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The purpose of this paper is to introduce a new Kirk type iterative algorithm called Kirk multistep iteration and to study its
convergence. We also prove some theorems related to the stability results for the Kirk multistep and Kirk-SP iterative processes
by employing certain contractive-like operators. Our results generalize and unify some other results in the literature.

1. Introduction and Preliminaries

This paper is organized as follows. Section 1 outlines some
known contractive mappings and iterative schemes and
collects some preliminaries that will be used in the proofs of
our main results. We then propose a new Kirk type iterative
process called Kirk multistep iteration. Section 2 presents
a result dealing with the convergence of this new iterative
procedure, which unifies and extends some other iterative
schemes in the existing literature. Also we prove some
theorems related to the stability of the Kirk multistep and
Kirk-SP iterative processes by employing certain contractive-
like operators.

Fixed point iterations are commonly used to solve non-
linear equations arising in physical systems. Such equations
can be transformed into a fixed point equation 𝑇𝑥 = 𝑥 which
is solved by some iterative processes of form 𝑥

𝑛+1
= 𝑓(𝑇, 𝑥

𝑛
),

𝑛 = 0, 1, 2, . . ., that converges to a fixed point of 𝑇. This is a
reason, among a number of reasons, why there is presently a
great deal of interest in the introduction and development of
various iterative algorithms. Consequently iteration schemes
abound in the literature of fixed point theory, for which fixed
points of operators have been approximated over the years by
various authors, for example, [1–10].

As a background to our exposition, we describe some
iteration schemes and contractive type mappings.

Throughout this paper N denotes the nonnegative inte-
gers, including zero. Let {𝛼

𝑛
}
∞

𝑛=0
, {𝛽
𝑛
}
∞

𝑛=0
, {𝛾
𝑛
}
∞

𝑛=0
, and {𝛽𝑖

𝑛
}
∞

𝑛=0
,

𝑖 = 1, 𝑘 − 2, 𝑘 ≥ 2, be real sequences in [0, 1) satisfying certain
conditions.

Rhoades and Şoltuz [1] introduced a multistep iterative
algorithm by

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
1

𝑛
,

𝑦
𝑖

𝑛
= (1 − 𝛽

𝑖

𝑛
) 𝑥
𝑛
+ 𝛽
𝑖

𝑛
𝑇𝑦
𝑖+1

𝑛
,

𝑦
𝑘−1

𝑛
= (1 − 𝛽

𝑘−1

𝑛
) 𝑥
𝑛
+ 𝛽
𝑘−1

𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(1)

The following multistep iteration was employed in [2, 11]:

𝑥
0
∈ 𝐸,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑦
1

𝑛
+ 𝛼
𝑛
𝑇𝑦
1

𝑛
,

𝑦
𝑖

𝑛
= (1 − 𝛽

𝑖

𝑛
) 𝑦
𝑖+1

𝑛
+ 𝛽
𝑖

𝑛
𝑇𝑦
𝑖+1

𝑛
,

𝑦
𝑘−1

𝑛
= (1 − 𝛽

𝑘−1

𝑛
) 𝑥
𝑛
+ 𝛽
𝑘−1

𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(2)

By taking 𝑘 = 3 and 𝑘 = 2 in (1) we obtain the well-known
Noor [4] and Ishikawa [6] iterative schemes, respectively. SP
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iteration [8] and a new two-step iteration [7] processes are
obtained by taking 𝑘 = 3 and 𝑘 = 2 in (2), respectively.
Both in (1) and in (2), if we take 𝑘 = 2 with 𝛽1

𝑛
= 0 and

𝑘 = 2 with 𝛽1
𝑛
≡ 0, 𝛼

𝑛
≡ 𝜆 (const.), then we get the iterative

procedures introduced in [10, 12], which are commonly
known as theMann andKrasnoselskii iterations, respectively.
TheKrasnoselskii iteration reduces to the Picard iteration [13]
for 𝜆 = 1.

The Kirk-SP iterative scheme [14] is defined by

𝑥
𝑛+1

=

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑦
1

𝑛
,

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

= 1,

𝑦
1

𝑛
=

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑇
𝑖
2𝑦
2

𝑛
,

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

= 1,

𝑦
2

𝑛
=

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑇
𝑖
3𝑥
𝑛
,

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

= 1, ∀𝑛 ∈ N,

(3)

where 𝑠
1
, 𝑠
2
, and 𝑠

3
are fixed integers with 𝑠

1
≥ 𝑠
2
≥ 𝑠
3
and

𝛼
𝑛,𝑖
1

, 𝛽1
𝑛,𝑖
2

, 𝛽2
𝑛,𝑖
3

are sequences in [0, 1] satisfying 𝛼
𝑛,𝑖
1

≥ 0,
𝛼
𝑛,0

̸= 0, 𝛽1
𝑛,𝑖
2

≥ 0, 𝛽1
𝑛,0

̸= 0, 𝛽2
𝑛,𝑖
3

≥ 0, 𝛽2
𝑛,0

̸= 0.
Let 𝑋 be an arbitrary Banach space and 𝑇 : 𝑋 → 𝑋 a

mapping.
We will introduce and employ the following iterative

scheme, which is called a Kirk multistep iteration:

𝑥
0
∈ 𝑋,

𝑥
𝑛+1

= 𝛼
𝑛,0
𝑥
𝑛
+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑦
1

𝑛
,

𝑦
𝑝

𝑛
= 𝛽
𝑝

𝑛,0
𝑥
𝑛
+

𝑠
𝑝+1

∑

𝑖
𝑝+1
=1

𝛽
𝑝

𝑛,𝑖
𝑝+1

𝑇
𝑖
𝑝+1𝑦
𝑝+1

𝑛
, 𝑝 = 1, 𝑘 − 2,

𝑦
𝑘−1

𝑛
=

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑇
𝑖
𝑘𝑥
𝑛
, 𝑘 ≥ 2, ∀𝑛 ∈ N,

(4)

where ∑𝑠1
𝑖
1
=0
𝛼
𝑛,𝑖
1

= 1, ∑𝑠𝑝+1
𝑖
𝑝+1
=0
𝛽
𝑝

𝑛,𝑖
𝑝+1

= 1 for 𝑝 = 1, 𝑘 − 1;
𝛼
𝑛,𝑖
1

, 𝛽𝑝
𝑛,𝑖
𝑝+1

are sequences in [0, 1] satisfying 𝛼
𝑛,𝑖
1

≥ 0, 𝛼
𝑛,0

̸= 0,
𝛽
𝑝

𝑛,𝑖
𝑝+1

≥ 0, 𝛽𝑝
𝑛,0

̸= 0 for 𝑝 = 1, 𝑘 − 1 and 𝑠
1
, 𝑠
𝑝+1

for 𝑝 = 1, 𝑘 − 1
are fixed integers with 𝑠

1
≥ 𝑠
2
≥ ⋅ ⋅ ⋅ ≥ 𝑠

𝑘
.

By taking 𝑘 = 3, 𝑘 = 2, and 𝑘 = 2 with 𝑠
2
= 0 in

(4) we obtain the Kirk-Noor [15], the Kirk-Ishikawa [16] and
the Kirk-Mann [16], iterative schemes, respectively. Also, (4)
gives the usual Kirk iterative process [17] for 𝑘 = 2, with 𝑠

2
= 0

and 𝛼
𝑛,𝑖
1

= 𝛼
𝑖
1

. If we put 𝑠
1
= 1 and 𝑠

𝑝+1
= 1, 𝑝 = 1, 𝑘 − 1

in (4), then we have the usual multistep iteration (1) with
∑
1

𝑖
1
=0
𝛼
𝑛,𝑖
1

= 1, 𝛼
𝑛,1

= 𝛼
𝑛
, ∑1
𝑖
𝑝+1
=0
𝛽
𝑝

𝑛,𝑖
𝑝+1

= 1, 𝛽𝑝
𝑛,1

= 𝛽
𝑝

𝑛
, 𝑝 =

1, 𝑘 − 1.TheNoor iteration [4], the Ishikawa iteration [6], the
Mann iteration [10], the Krasnoselskii iteration [12], and the
Picard iteration [13] schemes are special cases of themultistep
iterative scheme (1), as explained above. So, we conclude that

these are special cases of the Kirk multistep iterative scheme
(4).

A particular fixed point iteration generates a theoretical
sequence {𝑥

𝑛
}
∞

𝑛=0
. In applications, various errors (e.g., round-

off or discretization of the function 𝑇 etc.) occur during
computation of the sequence {𝑥

𝑛
}
∞

𝑛=0
. Because of these errors

we cannot obtain the theoretical sequence {𝑥
𝑛
}
∞

𝑛=0
, but an

approximate sequence {𝑦
𝑛
}
∞

𝑛=0
instead. We will say that the

iterative process is 𝑇-stable or stable with respect to 𝑇 if and
only if {𝑥

𝑛
}
∞

𝑛=0
converges to a fixed point 𝑞 of 𝑇, then {𝑦

𝑛
}
∞

𝑛=0

converges to 𝑞 = 𝑇𝑞.
The initiator of this kind study isUrabe [18]while a formal

definition for the stability of general iterative schemes is given
by Harder and Hicks [19, 20] as follows.

Definition 1. Let (𝑋, 𝑑) be a complete metric space and 𝑇 a
self-map of 𝑋. Suppose that 𝐹

𝑇
= {𝑞 ∈ 𝑋 : 𝑞 = 𝑇𝑞} is the set

of fixed points of 𝑇. Let {𝑥
𝑛
}
∞

𝑛=0
⊂ 𝑋 be a sequence generated

by an iterative process defined by

𝑥
𝑛+1

= 𝑓 (𝑇, 𝑥
𝑛
) , 𝑛 = 0, 1, . . . , (5)

where 𝑥
0
∈ 𝑋 is the initial approximation and 𝑓 is some

function. Let {𝑦
𝑛
}
∞

𝑛=0
⊂ 𝑋 be an arbitrary sequence and set

𝜀
𝑛
= 𝑑(𝑦

𝑛+1
, 𝑓(𝑇, 𝑦

𝑛
)), 𝑛 = 0, 1, . . ..Then, the iterative process

(5) is said to be𝑇-stable or stable with respect to𝑇 if and only
if lim
𝑛→∞

𝜀
𝑛
= 0 ⇒ lim

𝑛→∞
𝑦
𝑛
= 𝑞.

In the last three decades, a large literature has developed
dealing with the stability of various well-known iterative
schemes for different classes of operators. Several authors
who have made contributions to the study of stability of
fixed point iterative procedures are Ostrowski [21], Harder
[22], Harder and Hicks [19, 20], Rhoades [23, 24], Berinde
[25, 26],Osilike [27, 28],Osilike andUdomene [29],Olatinwo
[16, 30, 31], Chugh and Kumar [15], and several references
contained therein.

A pioneering result on the stability of iterative procedures
established in metric space for the Picard iteration is due to
Ostrowski [21], which states that: Let (𝑋, 𝑑) be a complete
metric space and 𝑇 : 𝑋 → 𝑋 a Banach contraction mapping,
that is,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑 (𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝑋, (6)

where 𝜆 ∈ [0, 1). Let 𝑞 ∈ 𝑋 be the fixed point of 𝑇, 𝑥
0
∈

𝑋, and 𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 = 0, 1, 2, . . .. Suppose that {𝑦

𝑛
}
∞

𝑛=0
is a

sequence in𝑋 and 𝜀
𝑛
= 𝑑(𝑦

𝑛+1
, 𝑇𝑦
𝑛
). Then

𝑑 (𝑞, 𝑦
𝑛+1
) ≤ 𝑑 (𝑞, 𝑥

𝑛+1
) + 𝜆
𝑛+1

𝑑 (𝑥
0
, 𝑦
0
) +

𝑛

∑

𝑖=0

𝜆
𝑛−𝑟

𝜀
𝑖
. (7)

Moreover, lim
𝑛→∞

𝑦
𝑛
= 𝑞 ⇔ lim

𝑛→∞
𝜀
𝑛
= 0.

Using Definition 1, Harder and Hicks [19, 20] proved
some stability theorems for well-known Picard, Mann, and
Kirk’s iterations by employing several classes of contrac-
tive type operators. Rhoades [23, 24] extended the results
of Harder and Hicks [20] by utilizing the following two
different classes of contractive operators of Ciric’s type,
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respectively: there exists a 𝜆 ∈ [0, 1) such that for each pair
𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} ,

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝜆max{𝑑 (𝑥, 𝑦) ,
{𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)}

2
,

𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} .

(8)

Later Osilike [27] further generalized and extended some of
the results in [23] by using a large class of contractive type
operators 𝑇 satisfying the following condition, which is more
general than those of Rhoades [23, 24] and Harder and Hicks
[20]:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝐿𝑑 (𝑥, 𝑇𝑥) + 𝜆𝑑 (𝑥, 𝑦) , (9)

for some 𝜆 ∈ [0, 1), 𝐿 ≥ 0, and for all 𝑥, 𝑦 ∈ 𝑋.
By employing the contractive condition (9), Osilike

and Udomene proved some stability results for the Picard,
Ishikawa, and Kirk’s iteration in [29] where a new and
shorter method than those mentioned above was used. Using
the same method of proof as in [29], Berinde [26] again
established the stability results in Harder and Hicks [20].

In [32], Imoru and Olatinwo extended some of the
stability results of [20, 23, 24, 26, 27, 29] by employing amuch
more general class of operators 𝑇 satisfying the following
contractive condition:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑇𝑥)) + 𝜆𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋,

(10)

where 𝜆 ∈ [0, 1) and 𝜑 : R+ → R+ is a monotone increasing
function with 𝜑(0) = 0.

Remark 2 (see [2, 11]). A map satisfying (10) need not have a
fixed point. However, using (10), it is obvious that if 𝑇 has a
fixed point, then it is unique.

Continuing the abovementioned trend, Olatinwo [16]
studied the stability of the Kirk-Mann and Kirk-Ishikawa
iterative processes by utilizing contractive condition (10).The
results of [16] are generalizations of some of the results of
[20, 23, 24, 26, 27, 29, 33–35].

Recently Chugh and Kumar [15] improved and extended
the results of [16] and some of the references cited therein by
introducing the Kirk-Noor iterative algorithm.

We end this section with some lemmas which will be
useful in proving our main results.

Lemma 3 (see [36]). If 𝜎 is a real number such that 𝜎 ∈ [0, 1),
and {𝜀

𝑛
}
∞

𝑛=0
is a sequence of nonnegative numbers such that

lim
𝑛→∞

𝜀
𝑛
= 0, then, for any sequence of positive numbers

{𝑢
𝑛
}
∞

𝑛=0
satisfying

𝑢
𝑛+1

≤ 𝜎𝑢
𝑛
+ 𝜀
𝑛
, ∀𝑛 ∈ N, (11)

one has lim
𝑛→∞

𝑢
𝑛
= 0.

Lemma 4 (see [16]). Let (𝑋, ‖ ⋅ ‖) be a normed linear space
and 𝑇 a self-map of 𝑋 satisfying (10). Let 𝜑 : R+ → R+ be a
subadditive, monotone increasing function such that 𝜑(0) = 0,
𝜑(𝐿𝑢) ≤ 𝐿𝜑(𝑢), 𝐿 ≥ 0, 𝑢 ∈ R+. Then, for all 𝑖 ∈ N, 𝐿 ≥ 0 and
for all 𝑥, 𝑦 ∈ 𝑋

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖

𝑥 − 𝑇
𝑖

𝑦
󵄩󵄩󵄩󵄩󵄩
≤

𝑖

∑

𝑗=1

(
𝑖

𝑗
) 𝑎
𝑖−𝑗

𝜑
𝑗

(‖𝑥 − 𝑇𝑥‖) + 𝑎
𝑖 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 . (12)

Remark 5. Note that 𝑎 ∈ [0, 1) in the inequality (12).

2. Main Results

For simplicity we assume in the following three theorems that
𝑋 is a normed linear space, 𝑇 is a self-map of𝑋 satisfying the
contractive condition (10) with 𝐹

𝑇
̸= 0, and 𝜑 : R+ → R+ is a

subadditivemonotone increasing function such that 𝜑(0) = 0
and 𝜑(𝐿𝑢) ≤ 𝐿𝜑(𝑢), 𝐿 ≥ 0, 𝑢 ∈ R+.

Theorem 6. Let {𝑥
𝑛
}
𝑛∈N be a sequence generated by the Kirk

multistep iterative scheme (4). Suppose that 𝑇 has a fixed point
𝑞. Then the iterative sequence {𝑥

𝑛
}
𝑛∈N converges strongly to 𝑞.

Proof. The uniqueness of 𝑞 follows from (12). We will now
prove that 𝑥

𝑛
→ 𝑞.

Using (4) and Lemma 4, we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛,0
𝑥
𝑛
− 𝛼
𝑛,0
𝑞 +

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑦
1

𝑛
−

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
1𝑦
1

𝑛
− 𝑇
𝑖
1𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

{

{

{

𝑖
1

∑

𝑗=1

(
𝑖
1

𝑗
) 𝑎
𝑖
1
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
1
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(13)
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󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
1

𝑛,0
𝑥
𝑛
+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑇
𝑖
2𝑦
2

𝑛
−

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
2𝑦
2

𝑛
− 𝑇
𝑖
2𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

{

{

{

𝑖
2

∑

𝑗=1

(
𝑖
2

𝑗
) 𝑎
𝑖
2
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
2
󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(14)

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
2

𝑛,0
𝑥
𝑛
+

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑇
𝑖
3𝑦
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
3𝑦
3

𝑛
− 𝑇
𝑖
3𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

{

{

{

𝑖
3

∑

𝑗=1

(
𝑖
3

𝑗
) 𝑎
𝑖
3
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
3
󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(15)

󵄩󵄩󵄩󵄩󵄩
𝑦
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
3

𝑛,0
𝑥
𝑛
+

𝑠
4

∑

𝑖
4
=1

𝛽
3

𝑛,𝑖
4

𝑇
𝑖
4𝑦
4

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
4

∑

𝑖
4
=1

𝛽
3

𝑛,𝑖
4

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
4𝑦
4

𝑛
− 𝑇
𝑖
4𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
4

∑

𝑖
4
=1

𝛽
3

𝑛,𝑖
4

{

{

{

𝑖
4

∑

𝑗=1

(
𝑖
4

𝑗
) 𝑎
𝑖
4
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
4
󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛽
3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
4

∑

𝑖
4
=1

𝛽
3

𝑛,𝑖
4

𝑎
𝑖
4)

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
.

(16)

By combining (13), (14), (15), and (16) we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

≤ {𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)(

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)𝛽
3

𝑛,0
}
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

× (

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)(

𝑠
4

∑

𝑖
4
=1

𝛽
3

𝑛,𝑖
4

𝑎
𝑖
4)

󵄩󵄩󵄩󵄩󵄩
𝑦
4

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
.

(17)

Continuing the above process we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

≤
{

{

{

𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

×(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

}

}

}

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
.

(18)
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Using again (4) and Lemma 4, we get

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−1

𝑛,0
(𝑥
𝑛
− 𝑞) +

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

(𝑇
𝑖
𝑘𝑥
𝑛
− 𝑇
𝑖
𝑘𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑘𝑥
𝑛
− 𝑇
𝑖
𝑘𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

{

{

{

𝑖
𝑘

∑

𝑗=1

(
𝑖
𝑘

𝑗
) 𝑎
𝑖
𝑘
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

}

}

}

= 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

= (

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(19)

Substituting (19) into (18) we derive

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

≤
{

{

{

𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)(

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)
}

}

}

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(20)

Define

𝜎 := 𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)(

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘) .

(21)

Now we show that 𝜎 ∈ [0, 1). Since 𝑎𝑖𝑘 ∈ [0, 1), 𝛼
𝑛,0

> 0,
∑
𝑠
1

𝑖
1
=0
𝛼
𝑛,𝑖
1

= 1, and ∑𝑠𝑝+1
𝑖
𝑝+1
=0
𝛽
𝑝

𝑛,𝑖
𝑝+1

= 1 for 𝑝 = 1, 𝑘 − 1, we
obtain

𝜎 < 𝛼
𝑛,0
+ (1 − 𝛼

𝑛,0
) 𝛽
1

𝑛,0
+ (1 − 𝛼

𝑛,0
) (1 − 𝛽

1

𝑛,0
) 𝛽
2

𝑛,0

+ ⋅ ⋅ ⋅ + (1 − 𝛼
𝑛,0
) (1 − 𝛽

1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
) 𝛽
𝑘−2

𝑛,0

+ (1 − 𝛼
𝑛,0
) (1 − 𝛽

1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
) (1 − 𝛽

𝑘−2

𝑛,0
)

= 1.

(22)

By an application of Lemma 3 to (20), lim
𝑛→∞

𝑥
𝑛
= 𝑞.

Theorem 7. Let 𝑥
0
∈ 𝑋 and {𝑥

𝑛
}
𝑛∈N be a sequence generated

by the Kirk multistep iterative scheme (4). Suppose that 𝑇 has
a fixed point 𝑞. Then the Kirk multistep iterative scheme (4) is
𝑇-stable.

Proof. Let {𝑦
𝑛
}
𝑛∈N ⊂ 𝑋, {𝑢

𝑝

𝑛
}
𝑛∈N

, for 𝑝 = 1, 𝑘 − 1, be arbitrary
sequences in 𝑋. Let 𝜀

𝑛
= ‖𝑦
𝑛+1

− 𝛼
𝑛,0
𝑦
𝑛
− ∑
𝑠
1

𝑖
1
=1
𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛
‖,

𝑛 = 0, 1, 2, . . ., where 𝑢𝑝
𝑛
= 𝛽
𝑝

𝑛,0
𝑦
𝑛
+∑
𝑠
𝑝+1

𝑖
𝑝+1
=1
𝛽
𝑝

𝑛,𝑖
𝑝+1

𝑇
𝑖
𝑝+1𝑢
𝑝+1

𝑛
,𝑝 =

1, 𝑘 − 2, 𝑢𝑘−1
𝑛

= ∑
𝑠
𝑘

𝑖
𝑘
=0
𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑇
𝑖
𝑘𝑦
𝑛
, 𝑘 ≥ 2 and let lim

𝑛→∞
𝜀
𝑛
= 0.

We will prove that lim
𝑛→∞

𝑦
𝑛
= 𝑞.

It follows from (4) and Lemma 4 that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

− 𝛼
𝑛,0
𝑦
𝑛
−

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛
+ 𝛼
𝑛,0
𝑦
𝑛

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛,0
(𝑦
𝑛
− 𝑞) +

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

(𝑇
𝑖
1𝑢
1

𝑛
− 𝑇
𝑖
1𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜀𝑛 +

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
1𝑢
1

𝑛
− 𝑇
𝑖
1𝑞
󵄩󵄩󵄩󵄩󵄩
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≤ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜀𝑛

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

{

{

{

𝑖
1

∑

𝑗=1

(
𝑖
1

𝑗
) 𝑎
𝑖
1
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
1
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜀𝑛 + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(23)
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
1

𝑛,0
(𝑦
𝑛
− 𝑞) +

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

(𝑇
𝑖
2𝑢
2

𝑛
− 𝑇
𝑖
2𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
2𝑢
2

𝑛
− 𝑇
𝑖
2𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

{

{

{

𝑖
2

∑

𝑗=1

(
𝑖
2

𝑗
) 𝑎
𝑖
2
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
2
󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(24)

󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
2

𝑛,0
(𝑦
𝑛
− 𝑞) +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

(𝑇
𝑖
3𝑢
3

𝑛
− 𝑇
𝑖
3𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
3𝑢
3

𝑛
− 𝑇
𝑖
3𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

{

{

{

𝑖
3

∑

𝑗=1

(
𝑖
3

𝑗
) 𝑎
𝑖
3
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
3
󵄩󵄩󵄩󵄩󵄩
𝑢
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩󵄩
𝑢
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
.

(25)

Combining (23), (24), and (25) we have

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

≤ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)(

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩󵄩
𝑢
3

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝛼𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜀𝑛.

(26)

By induction we get

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

≤ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘−1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

+
{

{

{

𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0

+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

}

}

}

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜀𝑛.

(27)

Again using (4) and Lemma 4, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘−1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑇
𝑖
𝑘𝑦
𝑛
−

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑇
𝑖
𝑘𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑘𝑦
𝑛
− 𝑇
𝑖
𝑘𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩
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+

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

{

{

{

𝑖
𝑘

∑

𝑗=1

(
𝑖
𝑘

𝑗
) 𝑎
𝑖
𝑘
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
𝑘
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

}

}

}

= (

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(28)

Substituting (28) into (27) we derive

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

≤
{

{

{

𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)(

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)
}

}

}

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + 𝜀𝑛.

(29)

Define

𝜎 := 𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)(

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘) .

(30)

We now show that 𝜎 ∈ (0, 1). Since 𝑎𝑖𝑘 ∈ [0, 1), 𝛼
𝑛,0

> 0,
∑
𝑠
1

𝑖
1
=0
𝛼
𝑛,𝑖
1

= 1, and∑𝑠𝑝+1
𝑖
𝑝+1
=0
𝛽
𝑝

𝑛,𝑖
𝑝+1

= 1 for 𝑝 = 1, 𝑘 − 1, we have

𝜎 < 𝛼
𝑛,0
+ (1 − 𝛼

𝑛,0
) 𝛽
1

𝑛,0
+ (1 − 𝛼

𝑛,0
) (1 − 𝛽

1

𝑛,0
) 𝛽
2

𝑛,0

+ ⋅ ⋅ ⋅ + (1 − 𝛼
𝑛,0
) (1 − 𝛽

1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
) 𝛽
𝑘−2

𝑛,0

+ (1 − 𝛼
𝑛,0
) (1 − 𝛽

1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−2

𝑛,0
)

= 1,

(31)

that is, 𝜎 ∈ (0, 1). Therefore, an application of Lemma 4 to
(29) yields lim

𝑛→∞
𝑦
𝑛
= 𝑞.

Now suppose that lim
𝑛→∞

𝑦
𝑛
= 𝑞.Thenwewill show that

lim
𝑛→∞

𝜀
𝑛
= 0.

Using Lemma 4 we have

𝜀
𝑛
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

− 𝛼
𝑛,0
𝑦
𝑛
−

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞 − 𝛼
𝑛,0
𝑦
𝑛
−

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛,0
(𝑞 − 𝑦

𝑛
) +

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

(𝑇
𝑖
1𝑞 − 𝑇

𝑖
1𝑢
1

𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 +

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
1𝑞 − 𝑇

𝑖
1𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

{

{

{

𝑖
1

∑

𝑗=1

(
𝑖
1

𝑗
) 𝑎
𝑖
1
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
1
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

}

}

}

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩
,

(32)
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󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞 − 𝛽
1

𝑛,0
𝑦
𝑛
−

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑇
𝑖
2𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
1

𝑛,0
(𝑞 − 𝑦

𝑛
) +

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

(𝑇
𝑖
2𝑞 − 𝑇

𝑖
2𝑢
2

𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
2𝑞 − 𝑇

𝑖
2𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

{

{

{

𝑖
2

∑

𝑗=1

(
𝑖
2

𝑗
) 𝑎
𝑖
2
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
2
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

}

}

}

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩
,

(33)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞 − 𝛽
2

𝑛,0
𝑦
𝑛
−

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑇
𝑖
3𝑢
3

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
2

𝑛,0
(𝑞 − 𝑦

𝑛
) +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

(𝑇
𝑖
3𝑞 − 𝑇

𝑖
3𝑢
3

𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
3𝑞 − 𝑇

𝑖
3𝑢
3

𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

{

{

{

𝑖
3

∑

𝑗=1

(
𝑖
3

𝑗
) 𝑎
𝑖
3
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
3
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
3

𝑛

󵄩󵄩󵄩󵄩󵄩

}

}

}

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + (

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
3

𝑛

󵄩󵄩󵄩󵄩󵄩
.

(34)

It follows from the relation (32), (33), and (34) that

𝜀
𝑛
≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)(

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
3

𝑛

󵄩󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(35)

Thus, by induction, we get

𝜀
𝑛
≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)

×
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(36)

Utilizing (4) and Lemma 4, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑇
𝑖
𝑘𝑞 −

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑇
𝑖
𝑘𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑘𝑞 − 𝑇

𝑖
𝑘𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+

𝑠
𝑘

∑

𝑖
𝑘
=1

𝛽
𝑘−1

𝑛,𝑖
𝑘

{

{

{

𝑖
𝑘

∑

𝑗=1

(
𝑖
𝑘

𝑗
) 𝑎
𝑖
𝑘
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
𝑘
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

}

}

}

= (

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(37)



Abstract and Applied Analysis 9

Substituting (37) into (36) gives

𝜀
𝑛
≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

+ {𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)(

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘)
}

}

}

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(38)

Again define

𝜎 := 𝛼
𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)𝛽
1

𝑛,0
+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)𝛽
2

𝑛,0
+ ⋅ ⋅ ⋅ + (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

× (

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅ (

𝑠
𝑘−2

∑

𝑖
𝑘−2
=1

𝛽
𝑘−3

𝑛,𝑖
𝑘−2

𝑎
𝑖
𝑘−2)𝛽

𝑘−2

𝑛,0

+ (

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2) ⋅ ⋅ ⋅

(

𝑠
𝑘−1

∑

𝑖
𝑘−1
=1

𝛽
𝑘−2

𝑛,𝑖
𝑘−1

𝑎
𝑖
𝑘−1)(

𝑠
𝑘

∑

𝑖
𝑘
=0

𝛽
𝑘−1

𝑛,𝑖
𝑘

𝑎
𝑖
𝑘) .

(39)

Hence (38) becomes

𝜀
𝑛
≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝜎
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩 . (40)

Using same argument as that of first part of the proof we
obtain 𝜎 ∈ (0, 1).

It therefore follows from assumption lim
𝑛→∞

𝑦
𝑛
= 𝑞 that

𝜀
𝑛
→ 0 as 𝑛 → ∞.

Theorem 8. Let 𝑥
0
∈ 𝑋 and {𝑥

𝑛
}
𝑛∈N be a sequence generated

by the Kirk-SP iterative scheme (3). Suppose that 𝑇 has a fixed
point 𝑞. Then the Kirk-SP iterative scheme (3) is 𝑇-stable.

Proof. Let {𝑦
𝑛
}
𝑛∈N ⊂ 𝑋, 𝜀

𝑛
= ‖𝑦
𝑛+1

− ∑
𝑠
1

𝑖
1
=0
𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛
‖, 𝑛 =

0, 1, 2, . . ., 𝑢1
𝑛
= ∑
𝑠
2

𝑖
2
=0
𝛽
1

𝑛,𝑖
2

𝑇
𝑖
2𝑢
2

𝑛
, and 𝑢2

𝑛
= ∑
𝑠
3

𝑖
3
=0
𝛽
2

𝑛,𝑖
3

𝑇
𝑖
3𝑦
𝑛
.

Assume that lim
𝑛→∞

𝜀
𝑛
= 0. We will prove that lim

𝑛→∞
𝑦
𝑛
=

𝑞.

It follows from (3) and Lemma 4 that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

−

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛
+

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

(𝑇
𝑖
1𝑢
1

𝑛
− 𝑇
𝑖
1𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
1𝑢
1

𝑛
− 𝑇
𝑖
1𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

{

{

{

𝑖
1

∑

𝑗=1

(
𝑖
1

𝑗
) 𝑎
𝑖
1
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
1
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= 𝜀
𝑛
+ (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(41)

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

(𝑇
𝑖
2𝑢
2

𝑛
− 𝑇
𝑖
2𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
2𝑢
2

𝑛
− 𝑇
𝑖
2𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

{

{

{

𝑖
2

∑

𝑗=1

(
𝑖
2

𝑗
) 𝑎
𝑖
2
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
2
󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

}

}

}

= (

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(42)

󵄩󵄩󵄩󵄩󵄩
𝑢
2

𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

(𝑇
𝑖
3𝑦
𝑛
− 𝑇
𝑖
3𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
3𝑦
𝑛
− 𝑇
𝑖
3𝑞
󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩
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+

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

{

{

{

𝑖
3

∑

𝑗=1

(
𝑖
3

𝑗
) 𝑎
𝑖
3
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
3
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

}

}

}

= (

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(43)

Combining (41), (42), and (43) we get

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩 ≤ 𝜀𝑛 + (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

× (

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(44)

Define

𝜎 := (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)(

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3) . (45)

Thus we can rewrite (44) as follows:

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞
󵄩󵄩󵄩󵄩 ≤ 𝜎

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜀𝑛. (46)

We now show that 𝜎 ∈ (0, 1). Since 𝑎𝑖𝑘 ∈ [0, 1), 𝛼
𝑛,0

> 0,
∑
𝑠
1

𝑖
1
=0
𝛼
𝑛,𝑖
1

= 1, and ∑𝑠𝑝+1
𝑖
𝑝+1
=0
𝛽
𝑝

𝑛,𝑖
𝑝+1

= 1 for 𝑝 = 1, 𝑘 − 1,

𝜎 < (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

)(

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

)(

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

) = 1. (47)

Therefore, an application of Lemma 3 to (46) yields
lim
𝑛→∞

𝑦
𝑛
= 𝑞.

Now suppose that lim
𝑛→∞

𝑦
𝑛
= 𝑞.Thenwewill show that

lim
𝑛→∞

𝜀
𝑛
= 0.

Using Lemma 4 we have

𝜀
𝑛

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

−

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑇
𝑖
1𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

(𝑇
𝑖
1𝑞 − 𝑇

𝑖
1𝑢
1

𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
1𝑞 − 𝑇

𝑖
1𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛼𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

+

𝑠
1

∑

𝑖
1
=1

𝛼
𝑛,𝑖
1

{

{

{

𝑖
1

∑

𝑗=1

(
𝑖
1

𝑗
) 𝑎
𝑖
1
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
1
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

}

}

}

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩 + (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩
,

(48)
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

(𝑇
𝑖
2𝑞 − 𝑇

𝑖
2𝑢
2

𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩
+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
2𝑞 − 𝑇

𝑖
2𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
1

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

+

𝑠
2

∑

𝑖
2
=1

𝛽
1

𝑛,𝑖
2

{

{

{

𝑖
2

∑

𝑗=1

(
𝑖
2

𝑗
) 𝑎
𝑖
2
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
2
󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

}

}

}

≤ (

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩
,

(49)

󵄩󵄩󵄩󵄩󵄩
𝑞 − 𝑢
2

𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

(𝑇
𝑖
3𝑞 − 𝑇

𝑖
3𝑦
𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑞 − 𝑦𝑛
󵄩󵄩󵄩󵄩 +

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
3𝑞 − 𝑇

𝑖
3𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
2

𝑛,0

󵄩󵄩󵄩󵄩𝑞 − 𝑦𝑛
󵄩󵄩󵄩󵄩
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+

𝑠
3

∑

𝑖
3
=1

𝛽
2

𝑛,𝑖
3

{

{

{

𝑖
3

∑

𝑗=1

(
𝑖
3

𝑗
) 𝑎
𝑖
3
−𝑗

𝜑
𝑗

(
󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩)

+ 𝑎
𝑖
3
󵄩󵄩󵄩󵄩𝑞 − 𝑦𝑛

󵄩󵄩󵄩󵄩

}

}

}

= (

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(50)

It follows from (48), (49), and (50) that

𝜀
𝑛
≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

+ (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)(

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(51)

Again define

𝜎 := (

𝑠
1

∑

𝑖
1
=0

𝛼
𝑛,𝑖
1

𝑎
𝑖
1)(

𝑠
2

∑

𝑖
2
=0

𝛽
1

𝑛,𝑖
2

𝑎
𝑖
2)(

𝑠
3

∑

𝑖
3
=0

𝛽
2

𝑛,𝑖
3

𝑎
𝑖
3) . (52)

Using same argument as that of first part of the proof we
obtain 𝜎 ∈ (0, 1) and it thus follows from assumption
lim
𝑛→∞

𝑦
𝑛
= 𝑞 that 𝜀

𝑛
→ 0 as 𝑛 → ∞.

Remark 9. Theorem 6 is a generalization and extension of
both Theorems 1 and 2 of Berinde [37], Theorems 2 and
3 of Kannan [38], Theorem 3 of Kannan [39], Theorem
4 of Rhoades [40], Theorem 8 of Rhoades [41], Theorem
2.1 of Olatinwo [42], Theorem 2.6 of Hussain et al. [14],
and Theorem 3.1 of Şoltuz and Grosan [43]. Theorem 7 is a
generalization and extension of Theorem 2 of Osilike [27],
Theorems 2 and 5 of Osilike and Udomene [29] as well as
Theorem 3 of Olatinwo et al. [34], Theorems 3.1 and 3.2 of
Olatinwo [16], andTheorem 3.1 of Chugh and Kumar [15].
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