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We present a two-grid finite element scheme for the approximation of a second-order nonlinear hyperbolic equation in two space
dimensions. In the two-grid scheme, the full nonlinear problem is solved only on a coarse grid of size H. The nonlinearities are
expanded about the coarse grid solution on the fine gird of size h. The resulting linear system is solved on the fine grid. Some a
priori error estimates are derived with the𝐻1-norm𝑂(ℎ+𝐻

2
) for the two-grid finite elementmethod. Compared with the standard

finite element method, the two-grid method achieves asymptotically same order as long as the mesh sizes satisfy ℎ = 𝑂(𝐻
2
).

1. Introduction

Let Ω ⊂ R2 be a bounded convex domain with smooth
boundary Γ, and consider the initial-boundary value problem
for the following second-order nonlinear hyperbolic equation

𝑢
𝑡𝑡
− ∇ ⋅ (𝐴 (𝑢) ∇𝑢) = 𝑓 (𝑥, 𝑡) , 𝑥 ∈ Ω, 0 < 𝑡 ≤ 𝑇,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Γ, 0 < 𝑡 ≤ 𝑇,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(1)

where 𝑢
𝑡𝑡
and 𝑢

𝑡
denote 𝜕

2
𝑢/𝜕𝑡
2 and 𝜕𝑢/𝜕𝑡, respectively. 𝑥 =

(𝑥
1
, 𝑥
2
). We assume that𝐴(𝑢) is a symmetric positive definite

matrix. 𝐴(𝑢) and 𝐴
𝑢
(𝑢) satisfy the Lipschitz continuous

condition with respect to 𝑢, where 𝐴
𝑢
= 𝜕𝐴/𝜕𝑢 and

𝐴 (𝑢
1
) − 𝐴 (𝑢

2
)
 ≤ 𝐿

𝑢1 − 𝑢
2

 , (2)
𝐴𝑢 (𝑢1) − 𝐴

𝑢
(𝑢
2
)
 ≤ 𝐿

𝑢1 − 𝑢
2

 , 𝑢
1
, 𝑢
2
∈ R, (3)

where 𝐿 is a positive constant.
Two-grid method is a discretization technique for non-

linear equations based on two grids of different sizes. The
main idea is to use a coarse-grid space to produce a rough
approximation of the solution of nonlinear problems and
then use it as the initial guess for the solution on the fine

grid.This method involves a nonlinear solution on the coarse
grid with grid size 𝐻 and a linear solution on the fine grid
with grid size ℎ < 𝐻. Two-grid method was first introduced
by Xu [1, 2] for linear (nonsymmetric or indefinite) and
especially nonlinear elliptic partial differential equations.
Later on, two-grid method was further investigated by many
authors. Dawson and Wheeler [3, 4], Chen and Liu [5] have
constructed the two-grid method by using finite difference
method, mixed finite element method, and piecewise linear
finite element method for nonlinear parabolic equations,
respectively. Wu and Allen [6] have applied two-grid method
combined with mixed finite element method to reaction-
diffusion equations. Chen et al. [7–10] have constructed two-
grid methods for expanded mixed finite-element solution
of semilinear and nonlinear reaction-diffusion equations. Bi
and Ginting [11] have studied two-grid finite volume element
method for linear and nonlinear elliptic problems. Chen et al.
[12], Chen and Liu [13, 14] have studied two-grid methods for
semilinear parabolic and second-order hyperbolic equations
using finite volume element method.

The finite element analysis for the second-order linear
hyperbolic equationswas discussed byDupont [15] andBaker
[16]. They have obtained optimal 𝐿∞(𝐿2) estimates for the
error, 𝑂(ℎ

𝑟
), using subspaces of piecewise polynomial func-

tions of degree ≤ 𝑟−1, for 𝑟 ≥ 1.Then Yuan andWang [17, 18]
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have studied error estimates for the finite element method of
the second-order nonlinear hyperbolic equations and proved
the optimal error estimates in the 𝐿

2 and 𝐻
1 norm. Kumar

et al. [19] presented and discussed semidiscrete piecewise
linear finite volume approximations for a second-order wave
equation and obtained optimal error estimates in 𝐿

2,𝐻1, and
𝐿
∞ norms. For second-order hyperbolic equations with a

nonlinear reaction term, Chen and Liu [14] have presented
a two-grid method using finite volume element method and
obtained error estimate in the𝐻

1-norm.
However, as far as we know there is no two-grid finite

element convergence analysis for the second-order nonlinear
hyperbolic equations (1). In this paper, based on two con-
forming piecewise linear finite element spaces 𝑆

𝐻
and 𝑆
ℎ
on

one coarse grid with grid size 𝐻 and one fine grid with grid
size ℎ, respectively, we consider the two-grid finite element
discretization techniques for the second-order nonlinear
hyperbolic problems. With the proposed techniques, solving
the nonlinear problems on the fine-grid space is reduced to
solving a linear system on the fine-grid space and a nonlinear
system on a much smaller space. This means that solving a
nonlinear problem is not much more difficult than solving
one linear problem, since dim 𝑆

𝐻
≪ dim 𝑆

ℎ
and the work

for solving the nonlinear problem is relatively negligible. A
remarkable fact about this simple approach is, as shown in [1],
that the coarse mesh can be quite coarse and still maintain a
good accuracy approximation.

The rest of this paper is organized as follows. In Section 2,
we describe the finite element scheme for the nonlinear
second-order hyperbolic problem (1). Section 3 contains the
error estimates for the finite element method. Section 4 is
devoted to the two-grid finite element and its error analysis.
Throughout this paper, the letter 𝐶 or with its subscript
denotes a generic positive constant which does not depend
on the mesh parameters and may be different at its different
occurrences.

2. Standard Finite Element Method

We adopt the standard notation for Sobolev spaces 𝑊
𝑠,𝑝

(Ω)

with 1 ≤ 𝑝 ≤ ∞ consisting of functions that have generalized
derivatives of order 𝑠 in the space 𝐿

𝑝
(Ω). The norm of

𝑊
𝑠,𝑝

(Ω) is defined by

‖𝑢‖
𝑠,𝑝,Ω

= ‖𝑢‖𝑠,𝑝 = (∫
Ω

∑

|𝛼|≤𝑠

𝐷
𝛼
𝑢


𝑝

𝑑𝑥)

1/𝑝

, (4)

with the standard modification for 𝑝 = ∞. In order to
simplify the notation, we denote𝑊

𝑠,2
(Ω) by𝐻

𝑠
(Ω) and omit

the index 𝑝 = 2 and Ω whenever possible; that is, ‖𝑢‖
𝑠,2,Ω

=

‖𝑢‖
𝑠,2

= ‖𝑢‖
𝑠
. Let 𝐻

1

0
(Ω) be the subspace of 𝐻

1
(Ω) of

functions vanishing on the boundary Γ.
For the variational formulation we multiply (1) by a

smooth function V, which vanishes on Γ and find, after

integration over Ω and using Green’s formula, that 𝑢(⋅, 𝑡) ∈

𝐻
1

0
(Ω), 0 < 𝑡 ≤ 𝑇 such that

(𝑢
𝑡𝑡
, V) + 𝑎 (𝑢; 𝑢, V) = (𝑓, V) , ∀V ∈ 𝐻

1

0
(Ω) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

(5)

where (⋅, ⋅) denotes the 𝐿
2
(Ω)-inner product and the bilinear

form 𝑎(⋅; ⋅, ⋅) is defined by

𝑎 (𝑤; 𝑢, V) = ∫
Ω

𝐴 (𝑤)∇𝑢 ⋅ ∇V 𝑑𝑥. (6)

Henceforth, it will be assumed that the problem (5) has
a unique solution 𝑢, and in the appropriate places to follow,
additional conditions on the regularity of 𝑢 which guarantee
the convergence results, will be imposed.

Let T
ℎ
be a quasiuniform triangulation of Ω with ℎ =

max ℎ
𝐾
, where ℎ

𝐾
is the diameter of the triangle 𝐾 ∈ T

ℎ
.

With the triangulationT
ℎ
, we associate the function space 𝑆

ℎ

consisting of continuous, piecewise linear functions on T
ℎ
,

vanishing on Γ; that is,

𝑆
ℎ

= {V ∈ 𝐶 (Ω) : V linear in 𝐾 for each𝐾 ∈ T
ℎ
, V = 0 on Γ} .

(7)

Using the above assumptions on T
ℎ
, it is easy to see that 𝑆

ℎ

is a finite-dimensional subspace of the Hilbert space 𝐻
1

0
(Ω)

[20].
Thus, the continuous-time finite element approximation

is defined as to find a solution 𝑢
ℎ
(𝑡) ∈ 𝑆

ℎ
, 0 < 𝑡 ≤ 𝑇, such that

(𝑢
ℎ,𝑡𝑡

, V
ℎ
) + 𝑎 (𝑢

ℎ
; 𝑢
ℎ
, V
ℎ
) = (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑆
ℎ
,

𝑢
ℎ
(0) = 𝑢

0
, 𝑢

ℎ,𝑡
(0) = 𝑢

1
,

(8)

where 𝑢
ℎ,𝑡𝑡

= 𝜕
2
𝑢
ℎ
/𝜕𝑡
2. Since we have discretized only in the

space variables, this is referred to as a spatially semidiscrete
problem.The existence and uniqueness of the solution of (8)
have been proved by Yuan and Wang [17].

3. Error Analysis for the Finite
Element Method

To describe the error estimates for the finite element scheme
(8), we will give some useful lemmas. In [17, 21] it was
shown that the bilinear form 𝑎(⋅; ⋅, ⋅) is symmetric and positive
definite and the following lemmawas proved, which indicates
that the bilinear form 𝑎(⋅; ⋅, ⋅) is continuous and coercive on
𝑆
ℎ
.

Lemma 1. For ℎ sufficiently small, there exist two positive
constants 𝐶

1
, 𝐶
2

> 0 such that, for all 𝑢
ℎ
, V
ℎ
, 𝑤
ℎ

∈ 𝑆
ℎ
, the

coercive property

𝑎 (𝑤
ℎ
; 𝑢
ℎ
, 𝑢
ℎ
) ≥ 𝐶
1

𝑢ℎ


2

1
(9)

and the boundedness property
𝑎 (𝑤
ℎ
; 𝑢
ℎ
, V
ℎ
)
 ≤ 𝐶
2

𝑢ℎ
1

Vℎ
1 (10)

hold true.
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Lemma 2. Let �̃� ∈ 𝑆
ℎ
be the standard Ritz projection such that

𝑎 (𝑢 (𝑥, 𝑡) ; (�̃� − 𝑢) (𝑥, 𝑡) , V
ℎ
) = 0, ∀V

ℎ
∈ 𝑆
ℎ
. (11)

Thus �̃� is the finite element approximation of the solution of
the elliptic problem whose exact solution is 𝑢. From [21–23], we
have

‖𝑢 − �̃�‖ + ℎ‖𝑢 − �̃�‖1 ≤ 𝐶ℎ
2
‖𝑢‖2, (12)

(𝑢 − �̃�)
𝑡

 + ℎ
(𝑢 − �̃�)

𝑡

1
≤ 𝐶ℎ
2𝑢𝑡

2
, (13)

for some positive constant 𝐶 independent of ℎ and 𝑢.

And there exists a positive constant 𝐶
0
independent of ℎ,

such that [21]

‖∇�̃�‖∞ +
∇�̃�
𝑡

∞
≤ 𝐶
0
, for 𝑡 ≤ 𝑇. (14)

We now turn to describe the estimates for the finite
element method.We give the error estimates in the𝐻1-norm
and 𝐿
2-norm between the exact solution and the semidiscrete

finite element solution.

Theorem 3. Let 𝑢 and 𝑢
ℎ
be the solutions of problem (1) and

the semidiscrete finite element scheme (8), respectively. Under
the assumptions given in Section 1, if 𝑢

ℎ
(0) = �̃�

0
and 𝑢

ℎ,𝑡
(0) =

�̃�
1
, for 0 < 𝑡 ≤ 𝑇, one has

𝑢 (𝑡) − 𝑢
ℎ
(𝑡)

 + ℎ
𝑢 (𝑡) − 𝑢

ℎ
(𝑡)

1
≤ Cℎ
2
,

(𝑢 (𝑡) − 𝑢
ℎ
(𝑡))
𝑡

 ≤ Cℎ
2
,

(15)

where C = 𝐶(‖𝑢‖
𝐿
2
(𝐻
2
)
, ‖𝑢‖
𝐿
∞
(𝐻
2
)
, ‖𝑢
𝑡
‖
𝐿
2
(𝐻
2
)
, ‖𝑢
𝑡𝑡
‖
𝐿
2
(𝐻
2
)
)

independent of ℎ.

Proof. For convenience, let 𝑢 − 𝑢
ℎ

= (𝑢 − �̃�) + (�̃� − 𝑢
ℎ
) =:

𝜂 + 𝜉. Then from (1), (8), and (11), we get the following error
equation:

(𝜉
𝑡𝑡
, V
ℎ
) + 𝑎 (𝑢

ℎ
; 𝜉, V
ℎ
)

= − (𝜂
𝑡𝑡
, V
ℎ
) + 𝑎 (𝑢

ℎ
; 𝑢, V
ℎ
) − 𝑎 (𝑢; 𝑢, V

ℎ
) , ∀V

ℎ
∈ 𝑆
ℎ
.

(16)

Choosing V
ℎ
= 𝜉
𝑡
in (16) and by (11), we get

(𝜉
𝑡𝑡
, 𝜉
𝑡
) + 𝑎 (𝑢

ℎ
; 𝜉, 𝜉
𝑡
)

= − (𝜂
𝑡𝑡
, 𝜉
𝑡
) + 𝑎 (𝑢

ℎ
; �̃�, 𝜉
𝑡
) − 𝑎 (𝑢; �̃�, 𝜉

𝑡
) .

(17)

For the terms of (17), we have

(𝜉
𝑡𝑡
, 𝜉
𝑡
) =

1

2

𝑑

𝑑𝑡
(𝜉
𝑡
, 𝜉
𝑡
) =

1

2

𝑑

𝑑𝑡

𝜉𝑡


2

. (18)

𝑎 (𝑢
ℎ
; 𝜉, 𝜉
𝑡
) = ∫
Ω

𝐴 (𝑢
ℎ
) ∇𝜉 ⋅ ∇𝜉

𝑡
𝑑𝑥

=
1

2

𝑑

𝑑𝑡
𝑎 (𝑢
ℎ
; 𝜉, 𝜉)−

1

2
∫
Ω

𝜕𝐴 (𝑢
ℎ
)

𝜕𝑢

𝜕𝑢
ℎ

𝜕𝑡
∇𝜉 ⋅ ∇𝜉 𝑑𝑥.

(19)

𝑎 (𝑢
ℎ
; �̃�, 𝜉
𝑡
) − 𝑎 (𝑢; �̃�, 𝜉

𝑡
)

= ∫
Ω

[𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)] ∇�̃� ⋅ ∇𝜉

𝑡
𝑑𝑥

=
𝑑

𝑑𝑡
(∫
Ω

[𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)] ∇�̃� ⋅ ∇𝜉 𝑑𝑥)

− ∫
Ω

[𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)] ∇

𝜕�̃�

𝜕𝑡
⋅ ∇𝜉 𝑑𝑥

− ∫
Ω

(
𝜕𝐴 (𝑢
ℎ
)

𝜕𝑢

𝜕𝑢
ℎ

𝜕𝑡
−

𝜕𝐴 (𝑢)

𝜕𝑢

𝜕𝑢

𝜕𝑡
)∇�̃� ⋅ ∇𝜉 𝑑𝑥.

(20)

Integrating (17) from 0 to 𝑡, combining with (18)–(20), and
noting that 𝜉(0) = 0 and 𝜉

𝑡
(0) = 0, we have

1

2

𝜉𝑡


2

+
1

2
𝑎 (𝑢
ℎ
; 𝜉, 𝜉)

= −∫

𝑡

0

(𝜂
𝑡𝑡
, 𝜉
𝑡
) 𝑑𝑡

+
1

2
∫

𝑡

0

(∫
Ω

𝜕𝐴 (𝑢
ℎ
)

𝜕𝑢

𝜕𝑢
ℎ

𝜕𝑡
∇𝜉 ⋅ ∇𝜉 𝑑𝑥)𝑑𝑡

+ ∫
Ω

[𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)] ∇�̃� ⋅ ∇𝜉 𝑑𝑥

− ∫

𝑡

0

(∫
Ω

[𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)] ∇

𝜕�̃�

𝜕𝑡
⋅ ∇𝜉 𝑑𝑥)𝑑𝑡

− ∫

𝑡

0

(∫
Ω

(
𝜕𝐴 (𝑢
ℎ
)

𝜕𝑢

𝜕𝑢
ℎ

𝜕𝑡
−

𝜕𝐴 (𝑢)

𝜕𝑢

𝜕𝑢

𝜕𝑡
)∇�̃� ⋅ ∇𝜉 𝑑𝑥)𝑑𝑡

≡

5

∑

𝑖=1

𝑇
𝑖
.

(21)

Now let us estimate the right-hand side terms of (21); for 𝑇
1
,

there is

𝑇1
 ≤ 𝐶∫

𝑡

0

𝜂𝑡𝑡


𝜉𝑡
 𝑑𝑡 ≤ 𝐶∫

𝑡

0

(
𝜂𝑡𝑡



2

+
𝜉𝑡



2

) 𝑑𝑡. (22)

For 𝑇
2
, by (2), we obtain

𝑇2
 ≤ 𝐶∫

𝑡

0



𝜕𝐴 (𝑢
ℎ
)

𝜕𝑢

𝜕𝑢
ℎ

𝜕𝑡

∞

∇𝜉


2

𝑑𝑡

≤ 𝐶𝐿∫

𝑡

0



𝜕𝑢
ℎ

𝜕𝑡

∞

∇𝜉


2

𝑑𝑡 ≤ 𝐶∫

𝑡

0

𝜉


2

1
𝑑𝑡,

(23)

where we used the fact that |𝜕𝑢
ℎ
/𝜕𝑡|
∞

is bounded by a
positive constant [17].
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For 𝑇
3
, by (14), Schwarz inequality, and (3), we get

𝑇3
 ≤ 𝐶‖∇�̃�‖

∞

𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)



∇𝜉


≤ 𝐶‖∇�̃�‖∞𝐿
𝜉 + 𝜂



𝜉
1

≤ 𝐶 (
𝜂



2

+
𝜉



2

) + 𝜖
𝜉



2

1

≤ 𝐶(
𝜂



2

+ ∫

𝑡

0

𝜉𝑡


2

𝑑𝑡) + 𝜖
𝜉



2

1
,

(24)

with 𝜖 being a small positive constant. For 𝑇
4
, similarly we

have

𝑇4
 ≤ 𝐶∫

𝑡

0

∇�̃�
𝑡

∞

𝐴 (𝑢
ℎ
) − 𝐴 (𝑢)



∇𝜉
 𝑑𝑡

≤ 𝐶∫

𝑡

0

∇�̃�
𝑡

∞
𝐿
𝜉 + 𝜂



𝜉
1
𝑑𝑡

≤ 𝐶∫

𝑡

0

(
𝜉



2

+
𝜂



2

+
𝜉



2

1
) 𝑑𝑡

≤ 𝐶∫

𝑡

0

(
𝜂



2

+
𝜉



2

1
) 𝑑𝑡.

(25)

For 𝑇
5
, by Lemma 2, we obtain

𝑇5
 ≤ 𝐶∫

𝑡

0

‖∇�̃�‖∞



𝜕𝑢
ℎ

𝜕𝑡
−

𝜕𝑢

𝜕𝑡



∇𝜉
 𝑑𝑡

≤ 𝐶∫

𝑡

0

(
𝜉𝑡

 +
𝜂𝑡

)
𝜉

1
𝑑𝑡

≤ 𝐶∫

𝑡

0

(
𝜉𝑡



2

+
𝜂𝑡



2

+
𝜉



2

1
) 𝑑𝑡.

(26)

By Lemma 1, from (21)–(26), we get

𝜉𝑡


2

+ 𝐶
0

𝜉


2

1

≤ 𝐶
1
[∫

𝑡

0

(
𝜂𝑡𝑡



2

+
𝜂𝑡



2

+
𝜂



2

) 𝑑𝑡 +
𝜂



2

]

+ 𝐶
2
∫

𝑡

0

(
𝜉𝑡



2

+
𝜉



2

1
) 𝑑𝑡 + 𝜖

𝜉


2

1
.

(27)

Choosing proper 𝜖 and kicking the last term into the left-hand
side of (27), and applying Gronwall’s lemma, for 𝑡 ≤ 𝑇, we
have

𝜉𝑡


2

+
𝜉



2

1

≤ 𝐶
1
[∫

𝑇

0

(
𝜂𝑡𝑡



2

+
𝜂𝑡



2

+
𝜂



2

) 𝑑𝑡 +
𝜂



2

]

≤ 𝐶ℎ
4
[∫

𝑇

0

(
𝑢𝑡𝑡



2

2
+
𝑢𝑡



2

2
+ ‖𝑢‖
2

2
) 𝑑𝑡 + ‖𝑢‖

2

2
] .

(28)

Together with (12) and (13), this yields (15).

4. Two-Grid Finite Element Method

In this section, we will present a two-grid finite element
algorithm for problem (1) based on two different finite
element spaces. The idea of the two-grid method is to reduce
the nonlinear problem on a fine grid into a linear system on
the fine grid by solving a nonlinear problem on a coarse grid.
The basic mechanisms are two quasiuniform triangulations
of Ω, T

𝐻
and T

ℎ
, with two different mesh sizes 𝐻 and

ℎ (𝐻 > ℎ), and the corresponding piecewise linear finite
element spaces 𝑆

𝐻
and 𝑆
ℎ
which will be called the coarse-grid

and the fine-grid spaces, respectively.
To solve problem (1), we introduce two-grid algorithms

into finite element method.This method involves a nonlinear
solution on the coarse grid space and a linear solution on
the fine grid space. We present the two-grid finite element
method with two steps.

Algorithm 4. Consider the following.
Step 1. On the coarse gridT

𝐻
, find 𝑢

𝐻
∈ 𝑆
𝐻
, such that

(𝑢
𝐻,𝑡𝑡

, V
𝐻
) + 𝑎 (𝑢

𝐻
; 𝑢
𝐻
, V
𝐻
) = (𝑓, V

𝐻
) , ∀V

𝐻
∈ 𝑆
𝐻
,

𝑢
𝐻
(0) = �̃�

0
, 𝑢

𝐻,𝑡
(0) = �̃�

1
.

(29)

Step 2. On the fine gridT
ℎ
, find 𝑢

ℎ
∈ 𝑆
ℎ
, such that

(𝑢
ℎ,𝑡𝑡

, V
ℎ
) + 𝑎 (𝑢

𝐻
; 𝑢
ℎ
, V
ℎ
) = (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑆
ℎ
,

𝑢
ℎ
(0) = �̃�

0
, 𝑢

ℎ,𝑡
(0) = �̃�

1
.

(30)

Now we consider the error estimates in the 𝐻
1-norm for

the two-grid finite element method Algorithm 4.

Theorem 5. Let 𝑢 and 𝑢
ℎ
be the solutions of problem (1)

and the two-grid scheme Algorithm 4, respectively. Under the
assumptions given in Section 1, if 𝑢

ℎ
(0) = �̃�

0
and 𝑢

ℎ,𝑡
(0) = �̃�

1
,

for 0 < 𝑡 ≤ 𝑇, we have

𝑢 (𝑡) − 𝑢
ℎ
(𝑡)

1
≤ C (ℎ + 𝐻

2
) , (31)

where C = 𝐶(‖𝑢‖
𝐿
2
(𝐻
2
)
, ‖𝑢‖
𝐿
∞
(𝐻
2
)
, ‖𝑢‖
𝐿
∞
(𝑊
1,∞
)
, ‖𝑢
𝑡
‖
𝐿
2
(𝐻
2
)
,

‖𝑢
𝑡
‖
𝐿
∞
(𝑊
1,∞
)
, ‖𝑢
𝑡𝑡
‖
𝐿
2
(𝐻
2
)
) independent of ℎ.

Proof. Once again, we set 𝑢 − 𝑢
ℎ
= (𝑢 − �̃�) + (�̃� − 𝑢

ℎ
) =: 𝜂 + 𝜉

and choose V
ℎ

= 𝜉
𝑡
. Then for Algorithm 4, we get the error

equation

(𝜉
𝑡𝑡
, 𝜉
𝑡
) + 𝑎 (𝑢

𝐻
; 𝜉, 𝜉
𝑡
)

= − (𝜂
𝑡𝑡
, 𝜉
𝑡
) + 𝑎 (𝑢

𝐻
; �̃�, 𝜉
𝑡
) − 𝑎 (𝑢; �̃�, 𝜉

𝑡
) .

(32)



Abstract and Applied Analysis 5

Similarly as the proof of Theorem 3, we get

1

2

𝜉𝑡


2

+
1

2
𝑎 (𝑢
𝐻
; 𝜉, 𝜉)

= −∫

𝑡

0

(𝜂
𝑡𝑡
, 𝜉
𝑡
) 𝑑𝑡 +

1

2
∫

𝑡

0

(∫
Ω

𝜕𝐴 (𝑢
𝐻
)

𝜕𝑢

𝜕𝑢
𝐻

𝜕𝑡
∇𝜉 ⋅ ∇𝜉 𝑑𝑥)𝑑𝑡

+ ∫
Ω

[𝐴 (𝑢
𝐻
) − 𝐴 (𝑢)] ∇�̃� ⋅ ∇𝜉 𝑑𝑥

− ∫

𝑡

0

(∫
Ω

[𝐴 (𝑢
𝐻
) − 𝐴 (𝑢)] ∇

𝜕�̃�

𝜕𝑡
⋅ ∇𝜉 𝑑𝑥)𝑑𝑡

− ∫

𝑡

0

(∫
Ω

(
𝜕𝐴 (𝑢
𝐻
)

𝜕𝑢

𝜕𝑢
𝐻

𝜕𝑡
−

𝜕𝐴 (𝑢)

𝜕𝑢

𝜕𝑢

𝜕𝑡
)∇�̃� ⋅ ∇𝜉 𝑑𝑥)𝑑𝑡

≡

5

∑

𝑖=1

𝑇


𝑖
.

(33)

For 𝑇


1
and 𝑇



2
, we can estimate them similarly as in

Theorem 3. So our main task is to deal with 𝑇


3
–𝑇
5
. By (3),

we have

𝑇


3


≤ 𝐶‖∇�̃�‖

∞

𝐴 (𝑢
𝐻
) − 𝐴 (𝑢)



∇𝜉


≤ 𝐶‖∇�̃�‖
∞
𝐿
𝑢𝐻 − 𝑢



𝜉
1

≤ 𝐶
𝑢𝐻 − 𝑢



2

+ 𝜖
𝜉



2

1
,

(34)

with 𝜖 being a small positive constant


𝑇


4


≤ 𝐶∫

𝑡

0

∇�̃�
𝑡

∞

𝐴 (𝑢
𝐻
) − 𝐴 (𝑢)



∇𝜉
 𝑑𝑡

≤ 𝐶∫

𝑡

0

∇�̃�
𝑡

∞
𝐿
𝑢𝐻 − 𝑢



𝜉
1
𝑑𝑡

≤ 𝐶∫

𝑡

0

(
𝑢𝐻 − 𝑢



2

+
𝜉



2

1
) 𝑑𝑡,

(35)


𝑇


5


≤ 𝐶∫

𝑡

0

‖∇�̃�‖∞



𝜕𝑢
𝐻

𝜕𝑡
−

𝜕𝑢

𝜕𝑡



∇𝜉
 𝑑𝑡

≤ 𝐶∫

𝑡

0

(𝑢𝐻 − 𝑢)
𝑡



𝜉
1
𝑑𝑡

≤ 𝐶∫

𝑡

0

(
(𝑢𝐻 − 𝑢)

𝑡



2

+
𝜉



2

1
) 𝑑𝑡.

(36)

Substituting the estimates of 𝑇
𝑖
in (33) and by Lemma 1, we

obtain
𝜉𝑡



2

+ 𝐶
0

𝜉


2

1

≤ 𝐶
1
∫

𝑡

0

(
𝜂𝑡𝑡



2

+
𝑢𝐻 − 𝑢



2

+
(𝑢𝐻 − 𝑢)

𝑡



2

) 𝑑𝑡

+ 𝐶
2

𝑢𝐻 − 𝑢


2

+ 𝐶
3
∫

𝑡

0

(
𝜉𝑡



2

+
𝜉



2

1
) 𝑑𝑡 + 𝜖

𝜉


2

1
.

(37)

Choosing proper 𝜖 and kicking the last term into the left-hand
side of (33), and applying Gronwall’s lemma, for 𝑡 ≤ 𝑇, we
have

𝜉𝑡


2

+
𝜉



2

1

≤ 𝐶
1
∫

𝑡

0

(
𝜂𝑡𝑡



2

+
𝑢𝐻 − 𝑢



2

+
(𝑢𝐻 − 𝑢)

𝑡



2

) 𝑑𝑡

+ 𝐶
2

𝑢𝐻 − 𝑢


2

.

(38)

ByTheorem 3, we obtain

𝜉𝑡


2

+
𝜉



2

1
≤ C (ℎ

4
+ 𝐻
4
) , (39)

where C = 𝐶(‖𝑢‖
𝐿
2
(𝐻
2
)
, ‖𝑢‖
𝐿
∞
(𝐻
2
)
, ‖𝑢‖
𝐿
∞
(𝑊
1,∞
)
, ‖𝑢
𝑡
‖
𝐿
2
(𝐻
2
)
,

‖𝑢
𝑡
‖
𝐿
∞
(𝑊
1,∞
)
, ‖𝑢
𝑡𝑡
‖
𝐿
2
(𝐻
2
)
) independent of ℎ. Thus,

𝜉𝑡
 +

𝜉
1

≤ C (ℎ
2
+ 𝐻
2
) . (40)

By (12) and the triangular inequality, the proof is complete.

Remark 6. In order to give the fully discrete scheme, we
further discretize time 𝑡 of the semidiscrete two-grid finite
element method in this section. We consider a time step Δ𝑡

and approximate the solutions at 𝑡
𝑛

= 𝑛Δ𝑡, Δ𝑡 = 𝑇/𝑁,
𝑛 = 0, 1, . . . , 𝑁. Denote 𝑢

𝑛

ℎ
= 𝑢
ℎ
(𝑡
𝑛
), 𝑢𝑛
ℎ,𝑡𝑡

= (𝑢
𝑛+1

ℎ
− 2𝑢
𝑛

ℎ
+

𝑢
𝑛−1

ℎ
)/(Δ𝑡)

2, 𝑢
𝑛

ℎ,𝑡
= (𝑢

𝑛+1

ℎ
− 𝑢
𝑛

ℎ
)/Δ𝑡, we can get the fully

discrete two-grid finite element scheme for (1). For simplicity
and convenience, we only give the fully discrete scheme for
Algorithm 4.

Algorithm 4. Consider the following.
Step 1. On the coarse grid T

𝐻
, find 𝑢

𝑛

𝐻
∈ 𝑆
𝐻

(𝑛 = 1, 2, . . .),
such that

(𝑢
𝑛

𝐻,𝑡𝑡
, V
𝐻
) + 𝑎 (𝑢

𝑛+1

𝐻
; 𝑢
𝑛+1

𝐻
, V
𝐻
) = (𝑓

𝑛+1
, V
𝐻
) , ∀V

𝐻
∈ 𝑆
𝐻
,

𝑢
0

𝐻
= �̃�
0
, 𝑢

0

𝐻,𝑡
= �̃�
1
.

(41)

Step 2. On the fine gridT
ℎ
, find 𝑢

𝑛

ℎ
∈ 𝑆
ℎ
(𝑛 = 1, 2, . . .), such

that

(𝑢
𝑛

ℎ,𝑡𝑡
, V
ℎ
) + 𝑎 (𝑢

𝑛+1

𝐻
; 𝑢
𝑛+1

ℎ
, V
ℎ
) = (𝑓

𝑛+1
, V
ℎ
) , ∀V

ℎ
∈ 𝑆
ℎ
,

𝑢
0

ℎ
= �̃�
0
, 𝑢

0

ℎ,𝑡
= �̃�
1
.

(42)

We can get the same kind of estimate as Theorem 5 with
the result ‖𝑢𝑛 − 𝑢

𝑛

ℎ
‖
1
≤ C((Δ𝑡)

2
+ ℎ + 𝐻

2
).
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