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We modify the three-step iterative schemes to prove the strong convergence theorems by using the hybrid projection methods for
finding a common element of the set of solutions of fixed points for a pseudocontractive mapping and a nonexpansive semigroup
mapping and the set of solutions of a variational inequality problem for a monotone mapping in a Hilbert space under some
appropriate control conditions. Our theorems extend and unify most of the results that have been proved for this class of nonlinear
mappings.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻 with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. Recall that a
mapping 𝑇 : 𝐶 → 𝐶 is said to be a 𝑘-strict pseudocontraction
if there exists 0 ≤ 𝑘 < 1 such that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 𝑘
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦



2

,

∀𝑥, 𝑦 ∈ 𝐶,

(1)

where 𝐼 denotes the identity operator on 𝐶. When 𝑘 = 0, 𝑇 :

𝐶 → 𝐶 is said to be nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

And when 𝑘 = 1, 𝑇 : 𝐶 → 𝐶 is said to be pseudocontraction
if

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+
(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦



2

,

∀𝑥, 𝑦 ∈ 𝐶.

(3)

Clearly, the class of 𝑘-strict pseudocontraction falls into the
one between classes of nonexpansive mappings and pseudo-
contraction mapping. We denote the set of fixed points of 𝑇
by 𝐹(𝑇).

A mapping 𝐴 of 𝐶 into 𝐻 is calledmonotone if

⟨𝐴𝑢 − 𝐴V, 𝑢 − V⟩ ≥ 0, ∀𝑢, V ∈ 𝐶. (4)

The classical variational inequality is used for finding 𝑢 ∈ 𝐶

such that

⟨𝐴𝑢, V − 𝑢⟩ ≥ 0, ∀V ∈ 𝐶. (5)

The set of solutions of variational inequality problems is
denoted by VI(𝐶, 𝐴). See, for example, [1–7] and the refer-
ences therein.

In 1953, Mann [8] introduced the iteration as follows:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑆𝑥
𝑛
, (6)

where the initial guess element 𝑥
0

∈ 𝐶 is arbitrary and {𝛼
𝑛
}

is a real sequence in [0, 1]. The Mann iteration has been
extensively investigated for nonexpansive mappings. In an
infinite-dimensional Hilbert space, the Mann iteration can
conclude only weak convergence [9]. Attempts to modify
the Mann iteration method (6) so that strong convergence is
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guaranteed have recently been made. In 1974, The Ishikawa’s
iteration process is defined by Ishikawa [10] as the following:

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑦
𝑛
, 𝑛 ≥ 0,

(7)

where the initial guess 𝑥
0
is taken in 𝐶 arbitrarily and the

sequences 𝛼
𝑛
, 𝛽
𝑛

∈ [0, 1]. This is called Ishikawa Iteration.
This has been studied in strong convergence theorem for
lipschitzian pseudocontractive mapping in Hilbert spaces.
Several years later, inspired by the idea of one and two
step iterative scheme, Noor [11, 12] introduced a three-step
iterative scheme and studied the approximate solution of vari-
ational inclusion in Hilbert spaces by using the techniques of
updating the solution and the auxiliary principle. It has been
shown in [13] by Goebel and Kirk that the three-step iterative
scheme gives better numerical results than the two-step and
one-step approximate iterations.

A family S = {𝑆(𝑠) : 0 ≤ 𝑠 < ∞} of mappings of 𝐶 into
itself is called a nonexpansive semigroup on 𝐶 if it satisfies the
following conditions:

(i) 𝑆(0)𝑥 = 𝑥 for all 𝑥 ∈ 𝐶;
(ii) 𝑆(𝑠 + 𝑡) = 𝑆(𝑠)𝑆(𝑡) for all 𝑠, 𝑡 ≥ 0;
(iii) ‖𝑆(𝑠)𝑥 − 𝑆(𝑠)𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶 and 𝑠 ≥ 0;
(iv) for all 𝑥 ∈ 𝐶, 𝑠 → 𝑆(𝑠)𝑥 is continuous.

We denote by 𝐹(S) the set of all common fixed points of S;
that is, 𝐹(S) = {𝑥 ∈ 𝐶 : 𝑆(𝑠)𝑥 = 𝑥, 0 ≤ 𝑠 < ∞}. It is known
that 𝐹(S) is closed and convex. In the sense of nonexpansive
semigroup mapping, we also see [14–24].

In 2003, Nakajo and Takahashi [25] proposed the follow-
ing modification of Mann iteration method for a nonexpan-
sive mapping 𝑇 from 𝐶 into itself in a Hilbert space

𝑥
0
∈ 𝐶 is arbitrary,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 − 𝑧
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
, 𝑛 ≥ 0,

(8)

where 𝑃
𝐾
denotes the metric projection from a Hilbert space

𝐻 onto a close convex subset 𝐾 of 𝐻 and proves that the
sequence {𝑥

𝑛
} converges strongly to 𝑃

𝐹(𝑇)
𝑥
0
. A projection

onto intersection of two halfspaces is computed by solving a
linear system of two equations with two unknowns. In 2008,
Takahashi et al. [26] proved the following strong convergence
theorem by the new hybrid method in a Hilbert space. They
assume 𝑥

0
∈ 𝐻, 𝐶

1
= 𝐶, 𝑢

1
= 𝑃
𝐶
1

𝑥
0
, and defined the

sequence by (8) where 0 ≤ 𝛼
𝑛
< 𝑎 < 1

𝑦
𝑛
= 𝛼
𝑛
𝑢
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑢
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
𝑦𝑛 − 𝑧

 ≤
𝑢𝑛 − 𝑧

} ,

𝑢
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, 𝑛 ≥ 0,

(9)

where 0 ≤ 𝛼
𝑛
< 𝑎 < 1. Then {𝑢

𝑛
} converges strongly to 𝑧

0
=

𝑃
𝐹(𝑇)

𝑥
0
.

Recently, Zegeye and Shahzad [27] defined the mappings
as follows:

𝐹
𝑟
𝑛

(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(10)

𝑇
𝑟
𝑛

(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝑇𝑧⟩

−
1

𝑟
𝑛

⟨𝑦 − 𝑧, (1 + 𝑟
𝑛
) 𝑧 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶} ,

(11)

for all 𝑥 ∈ 𝐻 and 𝑟
𝑛

∈ (0,∞), where 𝑇 : 𝐶 → 𝐶 is a
continuous pseudocontractive mapping and 𝐴 : 𝐶 → 𝐻 is
a continuous monotone mapping. In the following year, Tang
[28] introduced a viscosity iterative process, which converges
strongly to a common element of the set of fixed points of
a pseudocontractive mapping and the set of solutions of a
monotone mapping as the following:

𝑦
𝑛
= 𝜆
𝑛
𝑥
𝑛
+ (1 − 𝜆

𝑛
) 𝐹
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑇
𝑟
𝑛

𝑦
𝑛
,

(12)

where 𝐹
𝑟
𝑛

and 𝑇
𝑟
𝑛

are defined by (10) and (11), respectively.
In this paper, we modify the three-step iterative schemes

to prove the strong convergence theorems by using the hybrid
projection methods for finding a common element of the set
of solutions of fixed points for a pseudocontractive mapping
and a nonexpansive semigroup mapping and the set of
solutions of a variational inequality problem for a monotone
mapping in a Hilbert space under some appropriate control
conditions.The results that are presented in this paper extend
and improve the corresponding ones announced by Nakajo
andTakahashi [25], Takahashi et al. [26], Zegeye and Shahzad
[27], Tang [28], and many authors.

2. Preliminaries

Let𝐻 be a real Hilbert space with norm ‖⋅‖ and inner product
⟨⋅, ⋅⟩ and let 𝐶 be a closed convex subset of 𝐻. Then

𝜆𝑥 + (1 − 𝜆)𝑦


2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)

𝑦


2

− 𝜆 (1 − 𝜆)
𝑥 − 𝑦



2

,

(13)

for all 𝑥, 𝑦 ∈ 𝐻 and 𝜆 ∈ [0, 1].
Recall that, the metric projection 𝑃

𝐶
from a Hilbert

space 𝐻 to a closed convex subset 𝐶 of 𝐻 is defined as the
following: given 𝑥 ∈ 𝐻, 𝑃

𝐶
𝑥 is the only point in 𝐶 with the

property

𝑥 − 𝑃
𝐶
𝑥
 = inf {𝑥 − 𝑦

 : 𝑦 ∈ 𝐶} . (14)
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𝑃
𝐶
𝑥 is characterized as follows:

𝑥 − 𝑃
𝐶
𝑥
 ≤

𝑥 − 𝑦
 ,

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0,

𝑥 − 𝑦


2

≥
𝑥 − 𝑃

𝐶
𝑥


2

+
𝑦 − 𝑃

𝐶
𝑥


2

,

(15)

for all 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶.
Hilbert space𝐻 satisfies the Kadec-Klee property [28, 29];

that is, for any sequence {𝑥
𝑛
}. 𝑥
𝑛

⇀ 𝑥 and ‖𝑥
𝑛
‖ → ‖𝑥‖

together imply ‖𝑥
𝑛
− 𝑥‖ → 0.

A normed space𝑋 is said to satisfy Opial’s condition [30],
if for each sequence {𝑥

𝑛
} in 𝑋 which converges weakly to a

point 𝑥 ∈ 𝑋, we have

lim inf
𝑛→∞

𝑥𝑛 − 𝑥
 < lim inf
𝑛→∞

𝑥𝑛 − 𝑦
 , ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥. (16)

Lemma 1 (see [27]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a continuous
pseudocontractive mapping and let 𝐴 : 𝐶 → 𝐻 be a
continuous monotone mapping and define mappings 𝐹

𝑟
and 𝑇

𝑟

as follows: 𝑥 ∈ 𝐻, 𝑟 ∈ (0,∞)

𝐹
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴𝑧⟩

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝑇𝑧⟩

−
1

𝑟
⟨𝑦 − 𝑧, (1 + 𝑟) 𝑧 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶} .

(17)

Then, the following hold:

(1) 𝐹
𝑟
and 𝑇

𝑟
are single-valued;

(2) 𝐹
𝑟
and 𝑇

𝑟
are firmly nonexpansive; that is, for any

𝑥, 𝑦 ∈ 𝐻, ‖𝐹
𝑟
𝑥 − 𝐹
𝑟
𝑦‖
2

≤ ⟨𝐹
𝑟
𝑥 − 𝐹

𝑟
𝑦, 𝑥 −

𝑦⟩, ‖𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2
≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩;

(3) 𝐹(𝑇
𝑟
) = 𝐹(𝑇), 𝐹(𝐹

𝑟
) = 𝑉𝐼(𝐶, 𝐴);

(4) 𝐹(𝑇) and 𝑉𝐼(𝐶, 𝐴) are closed and convex.

3. Main Results

3.1. The Hybrid Method

Theorem 2. Let 𝐶 be a nonempty bounded closed and convex
subset of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a
continuous pseudocontractive mapping and let𝐴 : 𝐶 → 𝐻 be
a continuous monotone mapping. Let S = {𝑆(𝑠) : 0 ≤ 𝑠 < ∞}

be a nonexpansive semigroup on𝐶 such that lim inf
𝑛→0

𝜇
𝑛
= 0,

lim sup
𝑛→0

𝜇
𝑛

> 0, and lim
𝑛→0

(𝜇
𝑛+1

− 𝜇
𝑛
) = 0. Let {𝛼

𝑛
},

{𝛽
𝑛
}, and {𝛾

𝑛
} be the sequences in [0, 𝑎) for some 𝑎 ∈ [0, 1),

{𝑟
𝑛
} ⊂ (0,∞) such that lim inf

𝑛→∞
𝑟
𝑛

> 0 and suppose
𝐹 = 𝐹(S) ∩ 𝐹(𝑇) ∩ 𝑉𝐼(𝐶, 𝐴) ̸= 0. The mappings 𝑇

𝑟
𝑛

and 𝐹
𝑟
𝑛

are defined by (10) and (11). Let {𝑥
𝑛
} be sequences generated by

𝑥
0
∈ 𝐶 and

𝑤
𝑛
= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝐹
𝑟
𝑛

𝑥
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑤
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑟
𝑛

𝑤
𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑧
𝑛
+ (1 − 𝛼

𝑛
) 𝑆 (𝜇
𝑛
) 𝑧
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 |

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 − 𝑧
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 | ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
, ∀𝑛 ≥ 0.

(18)

Then the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥
0
.

Proof. Consider that
𝑦𝑛 − 𝑥

𝑛



2

=
(𝑦𝑛 − 𝑧) − (𝑥

𝑛
− 𝑧)



2

=
𝑦𝑛 − 𝑧



2

− 2 ⟨𝑦
𝑛
− 𝑧, 𝑥

𝑛
− 𝑧⟩ +

𝑥𝑛 − 𝑧


2

=
𝑦𝑛 − 𝑧



2

− 2 ⟨𝑦
𝑛
− 𝑥
𝑛
+ 𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑧⟩

+
𝑥𝑛 − 𝑧



2

=
𝑦𝑛 − 𝑧



2

− 2 ⟨𝑦
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑧⟩

− 2 ⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑧⟩ +

𝑥𝑛 − 𝑧


2

=
𝑦𝑛 − 𝑧



2

− 2 ⟨𝑦
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑧⟩ −

𝑥𝑛 − 𝑧


2

.

(19)

On the other hand, we get that 𝐶
𝑛
is closed and 𝑄

𝑛
is closed

and convex for all 𝑛 ≥ 0. From (19), ‖𝑦
𝑛
− 𝑧‖ ≤ ‖𝑥

𝑛
− 𝑧‖ is

equivalent to ‖𝑦
𝑛
− 𝑥
𝑛
‖
2
+ 2⟨𝑦

𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑧⟩ ≤ 0 for 𝑧 ∈ 𝐶.

Thus, we have 𝐶
𝑛
is convex for all 𝑛 ≥ 0. Therefore, 𝐶

𝑛
∩ 𝑄
𝑛

is closed and convex for all 𝑛 ≥ 0. Let 𝑥∗ ∈ 𝐹, we have
𝑤𝑛 − 𝑥

∗ ≤ 𝛾
𝑛

𝑥𝑛 − 𝑥
∗ + (1 − 𝛾

𝑛
)

𝐹
𝑟
𝑛

𝑥
𝑛
− 𝑥
∗

≤ 𝛾
𝑛

𝑥𝑛 − 𝑥
∗ +


𝐹
𝑟
𝑛

𝑥
𝑛
− 𝑥
∗

− 𝛾
𝑛

𝑥𝑛 − 𝑥
∗

=

𝐹
𝑟
𝑛

𝑥
𝑛
− 𝑥
∗

≤
𝑥𝑛 − 𝑥

∗ ,

𝑧𝑛 − 𝑥
∗ ≤ 𝛽

𝑛

𝑤𝑛 − 𝑥
∗ + (1 − 𝛽

𝑛
)

𝑇
𝑟
𝑛

𝑤
𝑛
− 𝑥
∗

≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗ +


𝑇
𝑟
𝑛

𝑤
𝑛
− 𝑥
∗

− 𝛽
𝑛

𝑥𝑛 − 𝑥
∗

=

𝑇
𝑟
𝑛

𝑤
𝑛
− 𝑥
∗

≤
𝑤𝑛 − 𝑥

∗

≤

𝐹
𝑟
𝑛

𝑥
𝑛
− 𝑥
∗

≤
𝑥𝑛 − 𝑥

∗ .

(20)
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It follows that

𝑦𝑛 − 𝑥
∗ ≤ 𝛼

𝑛

𝑧𝑛 − 𝑥
∗ + (1 − 𝛼

𝑛
)
𝑆 (𝜇
𝑛
) 𝑧
𝑛
− 𝑥
∗

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗ +

𝑧𝑛 − 𝑥
∗ − 𝛼

𝑛

𝑥𝑛 − 𝑥
∗

=
𝑧𝑛 − 𝑥

∗

≤
𝑤𝑛 − 𝑥

∗

≤
𝑥𝑛 − 𝑥

∗ .

(21)

Therefore, 𝑥∗ ∈ 𝐶
𝑛
for all 𝑛 ≥ 0. Thus, we have 𝐹 ⊂ 𝐶

𝑛
for all

𝑛 ≥ 0.
Next, we use mathematical induction. Start with 𝑛 = 0,

we have 𝑥
0
∈ 𝐶 and 𝑄

0
= 𝐶 then 𝐹 ⊂ 𝐶

0
∩ 𝑄
0
. Assume that

𝑥
𝑘
is given and 𝐹 ⊂ 𝐶

𝑘
∩ 𝑄
𝑘
for some 𝑘 ≥ 0. There exists a

unique 𝑥
𝑘+1

∈ 𝐶
𝑘
∩𝑄
𝑘
such that 𝑥

𝑘+1
= 𝑃
𝐶
𝑘
∩𝑄
𝑘

𝑥
0
, then we get

⟨𝑥
𝑘+1

− 𝑧, 𝑥
0
− 𝑥
𝑘+1

⟩ ≥ 0 for 𝑧 ∈ 𝐶
𝑘
∩ 𝑄
𝑘
. From 𝐹 ⊂ 𝐶

𝑘
∩ 𝑄
𝑘
,

we have 𝐹 ⊂ 𝑄
𝑘+1

. Therefore, 𝐹 ⊂ 𝐶
𝑘+1

∩ 𝑄
𝑘+1

. Thus {𝑥
𝑛
} is

well defined and 𝐹 ⊂ 𝐶
𝑛
∩ 𝑄
𝑛
for all 𝑛 ≥ 0.

Since 𝐹 is a nonempty closed convex subset of 𝐶, there
exists a unique 𝑥 ∈ 𝐹 such that 𝑥 = 𝑃

𝐹
𝑥
0
. From 𝑥

𝑛+1
=

𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
and the metric projection property, we have

0 ≤ ⟨𝑥
𝑛+1

− 𝑥
0
, 𝑥 − 𝑥

𝑛+1
⟩

= ⟨𝑥
𝑛+1

− 𝑥
0
, 𝑥 − 𝑥

0
+ 𝑥
0
− 𝑥
𝑛+1

⟩

= ⟨𝑥
𝑛+1

− 𝑥
0
, 𝑥 − 𝑥

0
⟩ + ⟨𝑥

𝑛+1
− 𝑥
0
, 𝑥
0
− 𝑥
𝑛+1

⟩

=
𝑥𝑛+1 − 𝑥

0


𝑥 − 𝑥

0

 −
𝑥𝑛+1 − 𝑥

0



2

.

(22)

It follows that ‖𝑥
𝑛+1

− 𝑥
0
‖ ≤ ‖𝑥 − 𝑥

0
‖ for all 𝑥 ∈ 𝐹 ⊂ 𝐶

𝑛
∩ 𝑄
𝑛

and 𝑛 ≥ 0. This implied {𝑥
𝑛
} is bounded. So, {𝐹

𝑟
𝑛

𝑥
𝑛
}, {𝑇
𝑟
𝑛

𝑤
𝑛
},

{𝑆(𝜇
𝑛
)𝑧
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑤

𝑛
} are bounded.

Next, we show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (23)

Since 𝑥
𝑛+1

∈ 𝐶
𝑛
∩ 𝑄
𝑛
⊂ 𝑄
𝑛
, 𝑥
𝑛
= 𝑃
𝑄
𝑛

𝑥
0
, and ⟨𝑥

𝑛
− 𝑥
0
, 𝑥
𝑛+1

−

𝑥
𝑛
⟩ ≥ 0, as same as the prove of (22), we get ‖𝑥

𝑛+1
− 𝑥
0
‖ ≥

‖𝑥
𝑛
− 𝑥
0
‖ for all 𝑛 ≥ 0. Thus, {‖𝑥

𝑛
− 𝑥
0
‖} is nondecreasing.

By {‖𝑥
𝑛
−𝑥
0
‖} is bounded and nondecreasing, there exists the

limit of {‖𝑥
𝑛
− 𝑥
0
‖}. Since 𝑥

𝑛+1
∈ 𝑄
𝑛
, we have

⟨𝑥
𝑛
− 𝑥
𝑛+1

, 𝑥
0
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑛 ≥ 0, (24)

𝑥𝑛 − 𝑥
𝑛+1



2

=
𝑥𝑛 − 𝑥

0
+ 𝑥
0
− 𝑥
𝑛+1



2

=
𝑥𝑛 − 𝑥

0



2

+ 2 ⟨𝑥
𝑛
− 𝑥
0
, 𝑥
0
− 𝑥
𝑛+1

⟩

+
𝑥𝑛+1 − 𝑥

0



2

=
𝑥𝑛 − 𝑥

0



2

+ 2 ⟨𝑥
𝑛
− 𝑥
0
, 𝑥
0
− 𝑥
𝑛
+ 𝑥
𝑛
− 𝑥
𝑛+1

⟩

+
𝑥𝑛+1 − 𝑥

0



2

=
𝑥𝑛 − 𝑥

0



2

+ 2⟨𝑥
𝑛
− 𝑥
0
, 𝑥
0
− 𝑥
𝑛
⟩

+ 2 ⟨𝑥
𝑛
− 𝑥
0
, 𝑥
𝑛
− 𝑥
𝑛+1

⟩ +
𝑥𝑛+1 − 𝑥

0



2

≤
𝑥𝑛 − 𝑥

0



2

+ 2 ⟨𝑥
𝑛
− 𝑥
0
, 𝑥
0
− 𝑥
𝑛
⟩

+
𝑥𝑛+1 − 𝑥

0



2

=
𝑥𝑛 − 𝑥

0



2

− 2
𝑥𝑛 − 𝑥

0



2

+
𝑥𝑛+1 − 𝑥

0



2

=
𝑥𝑛+1 − 𝑥

0



2

−
𝑥𝑛 − 𝑥

0



2

.

(25)

Since lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
0
‖ exists, therefore (23) holds.

Next, we show that

lim
𝑛→∞

𝑆 (𝜇
𝑛
) 𝑥
𝑛
− 𝑥
𝑛

 = 0. (26)

Since 𝑥
𝑛+1

∈ 𝐶
𝑛
, we have

𝑥𝑛 − 𝑦
𝑛

 ≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑦

𝑛

 ≤ 2
𝑥𝑛+1 − 𝑥

𝑛

 → 0

as 𝑛 → ∞.

(27)

Let 𝑥
∗

∈ 𝐹, V
𝑛

= 𝐹
𝑟
𝑛

𝑥
𝑛
, and 𝑢

𝑛
= 𝑇
𝑟
𝑛

𝑤
𝑛
; it follows from

Lemma 1, we get

V𝑛 − 𝑥
∗

2

=

𝐹
𝑟
𝑛

𝑥
𝑛
− 𝐹
𝑟
𝑛

𝑥
∗

2

≤ ⟨𝐹
𝑟
𝑛

𝑥
𝑛
− 𝐹
𝑟
𝑛

𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= ⟨V
𝑛
− 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

=
1

2
(
V𝑛 − 𝑥

∗

2

+
𝑥𝑛 − 𝑥

∗

2

−
V𝑛 − 𝑥

𝑛



2

) ,

𝑢𝑛 − 𝑥
∗

2

=

𝑇
𝑟
𝑛

𝑤
𝑛
− 𝑇
𝑟
𝑛

𝑥
∗

2

≤ ⟨𝑇
𝑟
𝑛

𝑤
𝑛
− 𝑇
𝑟
𝑛

𝑥
∗
, 𝑤
𝑛
− 𝑥
∗
⟩

= ⟨𝑢
𝑛
− 𝑥
∗
, 𝑤
𝑛
− 𝑥
∗
⟩

=
1

2
(
𝑢𝑛 − 𝑥

∗

2

+
𝑤𝑛 − 𝑥

∗

2

−
𝑢𝑛 − 𝑤

𝑛



2

) .

(28)

Hence
V𝑛 − 𝑥

∗

2

≤
𝑥𝑛 − 𝑥

∗

2

−
V𝑛 − 𝑥

𝑛



2

,

𝑢𝑛 − 𝑥
∗

2

≤
𝑤𝑛 − 𝑥

∗

2

−
𝑢𝑛 − 𝑤

𝑛



2

.

(29)

It follows that
𝑦𝑛 − 𝑥

∗

2

≤ 𝛼
𝑛

𝑧𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
)
𝑆 (𝜇
𝑛
) 𝑧
𝑛
− 𝑥
∗

2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
)
V𝑛 − 𝑥

∗

2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
) (

𝑥𝑛 − 𝑥
∗

2

−
V𝑛 − 𝑥

𝑛



2

)
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≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑥

∗

2

−
V𝑛 − 𝑥

𝑛



2

=
𝑥𝑛 − 𝑥

∗

2

−
V𝑛 − 𝑥

𝑛



2

,

𝑦𝑛 − 𝑥
∗

2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
)
𝑢𝑛 − 𝑥

∗

2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
) (

𝑤𝑛 − 𝑥
∗

2

−
𝑢𝑛 − 𝑤

𝑛



2

)

≤ 𝛼
𝑛

𝑥𝑛 − 𝑥
∗

2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑥

∗

2

−
𝑢𝑛 − 𝑤

𝑛



2

=
𝑥𝑛 − 𝑥

∗

2

−
𝑢𝑛 − 𝑤

𝑛



2

.

(30)

Consequently, we have that

V𝑛 − 𝑥
𝑛



2

≤
𝑥𝑛 − 𝑥

∗

2

−
𝑦𝑛 − 𝑥

∗

2

≤ (
𝑥𝑛 − 𝑥

∗ +
𝑦𝑛 − 𝑥

∗)
𝑥𝑛 − 𝑦

𝑛

 ,

𝑢𝑛 − 𝑤
𝑛



2

≤
𝑥𝑛 − 𝑥

∗

2

−
𝑦𝑛 − 𝑥

∗

2

≤ (
𝑥𝑛 − 𝑥

∗ +
𝑦𝑛 − 𝑥

∗)
𝑥𝑛 − 𝑦

𝑛

 .

(31)

Equation (27) implies that

lim
𝑛→∞

V𝑛 − 𝑥
𝑛

 = 0,

lim
𝑛→∞

𝑢𝑛 − 𝑤
𝑛

 = 0.

(32)

On the other hand, from (18) and (32), we also have
𝑤𝑛 − V

𝑛

 = 𝛾
𝑛

𝑥𝑛 − V
𝑛

 → 0 as 𝑛 → ∞,

𝑧𝑛 − 𝑢
𝑛

 = 𝛽
𝑛

𝑤𝑛 − 𝑢
𝑛

 → 0 as 𝑛 → ∞.

(33)

It follows from (32)-(33) we get

lim
𝑛→∞

𝑧𝑛 − 𝑥
𝑛

 = 0. (34)

Since 𝑦
𝑛
−𝑥
𝑛
= 𝛼
𝑛
(𝑧
𝑛
−𝑥
𝑛
) + (1 − 𝛼

𝑛
)(𝑆(𝜇
𝑛
)𝑧
𝑛
−𝑥
𝑛
) and from

(27) and (34), we get

𝑥𝑛 − 𝑆 (𝜇
𝑛
) 𝑧
𝑛

 ≤
𝛼
𝑛

1 − 𝛼
𝑛

𝑧𝑛 − 𝑥
𝑛

 +
1

1 − 𝛼
𝑛

𝑥𝑛 − 𝑦
𝑛

 → 0

as 𝑛 → ∞.

(35)

It follows that
𝑥𝑛 − 𝑆 (𝜇

𝑛
) 𝑥
𝑛

 ≤
𝑥𝑛 − 𝑆 (𝜇

𝑛
) 𝑧
𝑛

 +
𝑆 (𝜇
𝑛
) 𝑧
𝑛
− 𝑆 (𝜇

𝑛
) 𝑥
𝑛



≤
𝑥𝑛 − 𝑆 (𝜇

𝑛
) 𝑧
𝑛

 +
𝑧𝑛 − 𝑥

𝑛

 .

(36)

Therefore (26) holds.
Next, we show that 𝑥 ∈ 𝐹 = 𝐹(S)∩𝐹(𝑇)∩VI(𝐶, 𝐴). First,

we show that 𝑥 is the unique solution in 𝐹(S). Since {𝑥
𝑛
} is

bounded, we choose subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} and assume

that 𝑥
𝑛
𝑖

⇀ 𝑥
. Suppose that 𝑥 ∉ 𝐹(S) = ∩

0≤𝑠<∞
𝐹(𝑇(𝑠)); that

is, 𝑥 ̸= 𝑆(𝑠)𝑥
. From Opial’s condition and (26), we have

lim inf
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥


< lim inf
𝑖→∞


𝑥
𝑛
𝑖

− 𝑆 (𝑠) 𝑥


≤ lim inf
𝑖→∞

(

𝑥
𝑛
𝑖

− 𝑆 (𝑠) 𝑥
𝑛
𝑖


+


𝑆 (𝑠) 𝑥

𝑛
𝑖

− 𝑆 (𝑠) 𝑥

)

≤ lim inf
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥


.

(37)

This is a contradiction. Thus, we obtain 𝑥

∈ 𝐹(S).

Since {𝑥
𝑛
𝑖

} is bounded, there exists a subsequence {𝑥
𝑛
𝑖
𝑗

} of
{𝑥
𝑛
𝑖

} such that 𝑥
𝑛
𝑖
𝑗

⇀ 𝑥
, 𝑥 ∈ 𝐶. Without loss of generality,

we may assume that 𝑥
𝑛
𝑖

⇀ 𝑥
. From the setting V

𝑛
= 𝐹
𝑟
𝑛

𝑥
𝑛

and (10), we have

⟨𝑦 − V
𝑛
𝑖

, 𝐴V
𝑛
𝑖

⟩ +
1

𝑟
𝑛
𝑖

⟨𝑦 − V
𝑛
𝑖

, V
𝑛
𝑖

− 𝑥
𝑛
𝑖

⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(38)

For 𝑡 ∈ (0, 1) and V ∈ 𝐶, let V
𝑡
= 𝑡V + (1 − 𝑡)𝑥

. Since V ∈ 𝐶

and 𝑥

∈ 𝐶, we have V

𝑡
∈ 𝐶 and

⟨V
𝑡
− V
𝑛
𝑖

, 𝐴V
𝑡
⟩ ≥ ⟨V

𝑡
− V
𝑛
𝑖

, 𝐴V
𝑡
− 𝐴V
𝑛
𝑖

⟩

− ⟨V
𝑡
− V
𝑛
𝑖

,
V
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝑟
𝑛
𝑖

⟩.

(39)

Since 𝐴 is a monotone and V
𝑛
𝑖

− 𝑥
𝑛
𝑖

→ 0, we obtain

⟨V
𝑡
− 𝑥

, 𝐴V
𝑡
⟩ = lim
𝑖→∞

⟨V
𝑡
− V
𝑛
𝑖

, 𝐴V
𝑡
⟩ ≥ 0. (40)

By the continuity of𝐴, if 𝑡 → 0 then ⟨V−𝑥

, 𝐴V⟩ ≥ 0, ∀V ∈ 𝐶.

Therefore, 𝑥 ∈ VI(𝐶, 𝐴).
On the other hand, since 𝑢

𝑛
= 𝑇
𝑟
𝑛

𝑤
𝑛
, from (11) we have

⟨𝑦 − 𝑢
𝑛
𝑖

, 𝑇𝑢
𝑛
𝑖

⟩ −
1

𝑟
𝑛
𝑖

⟨𝑦 − 𝑢
𝑛
𝑖

, (1 + 𝑟
𝑛
𝑖

) 𝑢
𝑛
𝑖

− 𝑤
𝑛
𝑖

⟩ ≤ 0,

∀𝑦 ∈ 𝐶.

(41)

For 𝑡 ∈ (0, 1) and V ∈ 𝐶, let V
𝑡
= 𝑡V + (1 − 𝑡)𝑥

. Since V ∈ 𝐶

and 𝑥

∈ 𝐶, we have V

𝑡
∈ 𝐶 and

⟨𝑢
𝑛
𝑖

− V
𝑡
, 𝑇V
𝑡
⟩ ≥ ⟨𝑢

𝑛
𝑖

− V
𝑡
, 𝑇V
𝑡
⟩ + ⟨V

𝑡
− 𝑢
𝑛
𝑖

, 𝑇𝑢
𝑛
𝑖

⟩

−
1

𝑟
𝑛
𝑖

⟨V
𝑡
− 𝑢
𝑛
𝑖

, (1 + 𝑟
𝑛
𝑖

) 𝑢
𝑛
𝑖

− 𝑤
𝑛
𝑖

⟩
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= −⟨V
𝑡
− 𝑢
𝑛
𝑖

, 𝑇V
𝑡
− 𝑇𝑢
𝑛
𝑖

⟩

−
1

𝑟
𝑛
𝑖

⟨V
𝑡
− 𝑢
𝑛
𝑖

, 𝑢
𝑛
𝑖

− 𝑤
𝑛
𝑖

⟩ − ⟨V
𝑡
− 𝑢
𝑛
𝑖

, 𝑢
𝑛
𝑖

⟩

≥ −

V
𝑡
− 𝑢
𝑛
𝑖



2

−
1

𝑟
𝑛
𝑖

⟨V
𝑡
− 𝑢
𝑛
𝑖

, 𝑢
𝑛
𝑖

− 𝑤
𝑛
𝑖

⟩

− ⟨V
𝑡
− 𝑢
𝑛
𝑖

, 𝑢
𝑛
𝑖

⟩

= −
1

𝑟
𝑛
𝑖

⟨V
𝑡
− 𝑢
𝑛
𝑖

, 𝑢
𝑛
𝑖

− 𝑤
𝑛
𝑖

⟩ − ⟨V
𝑡
− 𝑢
𝑛
𝑖

, V
𝑡
⟩ .

(42)

It follows from𝑢
𝑛
−𝑤
𝑛

→ 0 as 𝑛 → ∞, we get ⟨𝑥−V
𝑡
, 𝑇V
𝑡
⟩ ≥

−⟨V
𝑡
−𝑥

, V
𝑡
⟩ and hence −⟨V−𝑥


, 𝑇V
𝑡
⟩ ≥ −⟨V−𝑥


, V
𝑡
⟩, ∀V ∈ 𝐶.

By the continuity of 𝑇, if 𝑡 → 0 then −⟨V − 𝑥

, 𝑇𝑥

⟩ ≥ −⟨V −

𝑥

, 𝑥

⟩, ∀V ∈ 𝐶. Let V = 𝑇𝑥

, we have 𝑥


= 𝑇𝑥
; therefore,

𝑥

∈ 𝐹(𝑇). Consequently, we conclude that 𝑥 ∈ 𝐹 = 𝐹(S) ∩

𝐹(𝑇) ∩ VI(𝐶, 𝐴).
Finally, we show that 𝑥

𝑛
→ 𝑥
, where 𝑥


= 𝑃
𝐹
𝑥
0
. Since

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
and 𝑥


∈ 𝐹 ⊂ 𝐶

𝑛
∩ 𝑄
𝑛
, we get

𝑥𝑛+1 − 𝑥
0

 ≤

𝑥

− 𝑥
0


, ∀𝑛 ≥ 0. (43)

If 𝑥 = 𝑃
𝐹
𝑥
0
, it follows from (43), and the lower semicontinu-

ity of the norm that

𝑥

− 𝑥
0


≤

𝑥 − 𝑥
0

 ≤ lim inf
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥
0



≤ lim sup
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥
0


≤


𝑥

− 𝑥
0


.

(44)

Thus, we obtain that lim
𝑖→∞

‖𝑥
𝑛
𝑖

−𝑥
0
‖ = ‖𝑥


−𝑥
0
‖ = ‖𝑥−𝑥

0
‖.

Using the Kadec-Klee property of 𝐻, we obtain that

lim
𝑖→∞

𝑥
𝑛
𝑖

= 𝑥

= 𝑥. (45)

Since {𝑥
𝑛
𝑖

} is an arbitrary weakly convergent subsequence
of {𝑥
𝑛
}, we can conclude that {𝑥

𝑛
} converges strongly to 𝑥

,
where 𝑥


= 𝑃
𝐹
𝑥
0
. This completes the proof.

Corollary 3. Let𝐶 be a nonempty bounded closed and convex
subset of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a
continuous pseudocontractive mapping and let𝐴 : 𝐶 → 𝐻 be
a continuous monotone mapping. Let S = {𝑇(𝑠) : 0 ≤ 𝑠 < ∞}

be a nonexpansive semigroup on 𝐶 such that lim inf
𝑛→0

𝜇
𝑛

=

0, lim sup
𝑛→0

𝜇
𝑛

> 0, and lim
𝑛→0

(𝜇
𝑛+1

− 𝜇
𝑛
) = 0. Let

{𝑟
𝑛
} ⊂ (0,∞) such that lim inf

𝑛→∞
𝑟
𝑛

> 0 and suppose
𝐹 = 𝐹(S) ∩ 𝐹(𝑇) ∩ 𝑉𝐼(𝐶, 𝐴) ̸= 0. The mappings 𝑇

𝑟
𝑛

and 𝐹
𝑟
𝑛

are defined by (10) and (11). Let {𝑥
𝑛
} be a sequences generated

by 𝑥
0
∈ 𝐶 and

𝑦
𝑛
= 𝑆 (𝜇

𝑛
) 𝑇
𝑟
𝑛

𝐹
𝑟
𝑛

,

𝐶
𝑛
= {𝑧 ∈ 𝐶 |

𝑦𝑛 − 𝑧
 ≤

𝑥𝑛 − 𝑧
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 | ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
, ∀𝑛 ≥ 0.

(46)

Then the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥
0
.

Proof. Putting 𝛼
𝑛

= 𝛽
𝑛

= 𝛾
𝑛

= 0, ∀𝑛 ≥ 0 in Theorem 2, we
can obtain the result.

3.2. The Shrinking Projection Method

Theorem 4. Let 𝐶 be a nonempty bounded closed and convex
subset of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a
continuous pseudocontractive mapping and let𝐴 : 𝐶 → 𝐻 be
a continuous monotone mapping. Let S = {𝑆(𝑠) : 0 ≤ 𝑠 < ∞}

be a nonexpansive semigroup on𝐶 such that lim inf
𝑛→0

𝜇
𝑛
= 0,

lim sup
𝑛→0

𝜇
𝑛

> 0, and lim
𝑛→0

(𝜇
𝑛+1

− 𝜇
𝑛
) = 0. Let {𝛼

𝑛
},

{𝛽
𝑛
}, and {𝛾

𝑛
} be the sequences in [0, 𝑎) for some 𝑎 ∈ [0, 1),

{𝑟
𝑛
} ⊂ (0,∞) such that lim inf

𝑛→∞
𝑟
𝑛

> 0 and suppose
𝐹 = 𝐹(S) ∩ 𝐹(𝑇) ∩ 𝑉𝐼(𝐶, 𝐴) ̸= 0. The mappings 𝑇

𝑟
𝑛

and 𝐹
𝑟
𝑛

are defined by (10) and (11). Let {𝑥
𝑛
} be sequences generated by

𝑥
0
∈ 𝐶 and

𝑤
𝑛
= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝐹
𝑟
𝑛

𝑥
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑤
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑟
𝑛

𝑤
𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑧
𝑛
+ (1 − 𝛼

𝑛
) 𝑆 (𝜇
𝑛
) 𝑧
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑦𝑛 − 𝑧

 ≤
𝑥𝑛 − 𝑧

} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 0.

(47)

Then the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥
0
.

Proof. First, we show that 𝐹 ⊂ 𝐶
𝑛
. By induction, it is obvious

that 𝐹 ⊂ 𝐶
1
. Suppose that 𝐹 ⊂ 𝐶

𝑘
for some 𝑘 ≥ 0, so we have

𝑥
∗

∈ 𝐹 ⊂ 𝐶
𝑘
such that ‖𝑦

𝑘
− 𝑥
∗
‖ ≤ ‖𝑥

𝑘
− 𝑥
∗
‖. Then, we get

𝑥
∗
∈ 𝐶
𝑛+1

. Therefore 𝐹 ⊂ 𝐶
𝑛
for all 𝑛 ≥ 0.

On the other hand, we show that 𝐶
𝑛
is closed and convex

for all 𝑛 ≥ 0. By mathematical induction, it is obvious that
𝐶
1

= 𝐶 is closed and convex. Suppose that 𝐶
𝑘
is closed and

convex for some 𝑘 ≥ 0. For 𝑧 ∈ 𝐶
𝑘
, we have that ‖𝑦

𝑘
− 𝑧‖ ≤

‖𝑥
𝑘
− 𝑧‖ is equivalent to ‖𝑦

𝑘
− 𝑥
𝑘
‖
2
+ 2⟨𝑦

𝑘
− 𝑥
𝑘
, 𝑥
𝑘
− 𝑧⟩ ≤

0. Thus, we have 𝐶
𝑘+1

is closed and convex for all 𝑛 ≥ 0.
Therefore, 𝐶

𝑛
is closed and convex for all 𝑛 ≥ 0. This implies

that {𝑥
𝑛
} is well defined.

Next, we show that {𝑥
𝑛
} is bounded. From the metric

projection property and (47), we have 𝑥
𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and ⟨𝑥

𝑛
−

𝑥
0
, 𝑥 − 𝑥

𝑛
⟩ ≥ 0 for all 𝑥 ∈ 𝐹 ⊂ 𝐶

𝑛
and 𝑛 ≥ 0. Consider

0 ≤ ⟨𝑥
𝑛
− 𝑥
0
, 𝑥 − 𝑥

𝑛
⟩

= ⟨𝑥
𝑛
− 𝑥
0
, 𝑥 − 𝑥

0
+ 𝑥
0
− 𝑥
𝑛
⟩

= ⟨𝑥
𝑛
− 𝑥
0
, 𝑥 − 𝑥

0
⟩ + ⟨𝑥

𝑛
− 𝑥
0
, 𝑥
0
− 𝑥
𝑛
⟩

=
𝑥𝑛 − 𝑥

0


𝑥 − 𝑥

0

 −
𝑥𝑛 − 𝑥

0



2

.

(48)

It follows that ‖𝑥
𝑛
− 𝑥
0
‖ ≤ ‖𝑥 − 𝑥

0
‖ for all 𝑥 ∈ 𝐹 and 𝑛 ≥ 0.

This implied {𝑥
𝑛
} is bounded. So, {𝐹

𝑟
𝑛

𝑥
𝑛
}, {𝑇
𝑟
𝑛

𝑤
𝑛
}, {𝑆(𝜇

𝑛
)𝑧
𝑛
},

{𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑤

𝑛
} are bounded.

Next, we show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (49)

From the metric projection property and (47), we have 𝑥
𝑛
=

𝑃
𝐶
𝑛

𝑥
0
, 𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, and ⟨𝑥

𝑛
−𝑥
0
, 𝑥
𝑛+1

−𝑥
𝑛
⟩ ≥
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0. As same as the prove of (48), we get ‖𝑥
𝑛
−𝑥
0
‖ ≤ ‖𝑥

𝑛+1
−𝑥
0
‖

for all 𝑛 ≥ 0. Thus, {‖𝑥
𝑛
− 𝑥
0
‖} is nondecreasing. Since {‖𝑥

𝑛
−

𝑥
0
‖} is bounded and nondecreasing, there exists the limit of

{‖𝑥
𝑛
− 𝑥
0
‖}. Similar to the proved of (25), we get (49) is hold.

Since sequence {𝑥
𝑛
} is bounded, we can choose subse-

quence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} and assume that 𝑥

𝑛
𝑖

⇀ 𝑥
. Similar to

the proof of Theorem 2, we also have 𝑥

∈ 𝐹.

Finally, we show that 𝑥
𝑛

→ 𝑥
, where 𝑥


= 𝑃
𝐹
𝑥
0
. Since

𝑥
𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and 𝑥


∈ 𝐹 ⊂ 𝐶

𝑛
, we have

𝑥𝑛 − 𝑥
0

 ≤
𝑥 − 𝑥

0

 . (50)

It follows from (50), if 𝑥 = 𝑃
𝐹
𝑥
0
and the lower semicontinuity

of the norm

𝑥

− 𝑥
0


≤

𝑥 − 𝑥
0

 ≤ lim inf
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥
0



≤ lim sup
𝑖→∞


𝑥
𝑛
𝑖

− 𝑥
0


≤


𝑥

− 𝑥
0


,

(51)

thus, we obtain that lim
𝑖→∞

‖𝑥
𝑛
𝑖

−𝑥
0
‖ = ‖𝑥−𝑥

0
‖ = ‖𝑥


−𝑥
0
‖.

Using the Kadec-Klee property of 𝐻, we obtain that

lim
𝑖→∞

𝑥
𝑛
𝑖

= 𝑥 = 𝑥

. (52)

Since {𝑥
𝑛
𝑖

} is an arbitrary weakly convergent subsequence
of {𝑥
𝑛
}, we can conclude that {𝑥

𝑛
} converges strongly to 𝑥

,
where 𝑥


= 𝑃
𝐹
𝑥
0
.

Corollary 5. Let𝐶 be a nonempty bounded closed and convex
subset of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a
continuous pseudocontractive mapping and let𝐴 : 𝐶 → 𝐻 be
a continuous monotone mapping. Let S = {𝑇(𝑠) : 0 ≤ 𝑠 < ∞}

be a nonexpansive semigroup on 𝐶 such that lim inf
𝑛→0

𝜇
𝑛

=

0, lim sup
𝑛→0

𝜇
𝑛

> 0, and lim
𝑛→0

(𝜇
𝑛+1

− 𝜇
𝑛
) = 0. Let

{𝑟
𝑛
} ⊂ (0,∞) such that lim inf

𝑛→∞
𝑟
𝑛

> 0 and suppose
𝐹 = 𝐹(S) ∩ 𝐹(𝑇) ∩ 𝑉𝐼(𝐶, 𝐴) ̸= 0. The mappings 𝑇

𝑟
𝑛

and 𝐹
𝑟
𝑛

are defined by (10) and (11). Let {𝑥
𝑛
} be a sequences generated

by 𝑥
0
∈ 𝐶 and

𝑦
𝑛
= 𝑆 (𝜇

𝑛
) 𝑇
𝑟
𝑛

𝐹
𝑟
𝑛

,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑦𝑛 − 𝑧

 ≤
𝑥𝑛 − 𝑧

} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 0.

(53)

Then the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥
0
.

Proof. Putting 𝛼
𝑛

= 𝛽
𝑛

= 𝛾
𝑛

= 0, ∀𝑛 ≥ 0 in Theorem 4, we
can obtain the result.

Remark 6. According to nonexpansive semigroup mapping,
it will be interesting if we replace the semigroup S = (N,
+) by an additive positive real numbers of a commutative
semigroup or a left amenable semigroup or a left reversible
semigroup with using an asymptotically invariant sequence.
See [31, 32].
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