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The purpose of this paper is to elicit some interesting extensions of generalized almost contraction mappings to the case of non-
self-mappings with 𝛼-proximal admissible and prove best proximity point theorems for this classes. Moreover, we also give some
examples and applications to support our main results.

1. Introduction

Many problems can be formulated as equations of the form
𝑇𝑥 = 𝑥, where 𝑇 is a self-mapping with some suitable
domains. From the fact that fixed point theory plays an
important role in furnishing a uniform treatment to solve
various equations of the form 𝑇𝑥 = 𝑥 However, in the case
that 𝑇 is non-self-mapping, the aforementioned equation
does not necessarily have a fixed point. In such case, it is
worthy to determine an approximate solution 𝑥 such that
the error 𝑑(𝑥, 𝑇𝑥) is minimum. This is the idea behind
best approximation theory. 𝐴 classical best approximation
theoremwas introduced by Fan [1]; that is, if𝐴 is a nonempty
compact convex subset of aHausdorff locally convex topolog-
ical vector space 𝐵 and 𝑇 : 𝐴 → 𝐵 is a continuous mapping,
then there exists an element 𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) =

𝑑(𝑇𝑥, 𝐴). Afterward, several authors, including Prolla [2],
Reich [3], and Sehgal and Singh [4, 5], have derived exten-
sions of Fan’s Theorem in many directions. Moreover, for a
detailed account of global optimization and the existence of a
best proximity point, one can refer to [5–15]. In 2013, Samet
[16] studied the existence and uniqueness of best proximity
points for almost (𝜑, 𝜃)-contractive mappings in complete
metric spaces. Recently, Jleli et al. [17] introduced a new class

of non-self-contractive mappings with generalization of 𝛼-
proximal admissible defined by Samet et al. [18] which is
called 𝛼 −𝜓-proximal contractive type mappings and proved
existence and uniqueness of best proximity points.

Motivated from the above results, we will study the
best proximity point theorem for new classes as generalized
almost contraction in metric spaces by using the 𝛼-proximal
admissible of Jleli et al. [17]. Also, we give some illustrative
examples and applications to support our main results.

2. Preliminaries

Let𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋, 𝑑); we
recall the following notations and notions that will be used in
what follows:

𝑑 (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵} ,

𝐴
0
:= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
:= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(1)

If 𝐴 ∩ 𝐵 ̸= 0, then 𝐴
0
and 𝐵

0
are nonempty. Further, it

is interesting to notice that 𝐴
0
and 𝐵

0
are contained in the

boundaries of 𝐴 and 𝐵, respectively, provided 𝐴 and 𝐵 are
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closed subsets of a normed linear space such that 𝑑(𝐴, 𝐵) > 0
(see [19]).

Definition 1. A point 𝑥 ∈ 𝐴 is said to be a best proximity
point of the mapping 𝑆 : 𝐴 → 𝐵 if it satisfies the following
condition:

𝑑 (𝑥, 𝑆𝑥) = 𝑑 (𝐴, 𝐵) . (2)

It can be observed that a best proximity reduces to a fixed
point if the underlying mapping is a self-mapping.

Definition 2 (see [13]). Let (𝐴, 𝐵) be a pair of nonempty
subsets of 𝑋 with 𝐴

0
̸= 0. Then the pair (𝐴, 𝐵) is said to have

the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦if and only if

{

𝑑 (𝑥
1
, 𝑦
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑦
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑥
1
, 𝑥
2
) = (𝑦

1
, 𝑦
2
) , (3)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
.

It is easy to see that, for any nonempty subset 𝐴 of𝑋, the
pair (𝐴, 𝐴) has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦.

Example 3 (see [13]). Let 𝐴, 𝐵 be two nonempty closed
convex subsets of a Hilbert space 𝑋. Then (𝐴, 𝐵) satisfies the
𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦.

Example 4 (see [20]). Let 𝐴, 𝐵 be two nonempty, bounded,
closed, and convex subsets of a uniformly convex Banach
space𝑋. Then (𝐴, 𝐵) has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦.

Example 5 (see [20]). Let𝑋 = 𝑅
2 with the metric defined by

𝑑 ((𝑥
1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
)) = max {󵄨󵄨󵄨

󵄨
𝑥
1
− 𝑦
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑦
2

󵄨
󵄨
󵄨
󵄨
} . (4)

Let 𝐴 := {(𝑥, 0) : −1 ≤ 𝑥 ≤ 1} and 𝐵 := {(0, 𝑦) : −1 ≤ 𝑦 ≤ 1}.
Then (𝐴, 𝐵) satisfies the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦.

Definition 6 (see [18]). A self-mapping 𝑇 : 𝑋 → 𝑋 is said to
be 𝛼-admissible, where 𝛼 : 𝑋 × 𝑋 → [0,∞), if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (5)

Definition 7 (see [17]). Let 𝑇 : 𝐴 → 𝐵 and 𝛼 : 𝐴 × 𝐴 →

[0,∞). One says that 𝑇 is 𝛼-proximal admissible, if

{

{

{

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝛼 (𝑢
1
, 𝑢
2
) ≥ 1 (6)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

Clearly, for self-mapping, 𝑇 being 𝛼-proximal admissible
implies that 𝑇 is 𝛼-admissible.

Definition 8. One says the function 𝜑 : [0,∞) → [0,∞)

is a (c)-comparison function if and only if the following
conditions hold:

(Φ
1
) 𝜑 is a nondecreasing function,

(Φ
2
) for any 𝑡 > 0, ∑∞

𝑛=1
𝜑
𝑛
(𝑡) is a convergent series.

One denotes the set of (c)-comparison function by Ψ.
It is easily proved that if 𝜑 is a (c)-comparison function,

then 𝜑(𝑡) < 𝑡 for all 𝑡 > 0.

Definition 9 (see [16]). Let 𝜃 : [0,∞)
4
→ [0,∞) satisfy the

following conditions:

(1) 𝜃 is continuous,
(2) 𝜃(𝑎, 𝑏, 𝑐, 𝑑) = 0 if and only if the product 𝑎𝑏𝑐𝑑 = 0.

One denotes the class of function 𝜃 by Θ.

Example 10 (see [16]). The following functions belong to Θ:

(1) 𝜃(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜏min{𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
}, 𝜏 > 0;

(2) 𝜃(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜏 ln(1 + 𝑡

1
𝑡
2
𝑡
3
𝑡
4
), 𝜏 > 0;

(3) 𝜃(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝜏𝑡

1
𝑡
2
𝑡
3
𝑡
4
, 𝜏 > 0.

3. The Existence and Uniqueness
of Best Proximity Points

In this section, we introduce the new class of the gener-
alized Banach contraction for non-self-mappings so-called
generalized almost (𝜑, 𝜃)

𝛼
contraction and we also study the

best proximity theorems for these classes. First, we recall the
notion of (𝜑, 𝜃) contraction defined by Samet [16] as follows.

Definition 11 (see [16]). Let 𝐴 and 𝐵 be nonempty subsets of
metric space𝑋. Amapping𝑇 : 𝐴 → 𝐵 is said to be an almost
(𝜑, 𝜃) contraction if and only if there exist 𝜑 ∈ Ψ and 𝜃 ∈ Θ
such that, for all 𝑥, 𝑦 ∈ 𝐴,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑦, 𝑇𝑥)

− 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥)

−𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵)) .

(7)

3.1. The Existence

Definition 12. Let 𝐴 and 𝐵 be nonempty subsets of metric
space 𝑋. A mapping 𝑇 : 𝐴 → 𝐵 is said to be a generalized
almost (𝜑, 𝜃)

𝛼
contraction if and only if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑦, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑦)

− 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦)

−𝑑 (𝐴, 𝐵)) ,

(8)
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for all 𝑥, 𝑦 ∈ 𝐴, where 𝛼 : 𝐴 × 𝐴 → [0,∞), 𝜑 ∈ Ψ 𝜃 ∈

Θ, and

𝑀(𝑥, 𝑦)

= max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦)

−𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)] − 𝑑 (𝐴, 𝐵)} .

(9)

Clearly, if we take 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐴 and
𝑀(𝑥, 𝑦) = 𝑑(𝑥, 𝑦), the generalized almost (𝜑, 𝜃)

𝛼
contraction

reduces to almost (𝜑, 𝜃) contraction.

Theorem 13. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space 𝑋 such that 𝐴

0
is nonempty and the

pair (𝐴, 𝐵) has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let 𝑇 : 𝐴 → 𝐵 satisfy the
following conditions:

(a) 𝑇 are 𝛼-proximal admissible and generalized almost
(𝜑, 𝜃)
𝛼
-contraction;

(b) 𝑇 is continuous;
(c) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑(𝑥
1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵) and 𝛼(𝑥

0
, 𝑥
1
) ≥ 1;

(d) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (10)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (11)

converges to the element 𝑥.

Proof. By the hypothesis (𝑐), there exist 𝑥
0
and 𝑥

1
in𝐴
0
such

that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1. (12)

From the fact that 𝑇(𝐴
0
) ⊆ 𝐵

0
, there exists an element 𝑥

2
∈

𝐴
0
such that

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (13)

By (12), (13), and the 𝛼-proximal admissible, we get

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1. (14)

Since 𝑇(𝐴
0
) ⊆ 𝐵
0
, we can find an element 𝑥

3
∈ 𝐴
0
such that

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) . (15)

Again, by (13), (15), and the 𝛼-proximal admissible, we have

𝛼 (𝑥
2
, 𝑥
3
) ≥ 1. (16)

By similar fashion, we can find 𝑥
𝑛
in 𝐴
0
. Having chosen

𝑥
𝑛
, one can determine an element 𝑥

𝑛+1
∈ 𝐴
0
such that

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1. (17)

In view of the fact that the pair (𝐴, 𝐵) has𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 and
generalized almost (𝜑, 𝜃)

𝛼
-contraction of 𝑇, we have

𝑑 (𝑥
1
, 𝑥
2
)

= 𝑑 (𝑇𝑥
0
, 𝑇𝑥
1
)

≤ 𝛼 (𝑥
0
, 𝑥
1
) 𝑑 (𝑇𝑥

0
, 𝑇𝑥
1
)

≤ 𝜑 (𝑀 (𝑥
0
, 𝑥
1
))

+ 𝜃 (𝑑 (𝑥
1
, 𝑇𝑥
0
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

0
, 𝑇𝑥
1
)−𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
0
, 𝑇𝑥
0
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

1
, 𝑇𝑥
1
)−𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥
0
, 𝑥
1
))

+ 𝜃 (0, 𝑑 (𝑥
0
, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

0
, 𝑇𝑥
0
)

−𝑑 (𝐴, 𝐵) , 𝑑 (𝑥1
, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥
0
, 𝑥
1
)) .

(18)

Since
𝑀(𝑥
0
, 𝑥
1
)

= max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

0
, 𝑇𝑥
0
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

1
, 𝑇𝑥
1
)

− 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
0
, 𝑇𝑥
1
) + 𝑑 (𝑥

1
, 𝑇𝑥
0
)]

−𝑑 (𝐴, 𝐵) }

≤ max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑇𝑥
0
)

− 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)

− 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑥
2
)

+𝑑 (𝑥
2
, 𝑇𝑥
1
) + 𝑑 (𝐴, 𝐵)]

−𝑑 (𝐴, 𝐵) }

= max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑥
2
) ,

1

2

[𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑥
2
) + 𝑑 (𝐴, 𝐵) + 𝑑 (𝐴, 𝐵)]

−𝑑 (𝐴, 𝐵) }

= max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑥
2
) ,

1

2

[𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑥
2
)]}

= max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑥
2
)} .

(19)

By (18) and (19), we get

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝜑 (max {𝑑 (𝑥

0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑥
2
)}) . (20)
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If there exists 𝑛
0
∈ N ∪ {0} such that 𝑥

𝑛0+1
= 𝑥
𝑛0
, by (17), we

obtain the best proximity point. Suppose that 𝑥
𝑛+1

̸= 𝑥
𝑛
for

all 𝑛 ∈ N ∪ {0}; then 𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) > 0 for all 𝑛 ∈ N ∪ {0}. If

max{𝑑(𝑥
0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑥
2
)} = 𝑑(𝑥

1
, 𝑥
2
), by the property 𝜑(𝑡) <

𝑡 for all 𝑡 > 0, we get

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝜑 (max {𝑑 (𝑥

0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑥
2
)}) < 𝑑 (𝑥

1
, 𝑥
2
) ,

(21)

which is a contradiction and hence max{𝑑(𝑥
0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑥
2
)}

= 𝑑(𝑥
0
, 𝑥
1
). That is,

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝜑 (𝑑 (𝑥

0
, 𝑥
1
)) . (22)

Again, since the pair (𝐴, 𝐵) has 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, is 𝛼-proximal
admissible, and generalized almost (𝜑, 𝜃)

𝛼
-contraction of 𝑇,

we have

𝑑 (𝑥
2
, 𝑥
3
)

= 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

≤ 𝛼 (𝑥
1
, 𝑥
2
) 𝑑 (𝑇𝑥

1
, 𝑇𝑥
2
)

≤ 𝜑 (𝑀 (𝑥
1
, 𝑥
2
))

+ 𝜃 (𝑑 (𝑥
2
, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

1
, 𝑇𝑥
2
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
1
, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

2
, 𝑇𝑥
2
) − 𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥
1
, 𝑥
2
))

+ 𝜃 (0, 𝑑 (𝑥
1
, 𝑇𝑥
2
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥1

, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
2
, 𝑇𝑥
2
) − 𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥
1
, 𝑥
2
))

(23)

and since

𝑀(𝑥
1
, 𝑥
2
)

= max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥

2
, 𝑇𝑥
2
)

− 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)]

−𝑑 (𝐴, 𝐵) }

≤ max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
2
, 𝑥
3
) + 𝑑 (𝑥

3
, 𝑇𝑥
2
) − 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑥
3
)

+𝑑 (𝑥
3
, 𝑇𝑥
2
) + 𝑑 (𝐴, 𝐵)]

−𝑑 (𝐴, 𝐵) }

= max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑥
3
) ,

1

2

[𝑑 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑥
3
) + 𝑑 (𝐴, 𝐵) + 𝑑 (𝐴, 𝐵)]

−𝑑 (𝐴, 𝐵) }

= max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑥
3
) ,

1

2

[𝑑 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑥
3
)]}

= max {𝑑 (𝑥
1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑥
3
)} .

(24)

By (23) and (24), we get

𝑑 (𝑥
2
, 𝑥
3
) ≤ 𝜑 (max {𝑑 (𝑥

1
, 𝑥
2
) , 𝑑 (𝑥

2
, 𝑥
3
)}) . (25)

By similar argument as above, we can conclude that
max{𝑑(𝑥

1
, 𝑥
2
), 𝑑(𝑥
2
, 𝑥
3
)} = 𝑑(𝑥

1
, 𝑥
2
) and thus

𝑑 (𝑥
2
, 𝑥
3
) ≤ 𝜑 (𝑑 (𝑥

1
, 𝑥
2
)) . (26)

Using (22) and (26) and the nondecreasing of 𝜑, we get

𝑑 (𝑥
2
, 𝑥
3
) ≤ 𝜑
2
(𝑑 (𝑥
0
, 𝑥
1
)) . (27)

Continuing this process, by induction we have that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝜑
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) (28)

for all 𝑛 ∈ N ∪ {0}. Fix 𝜀 > 0 and let ℎ = ℎ(𝜀) be a positive
integer such that

∑

𝑛≥ℎ

𝜑
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) < 𝜀. (29)

Let𝑚 > 𝑛 > ℎ; using the triangular inequality, (28) and (29),
we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑

𝑘=𝑛

𝑑 (𝑥
𝑘
, 𝑥
𝑘+1
)

≤

𝑚−1

∑

𝑘=𝑛

𝜑
𝑘
(𝑑 (𝑥
0
, 𝑥
1
)) ≤ ∑

𝑛≥ℎ

𝜑
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) < 𝜀.

(30)

This shows that {𝑥
𝑛
} is a Cauchy sequence. Since𝐴 is a closed

subset of complete metric spaces 𝑋, then there exists 𝑥 ∈ 𝐴
such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) = 0. (31)
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By (17), (31), and the continuity of 𝑇, we get

𝑑 (𝑥, 𝑇𝑥) = lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) (32)

and the proof is complete.

Next, we remove condition 𝑇 is continuous in
Theorem 13, by assuming the following condition which was
defined by Jleli et al. [17] for proving the new best proximity
point theorem.

(𝐻) If {𝑥
𝑛
} is a sequence in 𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1

for all 𝑛 and 𝑥
𝑛
→ 𝑥 for some 𝑥 ∈ 𝐴 as 𝑛 → ∞,

then there exists a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} such that

𝛼(𝑥
𝑛𝑘
, 𝑥) ≥ 1 for all 𝑘.

Theorem 14. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space𝑋 such that𝐴

0
is nonempty and the pair

(𝐴, 𝐵) has the𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let𝑇 : 𝐴 → 𝐵 satisfy the following
conditions:

(a) 𝑇 are 𝛼-proximal admissible and generalized almost
(𝜑, 𝜃)
𝛼
-contraction;

(b) 𝐴 satisfies condition (𝐻);

(c) there exist elements 𝑥
0
and 𝑥

1
in 𝐴
0
such that

𝑑(𝑥
1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵) and 𝛼((𝑥

0
, 𝑥
1
)) ≥ 1;

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (33)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (34)

converges to the element 𝑥.

Proof. As in the proof of Theorem 13, we have

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) (35)

for all 𝑛 ≥ 0. Moreover, {𝑥
𝑛
} is a Cauchy sequence and

converges to some point 𝑥 ∈ 𝐴. By the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 and (28),
we have

𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) = 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) ≤ 𝜑
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) (36)

for all 𝑛 ∈ N ∪ {0}. That is, lim
𝑛→∞

𝑑(𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) = 0 and,

by the same argument as proof ofTheorem 13, we obtain that
{𝑇𝑥
𝑛
} is a Cauchy sequence. Since 𝐵 is a closed subset of the

complete metric space (𝑋, 𝑑), there exists 𝑥
⋆
∈ 𝐵 such that

𝑇𝑥
𝑛
converges to 𝑥

⋆
. Therefore

𝑑 (𝑥, 𝑥
⋆
) = lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) . (37)

On the other hand, from the condition (𝐻) of 𝑇, then there
exists a subsequence {𝑥

𝑛𝑘
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛𝑘
, 𝑥) ≥ 1

for all 𝑘. The pair (𝐴, 𝐵) has 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 and property of
mapping 𝑇; we get

𝑑 (𝑥
𝑛𝑘+1

, 𝑥)

= 𝑑 (𝑇𝑥
𝑛𝑘
, 𝑇𝑥)

≤ 𝛼 (𝑥
𝑛𝑘
, 𝑥) 𝑑 (𝑇𝑥

𝑛𝑘
, 𝑇𝑥)

≤ 𝜑 (𝑀(𝑥
𝑛𝑘
, 𝑥))

+ 𝜃 (𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥

𝑛𝑘
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝑑 (𝐴, 𝐵)) .

(38)

Indeed,

𝑀(𝑥
𝑛𝑘
, 𝑥)

= max{𝑑 (𝑥
𝑛𝑘
, 𝑥) , 𝑑 (𝑥

𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥)

− 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥) + 𝑑 (𝑥, 𝑇𝑥

𝑛𝑘
)]

−𝑑 (𝐴, 𝐵) }

≤ max{𝑑 (𝑥
𝑛𝑘
, 𝑥) , 𝑑 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) + 𝑑 (𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
)

− 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
𝑛𝑘
, 𝑥) + 𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑥, 𝑥𝑛𝑘+1

)

+𝑑 (𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
)] −𝑑 (𝐴, 𝐵) }

≤ max{𝑑 (𝑥
𝑛𝑘
, 𝑥) , 𝑑 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) , 𝑑 (𝑥, 𝑇𝑥)−𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥
𝑛𝑘
, 𝑥)+𝑑 (𝑥, 𝑇𝑥)+𝑑 (𝑥, 𝑥

𝑛𝑘+1
)+𝑑 (𝐴, 𝐵)]

−𝑑 (𝐴, 𝐵) } :=M (𝑥
𝑛𝑘
, 𝑥) .

(39)

From the definition ofM(𝑥
𝑛𝑘
, 𝑥), we get

lim
𝑘→∞

M (𝑥
𝑛𝑘
, 𝑥) = 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) . (40)

Since

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑥
𝑛𝑘+1

) + 𝑑 (𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
) + 𝑑 (𝑇𝑥

𝑛𝑘
, 𝑇𝑥)

≤ 𝑑 (𝑥, 𝑥
𝑛𝑘+1

) + 𝑑 (𝐴, 𝐵) + 𝑑 (𝑇𝑥𝑛𝑘
, 𝑇𝑥)

(41)
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it follows that

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝑥, 𝑥
𝑛𝑘+1

) − 𝑑 (𝐴, 𝐵)

≤ 𝑑 (𝑇𝑥
𝑛𝑘
, 𝑇𝑥)

≤ 𝛼 (𝑥
𝑛𝑘
, 𝑥) 𝑑 (𝑇𝑥

𝑛𝑘
, 𝑇𝑥)

≤ 𝜑 (𝑀(𝑥
𝑛𝑘
, 𝑥))

+ 𝜃 (𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥𝑛𝑘

) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝑑 (𝐴, 𝐵))

≤ 𝜑 (M (𝑥
𝑛𝑘
, 𝑥))

+ 𝜃 (𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥𝑛𝑘

) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝑑 (𝐴, 𝐵)) .

(42)

Suppose that

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) > 0. (43)

Then for 𝑘 large enough, we have M(𝑥
𝑛𝑘
, 𝑥) > 0. Using the

property 𝜑(𝑡) < 𝑡 for all 𝑡 > 0, we get

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝑥, 𝑥𝑛𝑘+1
) − 𝑑 (𝐴, 𝐵)

<M (𝑥
𝑛𝑘
, 𝑥)

+ 𝜃 (𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥

𝑛𝑘
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝑑 (𝐴, 𝐵)) .

(44)

Combining (37) and (40) with (44) and the property of 𝜃, we
obtain that

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵)

= lim
𝑘→∞

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝑥, 𝑥𝑛𝑘+1
) − 𝑑 (𝐴, 𝐵)

< lim
𝑘→∞

M (𝑥
𝑛𝑘
, 𝑥)

+ lim
𝑘→∞

𝜃 (𝑑 (𝑥
𝑛𝑘
, 𝑇𝑥)−𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥

𝑛𝑘
)−𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥)−𝑑 (𝐴, 𝐵) , 𝑑 (𝑥𝑛𝑘
, 𝑇𝑥
𝑛𝑘
)−𝑑 (𝐴, 𝐵))

= lim
𝑘→∞

M (𝑥
𝑛𝑘
, 𝑥)

= 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵)

(45)

which is a contradiction and thus 𝑑(𝑥, 𝑇𝑥) − 𝑑(𝐴, 𝐵) = 0.
Hence, 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) and the proof is complete.

3.2. The Uniqueness. Next, we present an example where it
can be appreciated that hypotheses inTheorems 13 and 14 do
not guarantee uniqueness of the best proximity point.

Example 15. Let 𝑋 = 𝑅
2 with the Euclidean metric.

Consider 𝐴 := {(2, 0), (0, 2)} and 𝐵 := {(−2, 0), (0, −2)}.
Obviously, (𝐴, 𝐵) satisfies the𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 and𝑑(𝐴, 𝐵) = 2√2;
furthermore 𝐴

0
= 𝐴 and 𝐵

0
= 𝐵. Define 𝑇 : 𝐴 → 𝐵

by 𝑇(𝑥, 𝑦) = (−𝑦/2, −𝑥/2) for all 𝑥, 𝑦 ∈ 𝐴; clearly 𝑇 is
continuous. Let 𝛼 : 𝐴 × 𝐴 → [0,∞) be defined by

𝛼 (𝑥, 𝑦) =

{

{

{

2; 𝑥 = 𝑦,

1

2

; 𝑥 ̸= 𝑦.

(46)

We can show that 𝑇 are 𝛼-proximal admissible and general-
ized almost (𝜑, 𝜃)

𝛼
-contraction with 𝜑(𝑡) = 𝑡/2 for all 𝑡 ≥ 0

and for all 𝜃 ∈ Θ. Furthermore,

𝑑 ((2, 0) , 𝑇 (2, 0)) = 𝑑 ((2, 0) , (0, −2)) = 𝑑 ((0, 2) , (−2, 0))

= 𝑑 ((0, 2) , 𝑇 (0, 2)) = 𝑑 (𝐴, 𝐵) = 2√2.

(47)

Therefore, (2, 0) and (0, 2) are a best proximity point of
mapping 𝑇.

Now, we need a sufficient condition to give uniqueness of
the best proximity point as follows.

Definition 16 (see [17]). Let 𝑇 : 𝐴 → 𝐵 be a non-self-
mapping and 𝛼 : 𝐴 × 𝐴 → [0,∞). One says that 𝑇 is
(𝛼, 𝑑)-regular if, for all (𝑥, 𝑦) ∈ 𝛼

−1
([0, 1)), there exists 𝑧 ∈

𝐴
0
such that

𝛼 (𝑥, 𝑧) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1. (48)

Theorem 17. Adding condition (𝛼, 𝑑)-regular of 𝑇 to the
hypotheses of Theorem 13, then one obtains the uniqueness of
the best proximity point of 𝑇.

Proof. We will only prove the part of uniqueness. Suppose
that there exist 𝑥 and 𝑥

∗ in 𝐴 which are distinct best
proximity points; that is,

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (49)

Using the pair (𝐴, 𝐵) that has 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, we have

𝑑 (𝑥, 𝑥
∗
) = 𝑑 (𝑇𝑥, 𝑇𝑥

∗
) . (50)
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Case 1 (if 𝛼(𝑥, 𝑥∗) ≥ 1). By (50) and generalized almost
(𝜑, 𝜃)
𝛼
-contraction of 𝑇, we have

𝑑 (𝑥, 𝑥
∗
)

= 𝑑 (𝑇𝑥, 𝑇𝑥
∗
)

≤ 𝛼 (𝑥, 𝑥
∗
) 𝑑 (𝑇𝑥, 𝑇𝑥

∗
)

≤ 𝜑 (𝑀 (𝑥, 𝑥
∗
))

+ 𝜃 (𝑑 (𝑥
∗
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥

∗
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥
∗
, 𝑇𝑥
∗
) − 𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥, 𝑥
∗
))

+ 𝜃 (𝑑 (𝑥
∗
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑥

∗
) − 𝑑 (𝐴, 𝐵) , 0, 0)

= 𝜑 (𝑀 (𝑥, 𝑥
∗
))

(51)

since

𝑀(𝑥, 𝑥
∗
)

= max {𝑑 (𝑥, 𝑥∗) , 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥∗, 𝑇𝑥∗)

−𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑥, 𝑥∗) , 0, 0, 1
2

[𝑑 (𝑥, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥)]

−𝑑 (𝐴, 𝐵) }

≤ max {𝑑 (𝑥, 𝑥∗) , 1
2

[𝑑 (𝑥, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑇𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑥)

+𝑑 (𝑥, 𝑇𝑥) ] − 𝑑 (𝐴, 𝐵) }

= max {𝑑 (𝑥, 𝑥∗) , 1
2

[𝑑 (𝑥, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑥)]}

= 𝑑 (𝑥, 𝑥
∗
) .

(52)

Combining (51) with (52) and using the property 𝜑(𝑡) < 𝑡 for
all 𝑡 > 0, we get

𝑑 (𝑥, 𝑥
∗
) ≤ 𝜑 (𝑀 (𝑥, 𝑥

∗
)) = 𝜑 (𝑑 (𝑥, 𝑥

∗
)) < 𝑑 (𝑥, 𝑥

∗
) (53)

which is a contradiction and hence 𝑥 = 𝑥∗.
Case 2 (if 𝛼(𝑥, 𝑥∗) < 1). By the (𝛼, 𝑑)-regular of 𝑇, there
exists 𝑧 ∈ 𝐴

0
such that

𝛼 ((𝑥, 𝑧)) ≥ 1, 𝛼 (𝑥
∗
, 𝑧) ≥ 1. (54)

Since 𝑇(𝐴
0
) ⊆ 𝐵
0
, there exists a point V

0
∈ 𝐴
0
such that

𝑑 (V
0
, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (55)

From 𝛼(𝑥, 𝑧) ≥ 1, 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵), and 𝑑(V
0
, 𝑇𝑧) =

𝑑(𝐴, 𝐵) and by the 𝛼-proximal admissible, we have
𝛼 (𝑥, V

0
) ≥ 1. (56)

Since 𝑇(𝐴
0
) ⊆ 𝐵
0
, there exists a point V

1
∈ 𝐴
0
such that

𝑑 (V
1
, 𝑇V
0
) = 𝑑 (𝐴, 𝐵) . (57)

By similar argument as above, we can conclude that𝛼(𝑥, V
1
) ≥

1. One can proceed further in a similar fashion to find V
𝑛
in

𝐴
0
with V

𝑛+1
∈ 𝐴
0
such that

𝑑 (V
𝑛+1
, 𝑇V
𝑛
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥, V

𝑛
) ≥ 1, (58)

for all 𝑛 ∈ N. By (58), the pair (𝐴, 𝐵) has 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 and
property of mapping 𝑇; we get

𝑑 (𝑥, V
𝑛+1
) = 𝑑 (𝑇𝑥, 𝑇V

𝑛
) . (59)

Using the property of mapping 𝑇, we get

𝑑 (𝑥, V
𝑛+1
)

= 𝑑 (𝑇𝑥, 𝑇V
𝑛
)

≤ 𝛼 (𝑥, V
𝑛
) 𝑑 (𝑇𝑥, 𝑇V

𝑛
)

≤ 𝜑 (𝑀 (𝑥, V
𝑛
))

+ 𝜃 (𝑑 (V
𝑛
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇V

𝑛
) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (V
𝑛
, 𝑇V
𝑛
) − 𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥, V
𝑛
))

+ 𝜃 (𝑑 (V
𝑛
, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇V

𝑛
) − 𝑑 (𝐴, 𝐵) ,

0, 𝑑 (V
𝑛
, 𝑇V
𝑛
) − 𝑑 (𝐴, 𝐵))

= 𝜑 (𝑀 (𝑥, V
𝑛
))

(60)
since
𝑀(𝑥, V

𝑛
)

= max {𝑑 (𝑥, V
𝑛
) , 𝑑 (𝑥, 𝑇𝑥)−𝑑 (𝐴, 𝐵) , 𝑑 (V

𝑛
, 𝑇V
𝑛
)

− 𝑑 (𝐴, 𝐵) ,

1

2

[𝑑 (𝑥, 𝑇V
𝑛
) + 𝑑 (V

𝑛
, 𝑇𝑥)] − 𝑑 (𝐴, 𝐵)}

= max {𝑑 (𝑥, V
𝑛
) , 0, 0,

1

2

[𝑑 (𝑥, 𝑇V
𝑛
) + 𝑑 (V

𝑛
, 𝑇𝑥)]

−𝑑 (𝐴, 𝐵) }

≤ max {𝑑 (𝑥, V
𝑛
) ,

1

2

[𝑑 (𝑥, V
𝑛+1
) + 𝑑 (V

𝑛+1
, 𝑇V
𝑛
)

+𝑑 (V
𝑛
, 𝑥) + 𝑑 (𝑥, 𝑇𝑥)] − 𝑑 (𝐴, 𝐵) }

= max {𝑑 (𝑥, V
𝑛
) ,

1

2

[𝑑 (𝑥, V
𝑛+1
) + 𝑑 (V

𝑛
, 𝑥)]}

≤ max {𝑑 (𝑥, V
𝑛
) , 𝑑 (𝑥, V

𝑛+1
)} .

(61)
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Thus

𝑑 (𝑥, V
𝑛+1
) ≤ 𝜑 (𝑀 (𝑥, V

𝑛
))

≤ 𝜑 (max {𝑑 (𝑥, V
𝑛
) , 𝑑 (𝑥, V

𝑛+1
)}) .

(62)

If V
𝑁
= 𝑥, for some𝑁 ∈ N. By (59), we get

𝑑 (𝑥, V
𝑁+1

) = 𝑑 (𝑇𝑥, 𝑇V
𝑁
) = 0 (63)

which implies that V
𝑁+1

= 𝑥. Moreover, we obtain V
𝑛
= 𝑥

for all 𝑛 ≥ 𝑁 and thus V
𝑛
→ 𝑥 as 𝑛 → ∞. Suppose

that V
𝑛
̸= 𝑥 for all 𝑛 ∈ N; then 𝑑(V

𝑛
, 𝑥) > 0 for all 𝑛. If

max{𝑑(𝑥, V
𝑛
), 𝑑(𝑥, V

𝑛+1
)} = 𝑑(𝑥, V

𝑛+1
), by the property 𝜑(𝑡) <

𝑡 for all 𝑡 > 0, we get

𝑑 (𝑥, V
𝑛+1
) ≤ 𝜑 (𝑀 (𝑥, V

𝑛
))

= 𝜑 (𝑑 (𝑥, V
𝑛+1
)) < 𝑑 (𝑥, V

𝑛+1
)

(64)

which is a contradiction and hence max{𝑑(𝑥, V
𝑛
), 𝑑(𝑥, V

𝑛+1
)}

= 𝑑(𝑥, V
𝑛
). That is,

𝑑 (𝑥, V
𝑛+1
) ≤ 𝜑 (𝑀 (𝑥, V

𝑛
)) = 𝜑 (𝑑 (𝑥, V

𝑛
)) (65)

for all 𝑛 ≥ 𝑁. By induction of (65), we have

𝑑 (𝑥, V
𝑛+1
) ≤ 𝜑
𝑛
(𝑑 (𝑥, V

1
)) . (66)

Taking 𝑛 → ∞, we obtain that V
𝑛
→ 𝑥 as 𝑛 → ∞. So,

in all cases, we have V
𝑛
→ 𝑥 as 𝑛 → ∞. Similarly, we can

prove that V
𝑛
→ 𝑥
∗ as 𝑛 → ∞. By the uniqueness of limit,

we conclude that 𝑥 = 𝑥∗ and this completes the proof.

Theorem 18. Adding condition (𝛼, 𝑑)−regular of 𝑇 to the
hypotheses ofTheorem 14, then we obtain the uniqueness of the
best proximity point of 𝑇.

Proof. Combine the proofs of Theorems 17 and 14.

4. Consequences

4.1. Best Proximity Points Theorems. If we take 𝜑(𝑡) = 𝑘𝑡,
where 0 ≤ 𝑘 < 1 and 𝜃(𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝐿min{𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
},

thenTheorem 13 andTheorem 14, we get the following.

Theorem 19. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space𝑋 such that𝐴

0
is nonempty and the pair

(𝐴, 𝐵) has the𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let𝑇 : 𝐴 → 𝐵 satisfy the following
conditions:

(a) 𝑇 is 𝛼-proximal admissible and

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘𝑀(𝑥, 𝑦)

+ 𝐿min {𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑥) − 𝑑 (𝐴, 𝐵)

, 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵)}

(67)

for all 𝑥, 𝑦 ∈ 𝐴;

(b) 𝑇 is continuous (or 𝐴 satisfies condition (𝐻));

(c) there exist elements 𝑥
0
and 𝑥

1
in 𝐴
0
such that

𝑑(𝑥
1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵) and 𝛼((𝑥

0
, 𝑥
1
)) ≥ 1;

(d) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (68)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (69)

converges to the element 𝑥.

If we add the condition that 𝑇 is (𝛼, 𝑑)-regular in
Theorem 19, therefore we can obtain the uniqueness of the
best proximity point.

If we take 𝛼(𝑥, 𝑦) = 1, for all 𝑥, 𝑦 ∈ 𝐴 inTheorems 13 and
14, we get the followingTheorems.

Theorem 20. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space𝑋 such that𝐴

0
is nonempty and the pair

(𝐴, 𝐵) has the𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let𝑇 : 𝐴 → 𝐵 satisfy the following
conditions:

(a)

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀(𝑥, 𝑦)) + 𝜃 (𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑥)

− 𝑑 (𝐴, 𝐵) 𝑑 (𝑥, 𝑇𝑥)

−𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵))

(70)

for all 𝑥, 𝑦 ∈ 𝐴;

(b) 𝑇 is continuous (or 𝐴 satisfies condition (𝐻));

(c) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (71)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (72)

converges to the element 𝑥.

If 𝑀(𝑥, 𝑦) = 𝑑(𝑥, 𝑦), then Theorem 20 includes the
following.

Theorem 21. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space 𝑋 such that 𝐴

0
is nonempty and the

pair (𝐴, 𝐵) has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let 𝑇 : 𝐴 → 𝐵 satisfy the
following conditions:
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(a)

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) + 𝜃 (𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑥)

− 𝑑 (𝐴, 𝐵) 𝑑 (𝑥, 𝑇𝑥)

−𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵))

(73)

for all 𝑥, 𝑦 ∈ 𝐴;
(b) 𝑇 is continuous (or 𝐴 satisfies condition (𝐻));
(c) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (74)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (75)

converges to the element 𝑥.

If we take 𝜑(𝑡) = 𝑘𝑡 and 𝜃(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) = 𝐿min

{𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
}, for all 𝑥, 𝑦 ∈ 𝐴 in Theorem 21, we obtain

the following theorem.

Theorem 22. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space𝑋 such that𝐴

0
is nonempty and the pair

(𝐴, 𝐵) has the𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let𝑇 : 𝐴 → 𝐵 satisfy the following
conditions:

(a)

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘𝑀(𝑥, 𝑦)

+ 𝐿min {𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑥) − 𝑑 (𝐴, 𝐵)

, 𝑑 (𝑥, 𝑇𝑥) −𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵)}

(76)

for all 𝑥, 𝑦 ∈ 𝐴;
(b) 𝑇 is continuous (or 𝐴 satisfies condition (𝐻));
(c) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (77)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (78)

converges to the element 𝑥.

If𝑀(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) and putting 𝐿 = 0 inTheorem 22, we
obtain the following.

Theorem 23. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space 𝑋 such that 𝐴

0
is nonempty and the

pair (𝐴, 𝐵) has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let 𝑇 : 𝐴 → 𝐵 satisfy the
following conditions:

(a)

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) (79)

for all 𝑥, 𝑦 ∈ 𝐴;

(b) 𝑇 is continuous (or 𝐴 satisfies condition (𝐻));

(c) there exist elements 𝑥
0
and 𝑥

1
in 𝐴
0
such that

𝑑(𝑥
1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵);

(d) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (80)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (81)

converges to the element 𝑥.

If 𝑀(𝑥, 𝑦) = (𝑘/2)[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)] − 𝑑(𝐴, 𝐵) and
putting 𝐿 = 0 in Theorem 22, we obtain the following
theorem.

Theorem 24. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space𝑋 such that𝐴

0
is nonempty and the pair

(𝐴, 𝐵) has the𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let𝑇 : 𝐴 → 𝐵 satisfy the following
conditions:

(a)

𝑑 (𝑇𝑥, 𝑇𝑦) ≤

𝑘

2

[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)] − 𝑑 (𝐴, 𝐵) (82)

for all 𝑥, 𝑦 ∈ 𝐴;

(b) 𝑇 is continuous (or 𝐴 satisfies condition (𝐻));

(c) there exist elements 𝑥
0
and 𝑥

1
in 𝐴
0
such that

𝑑(𝑥
1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵);

(d) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (83)

Moreover, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (84)

converges to the element 𝑥.
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4.2. Fixed Points Theorem. It is easy to observe that, for self-
mappings, our results include the following.

Theorem 25. Let 𝐴 be nonempty closed subsets of a complete
metric space𝑋 and 𝑇 : 𝐴 → 𝐴 such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀(𝑥, 𝑦))

+ 𝜃 ({𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)}) ,

(85)

for all 𝑥, 𝑦 ∈ 𝐴, where 𝜑 ∈ Ψ 𝜃 ∈ Θ.Then𝑇 has a unique fixed
point 𝑥 ∈ 𝐴. Moreover, for any fixed 𝑥

0
∈ 𝐴, the sequence {𝑥

𝑛
},

defined by 𝑥
𝑛+1

= 𝑇𝑥
𝑛
, converges to the element 𝑥.

Theorem 26. Let 𝐴 be nonempty closed subsets of a complete
metric space𝑋 and 𝑇 : 𝐴 → 𝐴 such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘𝑀(𝑥, 𝑦)

+ 𝐿min {𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} .
(86)

Then 𝑇 has a unique fixed point 𝑥 ∈ 𝐴. Moreover, for any fixed
𝑥
0
∈ 𝐴, the sequence {𝑥

𝑛
}, defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, converges to

the element 𝑥.

Theorem 27. Let 𝐴 be nonempty closed subsets of a complete
metric space𝑋 and 𝑇 : 𝐴 → 𝐴 such that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘𝑑 (𝑥, 𝑦)

+ 𝐿min {𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)}
(87)

for all 𝑥, 𝑦 ∈ 𝐴. Then 𝑇 has a unique fixed point 𝑥 ∈ 𝐴.
Moreover, for any fixed 𝑥

0
∈ 𝐴, the sequence {𝑥

𝑛
}, defined by

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, converges to the element 𝑥.

5. Some Applications and an Example

We recall some preliminaries from (see, [6, 17] also) as
follows.

Let (𝑋, 𝑑) be a metric space andR a binary relation over
𝑋. Denote

S =R ∪R
−1
; (88)

this is the symmetric relation attached toR. Clearly,

𝑥, 𝑦 ∈ 𝑋, 𝑥S𝑦 ⇐⇒ 𝑥R𝑦 or 𝑦R𝑥. (89)

Definition 28 (see [17]). A mapping 𝑇 : 𝐴 → 𝐵 is said to be
proximal comparative if and only if

{

{

{

𝑥
1
S𝑥
2

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑢
1
S𝑢
2
. (90)

Corollary 29. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation over 𝑋, and 𝐴 and 𝐵 two nonempty, closed
subsets of 𝑋 such that 𝐴

0
are nonempty and the pair (𝐴, 𝐵)

has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let 𝑇 : 𝐴 → 𝐵 such that the following
conditions hold:

(a) 𝑇 is a continuous proximal comparative mapping;
(b) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑(𝑥
1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵) and 𝑥

0
S𝑥
1
;

(c) there exist 𝜑 ∈ Ψ and 𝜃 ∈ Θ such that 𝑥, 𝑦 ∈ 𝐴, 𝑥S𝑦
implies that

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑦, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵))

(91)

(d) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then there exists an element 𝑥 ∈ 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (92)

Proof. Define the mapping 𝛼 : 𝐴 × 𝐴 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1; 𝑥S𝑦,

0; otherwise.
(93)

Since 𝑇 is proximal comparative, we have

{

{

{

𝑥
1
S𝑥
2

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑢
1
S𝑢
2
. (94)

for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴. Using the definition of 𝛼, we get

{

{

{

𝛼 (𝑥, 𝑦) ≥ 1,

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵)

𝑑 (V, 𝑇𝑦) = 𝑑 (𝐴, 𝐵) ,
, 󳨐⇒ 𝛼 (𝑢, V) ≥ 1, (95)

for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴 and hence 𝑇 is 𝛼-proximal admissi-
ble. Condition (𝑏) implies that 𝑑(𝑥

1
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵) and

𝛼(𝑥
0
, 𝑥
1
) ≥ 1. By condition (c), we get

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝑀(𝑥, 𝑦))

+ 𝜃 (𝑑 (𝑦, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑥, 𝑇𝑦) − 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝐴, 𝐵) , 𝑑 (𝑦, 𝑇𝑦) − 𝑑 (𝐴, 𝐵)) ;

(96)

that is,𝑇 is generalized almost (𝜑, 𝜃)
𝛼
-contraction.Therefore,

all hypotheses of Theorem 13 are satisfied, and the desired
result follows immediately.

Next, below we give an example to illustrate the main
result of Theorem 13.
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Example 30. Consider𝑋 = 𝑅
4 with the metric defined by

𝑑 ((𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) , (𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
))

=
󵄨
󵄨
󵄨
󵄨
𝑥
1
− 𝑦
1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑦
2

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥
3
− 𝑦
3

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥
4
− 𝑦
4

󵄨
󵄨
󵄨
󵄨

(97)

for all (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
), (𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
) ∈ 𝑅

4. Let 𝐴, 𝐵 ⊂ 𝑋

defined by

𝐴 := {(0, 0,

1

𝑛

,

−1

𝑛

)} ∪ {(0, 0, 0, 0)} ,

𝐵 := {(1, −1,

1

𝑛

,

−1

𝑛

)} ∪ {(1, −1, 0, 0)} .

(98)

Then𝐴 and𝐵 are nonempty closed subsets of𝑋 and𝑑(𝐴, 𝐵) =
2. Moreover 𝐴

0
= 𝐴 and 𝐵

0
= 𝐵. Suppose

𝑑 ((0, 0, 𝑥
1
, 𝑥
2
) , (1, −1, 𝑦

1
, 𝑦
2
)) = 𝑑 (𝐴, 𝐵) = 2,

𝑑 ((0, 0, 𝑥
󸀠

1
, 𝑥
󸀠

2
) , (1, −1, 𝑦

󸀠

1
, 𝑦
󸀠

2
)) = 𝑑 (𝐴, 𝐵) = 2;

(99)

then we get 𝑥
1
= 𝑦
1
, 𝑥
2
= 𝑦
2
and 𝑥󸀠

1
= 𝑦
󸀠

1
, 𝑥
󸀠

2
= 𝑦
󸀠

2
. Hence, the

pair (𝐴, 𝐵) has the 𝑃-𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦. Let 𝑇 : 𝐴 → 𝐵 be a mapping
defined as

𝑇 (0, 0, 𝑥, 𝑦) = (0, 0,

𝑥

2

,

𝑦

2

) (100)

for all (0, 0, 𝑥, 𝑦) ∈ 𝐴. We define the mapping 𝛼 : 𝐴 × 𝐴 →

[0,∞) by

𝛼 (𝑥, 𝑦) = 1 ∀𝑥, 𝑦 ∈ 𝐴. (101)

We can see that 𝑇 is generalized almost (𝜑, 𝜃)
𝛼
-contraction

with 𝜑 ∈ Ψ given by 𝜑(𝑡) = 𝑡/2 for all 𝑡 ≥ 0 and for all 𝜃 ∈
Θ. Furthermore, (0, 0, 0, 0) ∈ 𝐴 is a best proximity point of
mapping 𝑇.

6. Conclusions

We introduce the new class of generalized almost (𝜑, 𝜃)
𝛼

contraction and presented sufficient conditions for proving
the existence and uniqueness of the best proximity point.
Moreover, we also gave some applications and examples to
support our results.
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