. This
constraint will recognize that the last event must take place
before the project deadline date. However, in real world for
many projects we have to use human judgment for estimating.
A way to deal with this imprecise data is to employ the
concept of fuzziness.

3.1 Fuzzy GA and SA Approach Applied to a Real Case
Study. To illustrate the validity of the proposed approach,
the project “Main Postal Centers on the territory of Republic
of Serbia” is investigated. Table 1 contains all the activities
and corresponding time and cost parameters. To model the
problem, we need to define all the activities in terms of
starting and ending points (Figure 1). The project network has
18 activities and 15 events.

According to the critical path method (CPM), for normal
length of activities, there are two critical paths, A-C-E-I-M-P-
R and A-C-G-K-M-P-R, and the time length on these paths is
1180 time units (days). For the case of crash time of activities,
the situation concerning the critical paths remains the same,
while the time length is now 1010 days.

Assume that we want to adjust the deadline of the project
on its expected crash completion date. According to the



\0 \@ :

8 Journal of Applied Mathematics
TABLE 1: Activities, time, costs, and relationships for the considered project network.
Activity  Descrition Depends on Normal time Crash time Normal cost Crash cost
Y P P (days) (days) (EUR) (EUR)
Conceptual design for the complex of Main
A Postal Center (MPC) of Belgrade - 920 70 3700 5000
B Technical-technological concept of MPC . 30 25 2900 3200
Belgrade complex
c Providing all necessary terms and . A 120 100 5000 6500
agreements for communal connections
Conducting an open public acquisition
procedure for the service of technological
b documentation produced for MPC Belgrade B 60 60 1000 1000
construction
Making the investment-technical
E documentation for construction of MPC C,D 120 110 3522300 3700000
Belgrade
P Making the investment-technical cD 60 55 23600 29200
documentation for construction of MPC Nis ’
Making the investment-technical
G documentation for construction of MPC C,D 120 100 153400 160000
Novi Sad
H Making the technological conception C,D 90 80 362850 387300
I Construction of MPC Belgrade E 360 320 15616120 15970000
] Reconstruction of MPC Nis F 120 110 1077340 1090750
K g{aegonstructlon and upgrading of MPC Novi G 360 20 1437240 1500000
L Equip the objects: office equipment L, K,H 90 80 11800 15000
M Equip the objects: technological equipment LJ,K.H 100 80 15300 18000
N Equip the objects: IT equipment L], K,H 80 60 5900 7000
0 Instjalhng the equipment for automatic L M. N 120 110 7860000 8000000
sorting of letter posts
p Inst'alhng the.t equipment for automatic LM, N 270 240 8950000 9160000
sorting of printed matters (flats)
Q Inst'falhng the equipment for automatic LM N 120 100 6774700 6944000
sorting of packets
R Inst.alhng the IT and telecommunication 0,PQ 120 90 11800 13200
equipment
oY 3 v “ﬁ\ 1)
B

FIGURE 1: Project network diagram.

LP formulations (8)-(11), the optimal solution of time-cost
tradeoff problem for our project is given in Table 3.
However, in reality there are a number of unpredictable
situations that may affect the activity times of a project.
Therefore, to reflect the real situations during the project
execution we should relax the crashing time and network

constraints. Hence, we will now fuzzify the problem, consid-
ering the tolerance intervals for the objective function and all
constraints (Table 2). In this table, the tolerance intervals have
been given for everyone of the constraints (constraints of “less
or equal” type and constraints of “greater or equal” type). For
every of the costs ¢, the tolerance d; has been given and on
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TABLE 2: Permissible tolerances for project time-cost tradeoff problem.

Constraints of “less or equal” type Constraints of “greater or equal” type
Lower bound Deviation Upper bound Lower bound Deviation Upper bound
(C,-) (di) (Ci + d;‘) (Cl - di) (di) (Ci)
Z =¢, =750 220 970 85 dy, =5 G5 = 90
¢ =20 d, =2 22 20 dye = 10 Gy = 30
6 =5 d,=3 8 110 dy, =10 6y = 120
¢ =20 dy =3 23 40 dyg = 20 Gy = 60
¢ =0 d,=5 5 115 dyy =5 Gy = 120
¢ =10 dg =3 13 55 dy =5 Gy = 60
G =5 dg=5 10 118 dy =2 ¢y =120
¢, =20 d, =5 25 350 dy, = 10 ¢y, = 360
G =10 dg=5 15 115 dy =5 Cyy = 120
G =40 dy=5 45 352 dy, =8 Cyy = 360
¢ =10 dy=5 15 85 dy =5 Cys = 90
¢, =40 d, =5 45 85 dy =5 €y = 90
¢, =10 d,=5 15 77 dy, =3 ¢y = 80
¢ =10 d,=5 15 98 dyg =2 Cys = 100
¢, =10 d, =5 15 0 dy =0 G =0
s =10 ds=5 15 0 dy=0 Cio =0
Cl6 = 40 dyg=5 45 115 d, =5 ¢,y = 120
¢y =20 d,=5 25 117 d,=3 ¢ = 120
¢ = 30 dyg =5 35 0 dy=0 €y =0
¢ =30 dyg =7 37 0 dy, =0 €y =0
6y =0 dy =5 5 117 dy=3 €45 = 120
6 =0 dy =5 5
6, =0 dy=5 5
63 =0 dy =5 5
6 = 1010 d,, = 40 1050

the basis of it, the tolerance intervals have been determined
(upper bound and lower bound).

We solved this fuzzy linear programming problem using
Zimmermanns approach, which considers that in a fuzzy
environment there is no difference between goals and con-
straints. Within this approach the objective moves into a
constraint with a defined stretched boundary as any other
fuzzy constraint. The resolution process proceeds to trans-
form the problem into a crisp one, using the objective for
the maximization of the minimization of the membership
values of the constraint deviations, determined in functions
like those in expressions (3)-(5). The results of the problem
by using fuzzy Zimmermann approach are given in Table 3.

Now, on the base of flexible fuzzification model presented
in Chapter 2, we developed a suitable genetic algorithm for
solving the model for considered project crashing problem.
For the implementation of the GA algorithm we have to
specify the following: (a) how to generate a state y (create
NextGeneration), (b) which aggregation function to use,
(c) the selection of number of neighbours to generate
(update BestPopulation), and (d) the algorithm stopping
criteria.

The stopping criterion used is reached when number of
generation is 500. Fuzzy GA algorithm for project time-cost
tradeoft solving is coded in C programming language.

We tested our approach for different threshold values.
Obtained results are compared with the crisp version (A),
Zimmermanns approach (B), and the GA algorithm based
on flexible fuzzification model (C) for the considered project
time-cost tradeoft problem.

Using the crisp transformation of Zimmermann to relax
the objective function and the constraints, we obtained
the value of 754.03 EUR, which represents a decrease for
179.97 EUR as costs of project time crashing comparing to the
crisp case.

Applying our fuzzy GA approach for the threshold value
a = 0.94 for all constraints we obtained slightly worse
results for the objective function in comparison with Zim-
mermann’s approach, but still well below the defined goal
limit. Comparing decision variable values with those from
fuzzy LP solution, there are differences in most crashing
time constraints, but all these new values are within the
boundaries, so there is no infeasibility.

The threshold « = 0.98 provides the best results, as
we can see from Table 3. Applying &« = 0.98 threshold we
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TABLE 3: Solutions of the Zimmermann’s approach and flexible fuzzification model for threshold « = 0.98.

Variable A B C Variable A B C Variable A B C

Z= 934 760.25 754.03

M 0.95 0.98

Aty 0.00 0.00 0.00 Aty 0.00 0.00 0.02 t, 330 32897 32897

Aty 0.00 0.00 0.00 Aty 0.00 0.00 0.01 ty 690 688.60  688.30

At 0.00 0.00 0.10 Atyys 0.00 0.00 0.04 to 790 788.74  788.74

Aty 0.00 0.23 0.23 Aty 20.00 16.13 1.76 to 790 768.40  769.40

Aty 0.00 0.00 0.00 Aty 0.00 0.23 0.24 t, 790 78851  788.51

Aty 0.00 0.00 0.00 Aty 0.00 0.23 0.40 t 910 90837  908.37

Aty 0.00 0.23 0.03 N 0.00 0.23 0.10 ts 910 908.37  908.37

At g 0.00 0.00 0.00 N 0.00 0.23 0.50 ty 910 908.14  918.14

Atsg 0.00 0.00 0.00 t 0.00 0.00 0.00 tis 1010 1011.87  1041.87

Atgs 0.00 0.00 0.01 t, 90.00 8977  90.77

JAY N 0.00 0.00 0.00 ts 150.00 29.53 29.53

Atgy 0.00 0.00 0.00 t 210.00 209.30 209.30

Aty 0.00 0.00 0.02 ts 330.00 32907  329.07

Atgy, 0.00 0.00 0.02 tq 570.00  568.83  568.83

obtained a value 754.03 for the objective function, which is TABLE 4: Min results.

improvement in relation tlo tuzzy Zimmerrpann (see Table 3). GA approach

Table 3 shows the obtained results which are compared ) ) )

with the crisp version (A), Zimmermann’s approach (B), Variables Maxmin Maxmin

and the GA algorithm based on flexible fuzzification model (o > 054) (o > 0.98)

(C) for the considered project time-cost tradeoff problem. Z 760.25 754.03

Using the crisp transformation of Zimmermann to relax the Ax 2 0.941 0.985

objective function and the constraints, we obtained the value Ax < B 0.941 0.985

of 754.03 EUR, which represents a decrease for 179.97 EUR Min 0.941 0.985

as costs of project time crashing comparing to the crisp
case. Comparing decision variable values we can observe that
values for the variable g present a reduction in time, relatively
to both of alternative approaches, while the t,, ¢, 5 have slightly
higher values.

In summary we can conclude that the use of genetic
algorithm for the purpose of solving the project time-cost
tradeoff problem in the presence of uncertainty seems quite
more flexible and adaptable than the crisp mathematical
transformation defined in Zimmermann method.

As we can see from Table 4, the fuzzy GA, as a tool for
project crashing problem provides not only the aggregated
value but also all the constraint violations. In the case if it
is used in a situation where thresholds can be defined, the
decision maker can select the degree of violation allowed for
each constraint.

This heuristic (SA) takes under consideration that more
successors should be generated when the temperature
decreases in order to have more options to test. The tem-
perature function T'(f) is a function that uses a decreasing
factor of 0.95. The stopping criterion used is reached when
the temperature is less than 0.002. Fuzzy SA algorithm for
project time-cost tradeoff solving is coded in C programming
language.

We tested our approach for different threshold values.
Obtained results are compared with the crisp version (A),

Zimmermanns approach (B), and the SA algorithm based
on flexible fuzzification model (C) for the considered project
time-cost tradeoft problem.

Using the crisp transformation of Zimmermann to relax
the objective function and the constraints, we obtained
the value of 755.31 EUR, which represents a decrease for
178.69 EUR as costs of project time crashing comparing to the
crisp case.

Applying our fuzzy SA approach for the threshold value
a = 0.94 for all constraints we obtained slightly worse
results for the objective function in comparison with Zim-
mermann’s approach, but still well below the defined goal
limit. Comparing decision variable values with those from
fuzzy LP solution, there are differences in most crashing
time constraints, but all these new values are within the
boundaries, so there is no infeasibility.

The threshold a = 0.98 provides the best results, as we can
see from Table 5. Applying & = 0.98 threshold we obtained a
value 755.31 for the objective function which is improvement
with respect to fuzzy Zimmermann. Comparing decision
variable values we can observe that values for variables ¢, t;5
present a reduction in time, relatively to both of alternative
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TABLE 5: Solutions of the Zimmermann’s approach and fuzzy SA model for threshold & = 0.98.

Variable A B C Variable A B C Variable A B C

Z= 934 762.89 755.31

M 0.95 0.98

Aty, 0.00 0.00 0.00 Aty 0.00 0.01 0.02 t, 330 32897  328.97

Aty 0.00 0.00 0.00 Aty 0.00 0.00 0.01 t, 690 68830  688.30

At,, 0.00 0.10 0.10 Aty 0.00 0.00 0.04 to 790 78874 78474

Ats, 0.00 0.23 0.23 At 45 20.00 13.86 1.76 tio 790 768.40 768.40

Aty 0.00 0.00 0.00 Aty 0.00 0.24 0.24 t, 790 788.51  788.51

Aty 0.00 0.00 0.00 Aty 0.00 0.40 0.40 th 910 90837  908.37

Aty 0.00 0.03 0.03 Aty 0.00 0.10 0.10 ts 910 908.37  908.37

Aty 0.00 0.01 0.01 Aty 0.00 0.50 0.50 t, 910 918.14  918.14

Atsg 0.00 0.00 0.00 t 0.00 0.00 0.00 tis 1010 1021.87  1011.87

Atgg 0.00 0.01 0.02 t, 90.00 89.77 90.77

Aty 0.00 0.00 0.00 t, 150.00  29.53  29.54

Atgy 0.00 0.00 0.00 t, 210.00 209.30 209.30

Aty 0.00 0.01 0.01 ts 330.00 329.07 329.07

Atgyo 0.00 0.02 0.03 te 570.00  568.83  568.83

TABLE 6: Min results.

Simulated annealing approach

Variables Maxmin Maxmin
(o > 0.94) (v > 0.98)
Z 762.89 755.31
Ax > B 0.941 0.985
Ax < B 0.941 0.985
Min 0.941 0.985

approaches, while the t,, t; have slightly higher values (see
Table 5).

In summary we can conclude that the use of Simulated
Annealing for the purpose of solving the project time-
cost tradeoff problem in the presence of uncertainty seems
quite flexible and adaptable than the crisp mathematical
transformation defined in Zimmermann method.

As we can see from Table 6, the fuzzy SA, as a tool for
project crashing problem provides not only the aggregated
value but also all the constraint violations. In the case if it
is used in a situation where thresholds can be defined, the
decision maker can select the degree of violation allowed for
each constraint.

As can be observed the results (Tables 4 and 6) clearly
show that the flexibilization achieved in case 1 Maxmin
(a > 0.98) givesbetter results than those of case 2 Maxmin
(ox > 0.94). Of course these better results are achieved at the
expense of having a much higher degree of satisfaction for the
minimum membership value, respectively, case 1 = 0.94 and
case 2 =0.98.

4. Conclusion

In real projects, cost and duration of each activity are the sub-
ject of change during to the presence of many uncertainties
such as inflation, economical and social stresses, execution
errors of contractor, and natural events.

Our method solves the time-cost tradeoff problems under
an uncertain environment and proved to be practicable
through a real example of franchising implementation project
performed by Serbian Postal Company.

The paper presents the results fuzzy GA algorithms and
SA and their comparison with that of traditional approach
for solving FLP problems.

A tradeoff analysis was performed both in terms of satis-
faction of constraints and time to achieve results versus the
objective function value. It should be noticed that, in general,
if the decision maker intends to reach better constraints
satisfaction level (i.e., coefficients and/or parameters) that
will result in worse results in terms of the objective function
and vice versa.

This study shows that the genetic algorithm produces
better results than simulated annealing. The advantage of the
GA method is that it can improve the solution using the
coding function.

In real situations. depending on the project complexity,
the shown models can help project managers while deciding
which phases of the project allow a greater flexibility (the
change of the time duration) and how those phases influence
the costs. We leave for future work testing the model perfor-
mance with an equivalent set of nonlinear problems.

In terms of future research it would be interesting to
extend this study, through a complete fuzzification of the
project time-cost tradeoff problem and to compare the results
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obtained with partial fuzzified problem to assess the possible
gains of using our SA-GA approach as an algorithm.
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