Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 806537, 12 pages
http://dx.doi.org/10.1155/2014/806537

Research Article

Some Convergence and Stability Results for the Kirk Multistep
and Kirk-SP Fixed Point Iterative Algorithms

Faik Gi’u‘soy,1 Vatan Karakaya,2 and B. E. Rhoades’

! Department of Mathematics, Yildiz Technical University, Davutpasa Campus, Esenler, 34220 Istanbul, Turkey
? Department of Mathematical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210 Istanbul, Turkey
3 Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA

Correspondence should be addressed to Faik Guirsoy; faikgursoy02@hotmail.com

Received 1 July 2013; Accepted 10 November 2013; Published 3 February 2014

Academic Editor: Micah Osilike

Copyright © 2014 Faik Giirsoy et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this paper is to introduce a new Kirk type iterative algorithm called Kirk multistep iteration and to study its
convergence. We also prove some theorems related to the stability results for the Kirk multistep and Kirk-SP iterative processes
by employing certain contractive-like operators. Our results generalize and unify some other results in the literature.

1. Introduction and Preliminaries

This paper is organized as follows. Section 1 outlines some
known contractive mappings and iterative schemes and
collects some preliminaries that will be used in the proofs of
our main results. We then propose a new Kirk type iterative
process called Kirk multistep iteration. Section 2 presents
a result dealing with the convergence of this new iterative
procedure, which unifies and extends some other iterative
schemes in the existing literature. Also we prove some
theorems related to the stability of the Kirk multistep and
Kirk-SP iterative processes by employing certain contractive-
like operators.

Fixed point iterations are commonly used to solve non-
linear equations arising in physical systems. Such equations
can be transformed into a fixed point equation Tx = x which
is solved by some iterative processes of form x,,,, = f(T, x,,),
n =0,1,2,..., that converges to a fixed point of T. This is a
reason, among a number of reasons, why there is presently a
great deal of interest in the introduction and development of
various iterative algorithms. Consequently iteration schemes
abound in the literature of fixed point theory, for which fixed
points of operators have been approximated over the years by
various authors, for example, [1-10].

As a background to our exposition, we describe some
iteration schemes and contractive type mappings.

Throughout this paper N denotes the nonnegative inte-

gers, including zero. Let {ev, }7° 0, {B,} 100> 1V} reo> and {,B;}ZZO,
i=1,k-2,k > 2,bereal sequencesin [0, 1) satisfying certain
conditions.

Rhoades and $oltuz [1] introduced a multistep iterative

algorithm by
Xy € E,

Xp+1 = (1 - (Xn) X, t+ (anyrll’

: , o @
Vo= (1=B) %+ BTy,
y’;l = (1 - ﬁﬁfl)xn + ﬁﬁflTxn, neN.
The following multistep iteration was employed in [2, 11]:
xy € E,
Xn1 = (1 - “n) y;i + ‘anyrll’
2)

yo=(1=B) 2"+ BIN

k-1 k-1 k-1
Vo :(1—[3 )xn+ﬁn Tx,, neN.

n

By taking k = 3 and k = 2 in (1) we obtain the well-known
Noor [4] and Ishikawa [6] iterative schemes, respectively. SP
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iteration [8] and a new two-step iteration [7] processes are
obtained by taking k = 3 and k = 2 in (2), respectively.
Both in (1) and in (2), if we take k = 2 with [3,11 = 0 and
k = 2 with B} = 0, @, = A (const.), then we get the iterative
procedures introduced in [10, 12], which are commonly
known as the Mann and Krasnoselskii iterations, respectively.
The Krasnoselskii iteration reduces to the Picard iteration [13]
for A = 1.

The Kirk-SP iterative scheme [14] is defined by

S1
Z “”’il =1
i,=0

S1
— iy )1
Xnt1 = z‘xn,ilT V>

i1=0

sy sy
1 iy 2 1 _
= Zﬁn,ile V> Zﬁn,iz =1 (3)

i,=0 i,=0

S3 ) . S3 )

— &) —

= E Bri, T7 % E Bui, =1 VneN,
i3=0 i3=0

where sl, s,, and s; are fixed integers with s; > s, > s; and
Oy > [3")12, /3m are sequences in [0, 1] satisfying a,; > 0,
00 # 0, ﬁrlu 0, ﬁnO#O ﬁnz = ﬁnO #0.
Let X be an arbitrary Banach spaceand T : X — X a
mapping.
We will introduce and employ the following iterative
scheme, which is called a Kirk multistep iteration:

X9 € X,

— i 1
Xnr1 = Ky 0Xy + zan,ilT V>
ip=1

. i (4)
Lot —
=plox,+ Y Bhi T Pt p=1k-2,

ip=1

Zﬁk "Thx,, k=2, VneN,

Sy —
where ) o, =

(xn,il’ /35,1'},“
f:lp Oﬁp #Oforpzlk—landsl,sp+1forp=1,k—1
are fixed integers with s; >s, > - > 5.

By taking k = 3,k = 2,and k = 2 withs, = 0in
(4) we obtain the Kirk-Noor [15], the Kirk-Ishikawa [16] and
the Kirk-Mann [16], iterative schemes, respectively. Also, (4)
gives the usual Kirk iterative process [17] for k = 2, withs, = 0
ande,; =o; . Ifweputs; = lands,,; =1,p=1k-1
in (4), then we have the usual multistep iteration (1) with

1
Zilzo(xn,ll Lo, = %Z —Oﬂnz =1 5,1 =B p=

Ipt1 pt1

1,k — 1. The Noor iteration [4], the Ishikawa iteration [6], the
Mann iteration [10], the Krasnoselskii iteration [12], and the
Picard iteration [13] schemes are special cases of the multistep
iterative scheme (1), as explained above. So, we conclude that

LY B = lforp = Lk-1;

p+1
20,a,,#0,

are sequences in [0, 1] satlsfying & 2
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these are special cases of the Kirk multistep iterative scheme
(4).

A particular fixed point iteration generates a theoretical
sequence {x,} . In applications, various errors (e.g., round-
off or discretization of the function T etc.) occur during
computation of the sequence {x,} . Because of these errors
we cannot obtain the theoretical sequence {x,},>,, but an
approximate sequence {y,}., instead. We will say that the
iterative process is T-stable or stable with respect to T if and
only if {x,},°, converges to a fixed point g of T, then {y,} 2,
converges to g = Tq.

The initiator of this kind study is Urabe [18] while a formal
definition for the stability of general iterative schemes is given
by Harder and Hicks [19, 20] as follows.

Definition 1. Let (X, d) be a complete metric space and T a
self-map of X. Suppose that F. = {q € X : q¢ = Tq} is the set
of fixed points of T'. Let {x,,},2, C X be a sequence generated
by an iterative process defined by

f(Tx,),

where x, € X is the initial approximation and f is some
function. Let {y,},°) € X be an arbitrary sequence and set
& =dV, f(T,9,)),n=0,1,.... Then, the iterative process
(5) is said to be T-stable or stable with respect to T if and only

if lim g=0=1lm,_ v, =9

X n=0,1,..., (5)

n+l =

n— 00

In the last three decades, a large literature has developed
dealing with the stability of various well-known iterative
schemes for different classes of operators. Several authors
who have made contributions to the study of stability of
fixed point iterative procedures are Ostrowski [21], Harder
[22], Harder and Hicks [19, 20], Rhoades [23, 24], Berinde
[25,26], Osilike [27, 28], Osilike and Udomene [29], Olatinwo
[16, 30, 31], Chugh and Kumar [15], and several references
contained therein.

A pioneering result on the stability of iterative procedures
established in metric space for the Picard iteration is due to
Ostrowski [21], which states that: Let (X,d) be a complete
metric space and T : X — X a Banach contraction mapping,
that is,

d(Tx,Ty) < Ad(x,y) VYx,yeX, (6)

where A € [0,1). Let g € X be the fixed point of T, x,, €
X, and x,,,, = Tx,, n = 0,1,2,.... Suppose that {y,},°, is a
sequence in X and ¢, = d(yn+1,Tyn) Then

ZAnr’ 7

d(q Ypi1) < d (@ %p41) + /\nﬂd (%05 ¥o)

Moreover, lim,, _, ..y, = q © lim,, _, &, =0.

Using Definition 1, Harder and Hicks [19, 20] proved
some stability theorems for well-known Picard, Mann, and
Kirks iterations by employing several classes of contrac-
tive type operators. Rhoades [23, 24] extended the results
of Harder and Hicks [20] by utilizing the following two
different classes of contractive operators of Ciric’s type,
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respectively: there exists a A € [0, 1) such that for each pair
x,yeX
d(Tx,Ty) < Amax{d(x,y),d(x,Ty).d (y,Tx)},
d(Tx,Ty)

< A max 1d(x’y),{d(x,Tx)+d(y,Ty)}, (8)

2

d(x,Ty),d(y,Tx) ]» .

Later Osilike [27] further generalized and extended some of
the results in [23] by using a large class of contractive type
operators T satisfying the following condition, which is more
general than those of Rhoades [23, 24] and Harder and Hicks
[20]:

d(Tx,Ty) < Ld (x,Tx) + Ad (x, y), 9)

for some A € [0,1), L > 0,and forall x, y € X.

By employing the contractive condition (9), Osilike
and Udomene proved some stability results for the Picard,
Ishikawa, and KirK’s iteration in [29] where a new and
shorter method than those mentioned above was used. Using
the same method of proof as in [29], Berinde [26] again
established the stability results in Harder and Hicks [20].

In [32], Imoru and Olatinwo extended some of the
stability results of [20, 23, 24, 26, 27, 29] by employing a much
more general class of operators T satisfying the following
contractive condition:

d(Tx,Ty) <o (d(x,Tx)) + Ad (x,y), Vx,y€X,

(10)

where A € [0,1)and ¢ : R — R is a monotone increasing
function with ¢(0) = 0.

Remark 2 (see [2, 11]). A map satisfying (10) need not have a
fixed point. However, using (10), it is obvious that if T has a
fixed point, then it is unique.

Continuing the abovementioned trend, Olatinwo [16]
studied the stability of the Kirk-Mann and Kirk-Ishikawa
iterative processes by utilizing contractive condition (10). The
results of [16] are generalizations of some of the results of
(20, 23, 24, 26, 27, 29, 33-35].

Recently Chugh and Kumar [15] improved and extended
the results of [16] and some of the references cited therein by
introducing the Kirk-Noor iterative algorithm.

We end this section with some lemmas which will be
useful in proving our main results.

Lemma 3 (see [36]). Ifo is a real number such that o € [0, 1),
and {e,}>2 is a sequence of nonnegative numbers such that

lim, , &, = 0, then, for any sequence of positive numbers

{u,}2, satisfying

Uy Sou,+¢g, VneN, 1)
one haslim,, _, . u, = 0.
Lemma 4 (see [16]). Let (X, | - |I) be a normed linear space

and T a self-map of X satisfying (10). Let ¢ : R* — R bea
subadditive, monotone increasing function such that ¢(0) = 0,
¢(Lu) < Lo(u), L > 0,u € R". Then, foralli € N, L > 0 and
forallx, y e X

||Tix - Tiy“ < Z (;) ai_jcpj (Jlx = Tx|) + a ||x - y” . (12)
=1

Remark 5. Note that a € [0, 1) in the inequality (12).

2. Main Results

For simplicity we assume in the following three theorems that
X is a normed linear space, T is a self-map of X satistying the
contractive condition (10) with F. #0,and ¢ : R — R isa
subadditive monotone increasing function such that ¢(0) = 0
and ¢(Lu) < Lo(u), L > 0,u € R™.

Theorem 6. Let {x,},. be a sequence generated by the Kirk
multistep iterative scheme (4). Suppose that T has a fixed point
q. Then the iterative sequence {x,}, . converges strongly to q.

Proof. The uniqueness of g follows from (12). We will now
prove that x,, — q.
Using (4) and Lemma 4, we get

le1 = 4l

S 51
i1
n,Oxn - (xn,Oq + Z(xn,ilT Yn — Z(xn,ilq

i=1 i=1

< %0 “xn - q" + z:ocn,i1 “Tllyi - Tllq"
i=1
< Gy “xn - q"

e {z (4)a"7¢/ (la-ral)

=1
-4 }

s )
- ool + Sonsa ) -l

=1

(13)

+a
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+a" ||y -4 }

= /331,0 "xn - q” + (Z /Sn iy >

i,=1

[ -l

nOx +Zﬁnzlezyn Z:Bmzq

i,=0

2 . .
< Buollxa—al + Y. Bu, [ T2y - T4
ih=1

(16)
< Bro I —dl
(14) By combining (13), (14), (15), and (16) we obtain
+Zﬁm{2()’” (- Tdl)
i %1 = al
vl | o (S )t (S
i=1 i=1
_ pl : S2 1 i2> s, ) 5 )
- ﬁn,O "xn q” + <i;1ﬁn,i2a % (i;ﬁrll,izalz> io + (i;“n,ilall>
|7 -4l N
. AR O TRV AT
s 3BT CRAYS
b S1 S2
(St ) (St
< Brollxa —all + Zﬁi,s |7y - T4 <i1-1 " et
T (S ) (St il
(15) B
(17)

+ ZISM {Z <J)ai3’j¢j (la - 4l)

j=1

+meﬂ

Continuing the above process we have

11—l

s )
( Z‘xnz all > 711,0 + ( Z‘xn,ilall )
i=1 i=1
v . )
1 i 2 i
Sq x (Z:Bn,izalz) n,0+”'+ <Z(Xn,i1all>
3 3 iy 4 iz o1
s AT g & n
- YIS E s
iy i
X .Zﬁn’iza Z ﬁnlkz -
S ﬁno "xn q” + Zﬁnu =1 ikp=1
" Sy S2
: <P =al+ { Yansa )( Y Bha" )
< ﬁn,O "xn - q” n i, = n,i,
=

i=1

+ Zﬁnz4 ‘l; <]> i4_j‘Pj (IIq—Tq||) ( Z ﬁlglkzl ik 1> ||y5—1 B q"

i;=1

- Falbual+( 32 ) -

Ty, -Thq

(18)
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Using again (4) and Lemma 4, we get

=4

nO x _q) Zﬁ (

=1

Tikq)

wo 15— all + Zlﬁ 7, - T

< Bro %, — 4l

3L (H)e e a0
- -l

. —q||+(z/s’;,; ) =l

i=1

(S sl
Substituting (19) into (18) we derive

”‘xn+1 - q“

S1 S1
i 1 i
+ Zocn,,-la 1,0 + Z ocm-la
i=1 i=1
52 ) 5 51 .
h
x Z i, @ o T T Z‘xn,ila
i=1 i=1
Sk=2 ;
Z a Z ﬁ” ik z
i,=1

)
(35)-

S1
+ Zcxn,ila“

i=1
© i k-1 i
Zﬁnlkl <Zﬁnzk k> "xn_q”'
i =1 =0

(20)

Define

51 51
o— il 1 il
0 =0, + Z“"»ha 1,0 + Z“")ha
i=1 i=1

S . . 5 S1 .
53 I
x Zﬁn,iza B Tt Zan,ila
i=1 i=1

1,k-2, u';l = Z - /J’k 1T’kyn, k > 2 and let lim

5
S ) . Sk—2 ;
i _
X Z ”)izaz Z ﬁ”’kz b
i=1 io=1
S1 52
. 1 .
+ ( Z(xn,ilall > ( ZIBHJZQIZ) e
i=1 ip=1
Sk-1 ; 1
i
Z ﬁnlk 1 Zﬁnzk t
i =1
(21)

Now we show that ¢ € [0,1). Since a’* € [0,1), a0 > 0,

Y@, = 1,and zj::jzo Bhi. = lforp = 1k-1, we
obtain
G<“n,o+(1_“n,o)ﬁrll,o+(1 nO)( Bao ) Bo
k-3\ ok-
rre e (- g) (A
k- k-
(1= a0) (1= 1) (1= o) (1= 1)
=1.
By an application of Lemma 3 to (20), lim, _, . x,, = g. O

Theorem 7. Let x, € X and {x,}, be a sequence generated
by the Kirk multistep iterative scheme (4). Suppose that T has
a fixed point q. Then the Kirk multistep iterative scheme (4) is
T-stable.

Proof. Let {y,}, o € X, {uf} . forp=1k-1
sequences in X. Let &, = [y, — &, 0¥, —
n=0,1,2,.

1, be arbltrary
ZZI:I (xnlel u "
_ RP Sp+ " 1 _
... whereu? = ﬁno)’n+zz'§ﬂl—1 pr IPHTIP bt p =
n—ocon = =0.
We will prove that llmn_> oV =4
It follows from (4) and Lemma 4 that

S1
i1
Ynr1 = XpoVn — Zan,ilT Uy + &poYn

"yn+1 - q|| =
i=1
Sy
i1
+Z‘X"’i1T u,—q
ip=1
5 . '
< sn + (Xn)o (yn - q) + Z(xn,il (Thul _ Thq)
i=1
S1
i1 .
T R

i=1
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< a || Yy — q|| +¢€, Combining (23), (24), and (25) we have

' Z“"“ 12 (3) % tla-al [yes —al

=
i 1 S(le‘xn,ilail><z ntz )(Zﬁn13a13>"u _q“
. "”n B q“ i=1 ip=1 i=1

SI . 52 .
- i 1 + <Z Fniy all) (Z ﬁrll,izalz ) ﬁi,o I, - al
=0 |y, — gl +&, + Azlocn)ila ”un - q" , i=1 i=1
1= 5
(23) + < Z“n,ilall > ﬁ;o “yn - q” + “n,o ”yn - q" + En-
i=1

t, ~ 4 (26)

ﬁiz,o (Vu—q) + ;ﬁ,ll,z (Tizufl - Tizq)

By induction we get

52
1 B U oy 2 _ i
“Hhal e 2 o [ =l -l

< 1 _ S1 ; ) .
uollya =l oy (Z) <zﬂ>
= 1=

+ Zﬁw {Z "¢ (la - Tal)
() (s )=

=1

2
u, — q" } $q ) .
1
+ 0,0+ thmlal Boo
i=1
2

Rl al+ 3 -l .
i,=1 iy iy
2 + Zocn)ila Zﬁ””z no
i=1
S ) s, )
+ (Z“n,iﬁh) (2/3;11,1'2“12 ) e
i=1 i=1
Sk—2 3 k X
i _
> B, @ | Bug t lyw—al + .
=1

Again using (4) and Lemma 4, we obtain

+ a>

(27)

2
U, —9q

S3 ) )
Bro On=a)+ X By, (17, = T"q)
i3=1

T13 Ti3q

<ﬁn0||yn q"+Zﬁnz3

13—

< Brolyn—dl

i, Q||

k—1 rriy k—1 rriy
iy Yn — Zﬁnsz

i i }

S3 )
=Broly.—al + (izlﬁii3a’3> Uy, - gl + Z BTy, ~ T'q|

i=1
(25) _
< Bt Iy -l
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: =i j N i SR
: Zﬁmk { > (%) a9/ (fa-Tal - (Z )(Zﬁ )
— =1 i = i=
IS i k-1
. Zﬁnlkl fey (Z/jmk lk>
+a ||yn_q|l Ik 1_1

- (Bptter )bu-al-

=0

(30)

We now show that o € (0,1). Since a’* € [0, 1), Ao > 0,
28 Spt —
(28) Z:::O «,; =1,and Ziﬁﬂlzo ﬂ””’pﬂ = 1for p =1,k — 1, we have

Substituting (28) into (27) we derive o <o+ (1-a,0)Bly+(1-a,,) ( )
n,0 1,0 1,0 nO n nO
et (1= ) (1= Br) -+ (1= Ba’) B’
151 =4l +(1- nO)( no) (1_/3’;52)

5 5 _
< i 1 i - 1)
S V%0 + (xn’ila 1,0 + ocm»la

ip=1 ip=1

5 s, that is, 0 € (0, 1). Therefore, an application of Lemma 4 to
5 .
>ﬁn0 + + ( )

(31)

(29) yields lim,, _, ., v, = q.
Now suppose thatlim, _, . ¥,, = g. Then we will show that
lim, , e, =0.

5 E= - Using Lemma 4 we have
1 i =3 ik -
X ﬁn,iza e Z ﬁn,ik_za ﬂn,O
ip=1 i =1

Sy
_ i1
& = |\ Vn+1 — an,Oyn - Z‘xn,ilT u,

i=1

S1
i1
q- (xn,Oyn - Z(xn,ilT u,

i=1

Sk-1 ; < ||yn+1 - q” +
(1))

S . )
= s =l + @0 (@ =) + D e, (T~ T"wy,)

i=1

X ||y, - a + &,
(29)

Sl . .
< "ynﬂ - q” + &0 ||yn - q|| + Z(Xn’il "T’lq - Tllu;l1
i=1

Define
<y =l + @0 |y - all

(Z ) (z ) Z {]’Zl(l})a"lfsof<||q—m||>

11—

() (z%lq L)

. < D=l + s b=l +( S ) -
=1

i_p=1

11—

(32)
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+ < Z an,ilail > < Z ﬁrlt,izaiz ) ﬁi,o "J’n - ‘1”
i=1 =1

1 .
+z%mﬂmﬂ%ww
i=1

Sy
_ 1 1 iy 2
- q_ﬁn,oyn - Zﬁn,izT u,
=1

Sy . )
= ﬁrl;,o (@=yu) + Azlﬁrlt,iz (T“q - T'zufl)

(35)

Thus, by induction, we get

< n()”yﬂ q"+Zanz

12—

T’zq T’z

(33)
< Buo s~ dl

< ”ym-l - q" R "yn - q“ + (Z“")ilail)

i=1

S, 1' iy i - T N el
+i;ﬁn,12 <|]Z;< > ¢ ("q q“ « (Zﬁrl;,izai ) < Z ﬁl;lkZl i 1)

i =1

| ot (St

< B - ﬂ+<2m¢ﬂw

& 1 E s
) lk 2
i,=1 X 'Zﬁ”’iza Z ﬁ”’k 2
i,=1 i =1

L Mm—ﬂ+~+(zgn )(zmhh)no
=14 Broyn— D Bus, T -
o1

Sy

W%—ﬂ+<2%%f>ﬁwn—ﬂ-

i=1

= 1Boo (a-y) + ;/32,,-3 (T"q-T"u,) (36)

53 . .
<Bioly.—al+ Z ﬁfmg T"q - T’3ufl|| Utilizing (4) and Lemma 4, we obtain
is=1
< Buo lyu =l lg—wy

+Z@W{z()’~¢wq7w

= Zﬁﬁ,,fT’kq Zﬁ’;,,jT'kyn

i=0 i=0

lk—

- ;||} o 17 - qII+Zﬁmk |Tq~T"y,|

k—1
i < 1,0 ”yn _q”
< Brolyn—al + (Zﬁa> la- (37)
61 +Z&W{Z()*wwm )

It follows from the relation (32), (33), and (34) that '
+a* |y, - 4|

< [y = all + @ao [y =l

s s, s
i 1 g
+ Z‘xn,ila Zﬁn,iza z n13
i=1 i=1 i=1

i - (Zﬁﬁ;:a’*) [ al-

=0
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Substituting (37) into (36) gives

<y — 4l

51 Sy
i 1 i
+ %0t Zcxn,ila‘ o+ Zcxn,ila‘
i=1 i=1
S S1
1 i 2 i
X Zﬁn’izaz ot Z(xn’ilal
i=1 i=1
S Sk—2 ; (38)
Z‘Bﬂ lza Z ﬁ” ik 2
i=1 i_,=1
Sy )
i 1 i
i=1 i=1
Sk-1 ; 1
ik
Z ﬁnlkl Zﬁnzk "yn_q”
=1

Again define

oyt <Z%Ma> m+<zwma>
(i (e)
<;ﬁmza > (:1 B ”)ﬁﬁ,?f (39)
<Zamla )(Zﬁn,za )
(E ) (Be)

Hence (38) becomes

A ”ynﬂ - q” +o "yn - q” : (40)

Using same argument as that of first part of the proof we
obtain o € (0, 1).

It therefore follows from assumption lim,, , ., ¥, = g that
g, — O0asn — oo. O

Theorem 8. Let x, € X and {x,}, be a sequence generated
by the Kirk-SP iterative scheme (3). Suppose that T has a fixed
point q. Then the Kirk-SP iterative scheme (3) is T-stable.

Proof. Let {y,},n € X & = Y01 — Zsl 0 %ni, Thulll, n =
0,1,2,..,u) = Yo sz’zu and u’ = 213_0 msTlf'yn
Assume that lim,,_, ¢, = 0. We will prove that lim

q.

n~>ooyn

It follows from (3) and Lemma 4 that

11 = al

Yne1 ~ Zanlellu + Z“}’ll Tllu -4

i;=0 i=0

i i
e, a + 3 e [~ 1]

ll—

41
<g, to (41)

X > (%) la- el

j=1

il
a |4, —4q

1_
U, — 4>

D o, (T, = T2q)

—nO

Zﬁnlz

Tu, — T

< Buo [z 4l -

)

+ 2 B, ;(?) a* ¢’ (lq - Tq])

(St -l

12—

121,1'3 (Tiayn - Ti3q)

53 . .
<Brolya—al+ Y B, |T5yu— T4
=1

< Boo lyn—al
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+ Zlﬁﬁ,is {Zl <lj> a7’ (|q-Tq|)
3= J=

+a" |y, —q| }

KN )
- (Zﬁ> -,
i1=0

(43)
Combining (41), (42), and (43) we get
b=l <0 ( et ) (St
i, =0 i,=0
(44)

x (Zﬁ> bl

i,=0

Define

Sy ) S3
. 1 . 2 .
o (St (S ) (S ).
i;=0 i,=0 i3=0

Thus we can rewrite (44) as follows:
ner —all <o lyn—al + e, (46)

We now show that o € (0, 1). Since a** € [0, 1), a,, > 0,
Yoty = Land 3 BR, = 1forp=1k-1,

mip +1

o< <Z=;) “ﬂﬂ&) <'Zoﬁrll,i2> <'ZO/331,1‘3> =1L (47)

Therefore, an application of Lemma3 to (46) yields

lim,, _, 09, = q.
Now suppose that lim

= g. Then we will show that

n— ooyn
lim,, , ¢, = 0.
Using Lemma 4 we have

S1
i1
Yne1 — Zan,ilT U,

i1=0

Abstract and Applied Analysis

Z“ﬂ»il (T“q - T“u;)

i1=0

<y —al +

< ||yn+1 - q” + %00 "q - urll"

Sy
+ Za”')il
i=1

|Ti1q -Th u:l

< ||yn+1 - q“ T %0 |19~ urIL"

sy iy . o
" e {z (4)a"¢’ (la-Tal)

]

<Py —al + <z> la-u
0

i, 1
+a ”q u,

>

1=

(48)
4wl
- |28 (rhg 1)
i,=0
S, . '
<Buolla -l + 3B, [0 -1
i=1
< /3,1,,0 "q - ui” -

iy

. Z g, {z (2)a¢/ (la-Tal

=
2] }

52

1 i, 2

= (Zﬂ")iza ) 'lq_u"
i,=0

2
||q —uy,

+a”

>

53 . .
= Zﬁrzug (Thq -T" )’n)

i3=0

53 . .
<Biolla-yal+ Y B [T~ Ty
=1

3=

< Brola-l
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+iﬁ@ i(ﬁdW¢UM4wm

i;=1 =1

+a" g -y,

. (Zﬁ) bl

i3=0

(50)
It follows from (48), (49), and (50) that

S ||yn+1 - q"

S1 S2 S3
, 1 . 5
+ ( Zaﬂ:ilall) ( Zﬁn,izalz> < Zﬁn,i3a13> "yn - q” '
i,=0 i,=0 i,=0

(51)

Again define

S1 S S3
. L s h
0;<mew><2ﬁww><2ﬁ%d). (52)
i=0 i,=0 i5=0

Using same argument as that of first part of the proof we
obtain ¢ € (0,1) and it thus follows from assumption
lim, |y, =qthate, — Oasn — oo. 0

Remark 9. Theorem 6 is a generalization and extension of
both Theorems 1 and 2 of Berinde [37], Theorems 2 and
3 of Kannan [38], Theorem 3 of Kannan [39], Theorem
4 of Rhoades [40], Theorem 8 of Rhoades [41], Theorem
2.1 of Olatinwo [42], Theorem 2.6 of Hussain et al. [14],
and Theorem 3.1 of Soltuz and Grosan [43]. Theorem 7 is a
generalization and extension of Theorem 2 of Osilike [27],
Theorems 2 and 5 of Osilike and Udomene [29] as well as
Theorem 3 of Olatinwo et al. [34], Theorems 3.1 and 3.2 of
Olatinwo [16], and Theorem 3.1 of Chugh and Kumar [15].
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