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Let & be the familiar class of normalized univalent functions in the unit disk. Fekete and Szego proved the well-known result
max las—Aa| = 1+ 2¢ M for A € [0,1]. We investigate the corresponding problem for the class of starlike mappings
defined on the unit ball in a complex Banach space or on the unit polydisk in C", which satisfies a certain condition.

1. Introduction

Let o be the class of functions of the form
(o)
f@=z+)az, )
n=2

which are analytic in the open unit disk
U={zeC:|z] <1}. 2)

We denote by & the subclass of the normalized analytic func-
tion class & consisting of all functions which are also univa-
lent in U. Let & denote the class of starlike functions in U.

It is well known that the Fekete and Szego inequality is an
inequality for the coefficients of univalent analytic functions
found by Fekete and Szegé [1], related to the Bieberbach
conjecture. Finding similar estimates for other classes of
functions is called the Fekete and Szegd problem.

The Fekete and Szeg6 inequality states that if f(z) = z +
a,2° + a2’ +--- € S, then

r}lea§|a3 - /\a§| =1 +2¢ M0 3)

for A € [0, 1]. After that, there were many papers to consider
the corresponding problems for various subclasses of the class
&, and many interesting results were obtained. We choose to
recall here the investigations by, for example, Kanas [2] (see
also [3-5]).

The coeflicient estimate problem for the class &, known
as the Bieberbach conjecture [6], is settled by de Branges [7],
who proved that for a function f(z) = z + Y, akzk in the
class &, then |a;| < k, fork =2,3,....

However, Cartan [8] stated that the Bieberbach conjec-
ture does not hold in several complex variables. Therefore, it is
necessary to require some additional properties of mappings
of a family in order to obtain some positive results, for
instance, the convexity and the starlikeness.

In [9], Gong has posed the following conjecture.

Conjecture A. If f : U" — C" is a normalized biholomor-
phic starlike mapping, where U" is the open unit polydisk in C",
then

MM 2eU" m=23,.... @

< mlell"™,

In contrast, although the coefficient problem for the
class & had been completely solved, only a few results are
known for the inequalities of homogeneous expansions for
subclasses of biholomorphic mappings in several complex
variables (see, for detail, [9]).

Recently, some best-possible results concerning the coef-
ficient estimates for subclasses of holomorphic mappings in
several variables were obtained in work of Graham et al. [10],
Graham et al. [11], Hamada et al. [12], Hamada and Honda
[13], Kohr [14], X. Liu and T. Liu [15], and Xu and Liu [16].
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In [17], Koepf obtained the following result for &*.

Theorem A. Let f(2) = z + a,2* + az2° +--- € §*. Then
|a3 - Aaﬁ' <max{l,|3-4A]}, AeC. (5)

The above estimation is sharp.

It is natural to ask whether we can extend Theorem A to
higher dimensions.

In this paper, we will establish inequalities between the
second and third coefficients of homogeneous expansions for
starlike mappings defined on the unit ball in Banach complex
spaces and the unit polydisc in C", respectively, which are the
natural extension of Theorem A to higher dimensions.

Let X be a complex Banach space with norm || - [|; let X*
be the dual space of X; let B be the unit ball in X. Also, let oU"
denote the boundary of U”, and let 9,U" be the distinguished
boundary of U".

For each x € X \ {0}, we define

T(x)={T, e X" :|T.[ = LT, () = IxI}.  (6)

According to the Hahn-Banach theorem, T'(x) is nonempty.
Let H(B) denote the set of all holomorphic mappings
from B into X. It is well known that if f € H(B), then

(]

f0)= YD @ ((r-x)), @)

n=0"""

for all y in some neighborhood of x € B, where D" f(x) is the
nth-Fréchet derivative of f at x, and, forn > 1,

D”f<x>((y—x)")=D”f<x>(g—x,...,y—x)- (8)

Furthermore, D" f(x) is a bounded symmetric n-linear map-
ping from []_, X into X.

A holomorphic mapping f : B — X is said to be bihol-
omorphic if the inverse " exists and is holomorphic on the
openset f(B). Amapping f € H(B)1issaid to belocally bihol-
omorphic if the Fréchet derivative Df(x) has a bounded
inverse for each x € B.If f : B — X is a holomorphic
mapping, then f is said to be normalized if f(0) = 0 and
Df(0) = I, where I represents the identity operator from X
into X. Let 8'(B) be the set of all normalized biholomorphic
mappings on B. We say that f is starlike if f is biholomorphic
on Band f(B) is starlike with respect to the origin. Let 8 (B)
be the set of normalized starlike mappings on B.

Suppose that QO € C" is a bounded circular domain. The
first Fréchet derivative and the m(m > 2)-th Fréchet deriva-
tive of a mapping f € H(Q) at point z €  are written by
Df(z), D™ f(z)(@™ ", -), respectively. The matrix representa-

tions are
0
Df(z):< fp(2)> ,
1<p.ksn

0z
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Dmf (Z) (am—l’ )

1
= i a fp (Z) a; - a
— azkazl te azl ll lm_l ’
Lslyseol 1 =1 1 m-1 1<pksn

m

)
where f(z) = (fl(z),fz(z),...,fn(z))',a = (al,az,...,an)' €
c".

2. Some Lemmas

In order to prove the desired results, we first give some lem-
mas.

Lemma 1 (see [18]). Let f : B — X be a normalized locally
biholomorphic mapping. Then f is a starlike mapping on B if
and only if

Re(T, (DF(0)' f(x))) >0, xeB\{0}, T, € T(x).
(10)

Lemma 2. Let f: U" — C" be a normalized locally biholo-
morphic mapping. Then f € S*(U") if and only if

9; (2)

Re >0, zeU"\{0}, (11

Zj

where g(z) = (9,(2), g,(2), . .. ,gn(z))' = (Df(z))_lf(z) and

|z = llzll = max, g, {l2l}.

Lemma 3 (see [19]). Let p(z) = 1+ Y, bz* € o, and
Rep(z) > 0, z € U; then

1
<2- 5|b1|2. (12)

1
@—5@

Lemma 4. Suppose that f € §. Then F defined by F(x) =
(f(T,(x)/T,(x))x, where |lu] = 1, belongs to §*(B) if and
onlyif f € S*.

Proof. Denote g(x) = f(T,(x))/T,(x); since F(x) = g(x)x,
we have

DF(x)n=(Dg(x)n)x+g(x)n, neX.  (13)
Straightforward calculation yields
Dg)x _ f(L,))T, () (14)
g (x) (T, (%)
It is not difficult to check that
a1 (Dg (x) 1) x
(DF (x)) 'n = 7 n- 90 + Dg (x) % , neX
(15)
Hence
-1 _ f (Tu (x))
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By using (16), we deduce that

[ )
f1(T, () T, (x)

>0<=>2Re<w>>0.

Re (T, ((DF (x))'F (x))) = ERe(

@
17)
Therefore, by Lemma 1, we obtain that F € §*(B) if and only
if f € &*. This completes the proof of Lemma 4. O
3. Main Results

In this section, we state and prove the main results of our
present investigation.

Theorem 1. Suppose f € §*(B) and
D £ (0) (x2
o, <D2 £ (x, fT(x)» I
T (D? 2 2
= (W) , X€B T, eT(x).

(18)
Then

3 2
3!l 2!l

T, (D*f (0)(x)) _/\(Tx(sz(O)(xz)))z‘ )

<max{l,|3-4A]}, xe€B, AeC.

The above estimate is sharp.

Proof. Fix x € B\ {0} and denote x, = x/||x||. Let p: U — C
be given by

T,, (9 (§x,))
1, &=0,

(20)

where g(x) = (Df(x))flf(x). Then p € &, p(0) = 1, and
T,, (D*¢ (0) (xé))g .

P =1+

2! @
T,, (D"g(0) (7)) .y
+ - S
Since f € §*(B), from Lemma 1, we have
Re(p@) >0, Eel. (22)

In view of Lemma 3, we obtain that

T, (g0 (%)) 1 < T, (%9 0) (x3)) )2‘

3! 2 2!

1

I GRIOICH) ‘
2! '

(23)

3
That is,
T, (D’g 0 () Ixl 1/ T (D*g(0) (%))’
31 2 2!
2 2\\ |
< 2||x||4 _ l M‘ .
2 2!

(24)

On the other hand, since g(x) = (Df (x)! f(x), we have

2 2 3 3
x+Df(§!)(x)+Df(§!)(x)+

D*f(0)(+,) +)

:<I+D2f(0)(x,-)+ 0

2 2 3 3
X<Dg<0)+Dg(;)(x)+Dg(§!)<x)+...).
(25)

Comparing with the homogeneous expansion of two sides of
the above equality, we obtain

2 2 2 2
D (0)x = x, Dg(O)(x):_Df(O)(x)’ 26)
2! 2!

D’f (0)(x°) _ D’ (0) (x°) . D’f(0)(x°)

3! 3! 2!
(27)
D2 £ (0) (?
_sz(o) <x, fT(x)>
Equation (27) may be rewritten as follows:
D’f(0)(x*)
SR
(28)
D’g(0) («° D*f(0) (x*
= %(x) _sz(0)<x’f(2—'(x)>'

Thus, from (18) of Theorem 1, (24), (26), and (28), we deduce
that

T, (Df ) (¥)) Ixll A( T, (D £(0)(x2) )2
3! 2!

2 3!

+ 3T, <D2f © <x, %,(X)» I

) A( T, (D*f(0)(x?) )2
2!

. 1 1T (DO (¥)) I




4
1] T.(D’g ) () Ixl
T2 3!
2 241\ 2
-2y (L)
1] TP () I 1 T D063 )
“2l” 3! 2 2

2

(¢ )(EL06)

2!
1
<er—5

3
+|——2/\l
2

2

T,(D*g(0)(x*))
2!

N | =

T, (D*g(0)(x%))
2!

)
(29)
If now |A — (3/4)| < 1/4, then

T (D’ 0) (7)) Ixl _A< T, (D*f (0) (x*)) )2‘

3! 2!

1 1
= | 20" -5
2 2

Eigﬁﬁﬂﬁfnr>suﬂﬁ

T, (D*9 (0) (x2>)12
2!

1

2 2!

(30)

On the other hand, if |A — (3/4)] > 1/4, then we use

ITX(ng(O)(xz))/Z!I < 2||x|I* and get

T, (D' O () Ixll A(T,c (D’f (0) (xz))>

2

3! 2!

=1+ 3 (|2 -2)-3)
2\12 2

< Jlxl* + (13 - 4A = 1) 20

T, (ng (0) (xz)) ‘2
2!

= 13-4 x]".
(3D

The following example shows that the estimation of Theo-
rem 1 is sharp.

Example. If |A — (3/4)| > 1/4, we consider the following
example:
x

(1-T, ()"
By Lemma 4, we obtain that f € §(B).

f(x)= x €B, |ull =1. (32)
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It is not difficult to check that the mapping f(x) satisfies
the condition of Theorem 1. Setting x = ru (0 < r < 1) in
(32), we obtain that

T, (D 0)(x)) A< T, (D*f (0) (+*)) )2 T

3!x® 2!)1x|?
(33)
If |A — (3/4)] < 1/4, we consider the following example:
x
f(x)=—————, x€B, |ul=1 34
1 (T, ()’ oY

In view of Lemma 4, we deduce that f € & (B).

It is not difficult to verify that the mapping f(x) satisfies
the condition of Theorem 1. Taking x = ru (0 < r < 1) in
(34), we have

n(ﬁfwﬂfﬁ_k<niﬁfmnﬁ»>1

3 2
3l 21|

(35)

This completes the proof of Theorem 1. O

Remark 2. When X = C, B = U, Theorem 1 is equivalent to
Theorem A.

Theorem 3. Suppose [ € §*(U") and

2

1, D’f0)(z)) z, (Dfi0(z)
EDf"(O)(ZO’z—! =\ )
zeU",
(36)

forz e U\ {0}, wherek = 1,2,...,n, z, = z/||z|. Then

D*f(0)(Z° D*f(0) (22
PrOE) ')(Z ) —Alsz(o)<z,—f( ')(Z )>
3! 2 2! (37)
< |lzI’ max{1,|3-4A|}, zeU" AeC.

The above estimate is sharp.

Proof. For any z € U" \ {0}, denote z, = z/||z|. Let q;:U —

C be given by

9j (&zo) Izl
5Zj ’

1, E=0,

Eio’

q;(§) = (38)

where g(z) = (Df(z))_lf(z) and j satisfies Izjl = |zl =
max; ., {|zcl}. Then g€, qj(O) =1, and

D%Am(%ﬂmk

q; (&) =1+ iz

j
+ﬁ%wﬂﬁﬂdg+m'

3!zj

(39)
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Since f € &*(U"), from Lemma 2, we deduce that
ERe(qj(f)) > 0, & € U. Therefore, according to Lemma 3, we
have

Dg; (0) (z) Izl 1 < D?g;(0)(zg) |1 )2‘

3!zj 2 2!zj

(40)
1|D’g,0G) Iz

7.
2.2]

2

Hence, in view of (26), (28), and (32) of Theorem 3, we obtain
that

D’f;(0) (z) Izl

3!zj 2! Z;

J

D (0) (ZS)) Jlzll

- A%szj (0) (Zo,

_|Pro(=5)e A( D’ £,0)() Izl >2

3!zj 2!zj
D*g.(0)(z D*f (0) (22
- _% g](3)l (ZO—) Il + lszj (0)<ZO’ D7O&) )(ZO))
lz; 2 2!

X

1z.
Z; 2.z]

Izl A( D’ £,0)(z) I >2|
1D°g;0) () Il ca <D2 £O)E) Iz )2

2 3!zj 2!zj

1] Dy @)l (szjw')(zé) Iz )2

2 3!zj 2.2]-

1] D9, (=) sl S (ngjm)(zé) Il )2
2 3!zj 2!z]-

1| Dg; ()12 | 1 Dg,0ED I’
2 3lz; 2 2lz;

3 D*g,(0)(z2) ll2l \’
" (E B 2/\> ( 2z

J
1
2=
( 2

+|§—2A|
2

D*g,(0)(z2) |2l |

7.
2.z]

IN
N | =

D’g,(0)(zp) |1zl
2!zj

)

(41)

5
If now |A — (3/4)| < 1/4, then
DS @)1, rof= D*f (0)(2) \ Jlzll
3lz; 27 - 2! z;
_1 (2_ 1D g,OGE) Il 1|D’g,0) Iel 2)
2 2 2lz; 2 2lz;
=1
(42)

On the other hand, if |A — (3/4)] >
ID%9;0)(2)ll2l/2!2;] < 2 and get

D*£;(0)(z5) Il

17,
3.z]

1/13 1
<1+5(5-21-3)
2\12 2

=1+[3-4A-1=|3-4A|.

1/4, then we use

D’f (0)(23) ) Il

2! z.

- 2D 0) <z0,
j

2

ngj(O)(Z§) Izl
2!zj

(43)
Then, by using (42) and (43), we have

D*£,(0) (23) Il

7.
3.z]

D’f (0)(23) > )

2! z.

J

- A%szj (0) (Zo,

< max{1,|3 —4A|}.
(44)

If z, € 9,D", then we have

D*f.(0) (22 D*£(0) (22
: gv) @) A%szf © (ZO’ : (2') ) >‘
. . (45)
<max{l,|3-4Al}, j=12,...,n
Also since
D3 ) 3 D2 2
f](0>(z)_A1D2f.(O) . f ) (%) ,
3! 27 2! (46)

is a holomorphic function on U", in view of the maximum
modulus theorem of holomorphic function on the unit poly-
disc, we obtain

D’f.(0)(z; D*f (0)(z?
L2025
! ! (47)
<max{l,|3-4Al}, z,€dU", j=1,2,...,n.
That is,
D*f.(0)(2° D*£(0) (2*
FOE) 1 POE)
3! 2 J 2! (48)

< |zl max{1,|3 — 4|}, zeU", j=12,...,n



Hence

D’f(0)(2)
31

2 2
_ AlDZf (0) <z, M)H
2 (49)

2!
< |zl max{1,]3 - 41|}, zeU™
Finally, in order to see that the estimation of Theorem 3 is

sharp, it suffices to consider the following mappings.
If |A — (3/4)| = 1/4, we consider the following example:

Zl Z2 Zn n

= > Yoo > U.
/@ <(1—z1>2 (1-2) (1—zn>2> “

(50)

If [\ — (3/4)| < 1/4, we consider the following example:

2 Zn

f(z)=(lflzz,1 ) zeU" (50)

T
1 Z; 1-2z,

In view of Problem 6.2.5 of [19], we deduce that the mappings
f(2), defined in (50) and (51), are in the class §*(U").

It is not difficult to verify that the mappings f(z) defined
in (50) and (51) satisfy the condition of Theorem 3. Taking
z=(r,0,...,0) (0 <r < 1)in (50) and (51), respectively, we
deduce that the equality in (37) holds true. This completes the
proof of Theorem 3. O

Remark 4. When »n = 1, Theorem 3 reduces to Theorem A.
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