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Various kinds of nonlinear scalarization functions play important roles in vector optimization. Among them, the one commonly
known as the Gerstewitz function is good at scalarizing. In linear normed spaces, the globally Lipschitz property of such function is
deduced via primal and dual spaces approaches, respectively. The equivalence of both expressions for globally Lipschitz constants
obtained by primal and dual spaces approaches is established. In particular, when the ordering cone is polyhedral, the expression
for calculating Lipschitz constant is given. As direct applications of the Lipschitz property, several sufficient conditions for Hölder
continuity of both single-valued and set-valued solution mappings to parametric vector equilibrium problems are obtained using
the nonlinear scalarization approach.

1. Introduction

In the development of vector optimization, the theory and
the methods of scalarization have always played important
roles [1–5]. The linear scalarization is historically the first
method proposed and the most widely known and used.
Besides this, the nonlinear scalarization is also fully devel-
oped. Several well-known nonlinear scalarization functions
were introduced, such as the Hiriart-Urruty function [6]
and the Gerstewitz (Tammer) function [7, 8]. Among them,
the function 𝜉𝑞 (see Definition 1) commonly known as the
Gerstewitz function in vector optimization [7, 9, 10] is a
powerful tool, which was introduced in [11] and has further
been mentioned in [12, 13]. It has many good properties,
such as continuity, sublinearity, convexity, monotonicity,
and Lipschitz property. These properties have been fully
exploited in the literature [5, 7–10, 14–17] to deal with
various problems with vector objectives, such as existence
and continuity of solutions, optimality conditions, gap func-
tions, duality, vector variational principles, well posedness,
vector minimax inequalities, and vector network equilibrium
problems.

However, as far as we know, the locally and globally
Lipschitz properties of 𝜉𝑞 have not been noticed until recently.

Tammer and Zălinescu [8] studied Lipschitz continuity prop-
erties of such kind of functions and gave some applications
for deriving necessary optimality conditions for vector opti-
mization problems. For other close works about this aspect,
one can refer to Durea and Tammer [14] and Nam and
Zălinescu [18]. Chen and Li [15, 16] deduced the globally
Lipschitz property of 𝜉𝑞 by the dual space approach and
applied it to discussing Hölder continuity of solutions to
parametric vector (quasi)equilibrium problems. Motivated
by the work reported in [8, 15, 16], in this paper we further
discuss the globally Lipschitz property of 𝜉𝑞 in linear normed
spaces via the primal space approach (see Proposition 7).
The equivalence of both expressions for globally Lipschitz
constants 𝐿 and 𝐿 obtained by primal and dual spaces
approaches is established (see Proposition 8).The expressions
for 𝐿 and 𝐿 are related to a minimization problem (𝑃)
and a maximization problem (𝐷), respectively, and hence,
the equivalence that 𝐿 = 𝐿 means that the property of
strong duality (i.e., inf(𝑃) = 𝐿 = 𝐿 = sup(𝐷)) holds
between primal and dual problems. Furthermore, the above
discussions are extended to general Gerstewitz function 𝜑−V,
and exact characterizations to the globally Lipschitz property
for 𝜑−V are discussed, which would further complete the
theory of [8, 18]. In addition, when the ordering cone is
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polyhedral, the expression for calculating Lipschitz constant
is also given.

Vector equilibrium problems (VEPs, for short), also
known as generalized Ky Fan inequalities recently, contain
many important models as special cases, such as vector
variational inequalities, vector complementarity problems,
and vector optimization problems (see, e.g., [9, 19, 20] and the
references therein). As a significant topic of stability analysis,
Hölder or Lipschitz continuity of solutions to parametric
VEPs is of considerable interest. Recently, in this field, Hölder
continuity of both single-valued and set-valued solution
mappings to parametric VEPs have been intensively studied
in [16, 17, 21–32], respectively. In addition, recent and related
papers about stability of multifunctions published in [33, 34]
are worth noticing.

Scalarization approaches have been used as efficient
methods to study semicontinuity and Hölder continuity of
parametric VEPs. Among them, scalarizing approaches were
applied by using linear functionals [27, 35] or nonlinear
scalarization functions [15, 16, 24]. We notice that nonlinear
scalarization methods by virtue of several nonlinear scalar-
ization functions to deal with solution stability have received
some attention; for example, Sach and Tuan [36, 37] have
used Gerstewitz-like scalarization functions to study both
upper and lower semicontinuities of solution mappings for
parametric VEPs. The globally Lipschitz property of the
nonlinear scalarization function 𝜉𝑞 seems to be good at
dealing with stability and sensitivity analysis of VEPs [15–17].
It is necessary to further exploit applications of the globally
Lipschitz property of 𝜉𝑞 together with other useful properties
for studying Hölder continuity of parametric VEPs. Moti-
vated by the work reported in [25, 31, 38], this paper also aims
to give some applications of the properties of 𝜉𝑞 to the Hölder
continuity of solutions for parametric VEPs. To our aim, the
nonlinear scalarization function 𝜉𝑞 as a fundamental tool
will play key roles such that, its globally Lipschitz property,
monotonicity, and sublinearity will be fully exploited. The
results obtained are new and generalizations of known ones
[25, 31] for the corresponding scalar cases, and our approach
is totally based on the techniques of nonlinear scalarization.

The rest of the paper is organized as follows. In Sec-
tion 2, we first summarize basic properties of the nonlinear
scalarization function 𝜉𝑞, then discuss the globally Lipschitz
property of 𝜉𝑞 in linear normed spaces via the primal space
approach, establish the equivalence that 𝐿 = 𝐿, and
finally, extend the discussions to the general case 𝜑−V. In
Section 3, as applications of the Lipschitz property of 𝜉𝑞,
we study Hölder continuity of both single-valued and set-
valued solution mappings to parametric VEPs based on the
nonlinear scalarization approach.The last section gives some
conclusions.

2. Lipschitz Properties of Nonlinear
Scalarization Functions

In this section, we first recall the nonlinear scalarization
function 𝜉𝑞 in vector optimization. Its main properties,
especially, the globally Lipschitz property, are summarized.

Let 𝑋 and 𝑌 be linear normed spaces, and let 𝐾 ⊂ 𝑌 be
a pointed, closed, and convex cone with nonempty interior
int𝐾. Let 𝑌∗ be the topological dual space of 𝑌, ⟨⋅, ⋅⟩ the
natural pairing between 𝑌 and 𝑌∗, and 𝐾∗ the dual cone of
𝐾; that is,𝐾∗ := {𝜆 ∈ 𝑌∗ | ⟨𝜆, 𝑘⟩ ≥ 0, ∀ 𝑘 ∈ 𝐾}.

Definition 1 (see [7, 9, 10]). Given a fixed point 𝑞 ∈ int𝐾, the
nonlinear scalarization function 𝜉𝑞 : 𝑌 → R is defined by

𝜉𝑞 (𝑦) := min {𝑡 ∈ R | 𝑦 ∈ 𝑡𝑞 − 𝐾} . (1)

In the special case of𝑌 = R𝑙,𝐾 = R𝑙

+
, and 𝑞 = (1, . . . , 1) ∈

intR𝑙

+
, the function 𝜉𝑞 can be expressed in the equivalent

form 𝜉𝑞(𝑦) = max1≤𝑖≤𝑙 {𝑦𝑖}, ∀𝑦 = (𝑦1, . . . , 𝑦𝑙) ∈ R𝑙.
It is well known that 𝜉𝑞 is continuous, positively homo-

geneous, subadditive, and convex on 𝑌, and it is monotone
(i.e., 𝑦2 − 𝑦1 ∈ 𝐾 ⇒ 𝜉𝑞(𝑦

1) ≤ 𝜉𝑞(𝑦
2)) and strictly monotone

(i.e., 𝑦2 − 𝑦1 ∈ int𝐾 ⇒ 𝜉𝑞(𝑦
1) < 𝜉𝑞(𝑦

2)) (see [9]). Note,
however, that the function 𝜉𝑞 is not strongly monotone (i.e.,
𝑦2 − 𝑦1 ∈ 𝐾 \ {0𝑌}  𝜉𝑞(𝑦

1) < 𝜉𝑞(𝑦
2)).

Proposition 2 (see [7, 9]). For any fixed 𝑞 ∈ int𝐾, 𝑦 ∈ 𝑌, and
𝑟 ∈ R,

(i) 𝜉𝑞(𝑦) < 𝑟 ⇔ 𝑦 ∈ 𝑟𝑞 − int𝐾 (i.e., 𝜉𝑞(𝑦) ≥ 𝑟 ⇔ 𝑦 ∉
𝑟𝑞 − int𝐾);

(ii) 𝜉𝑞(𝑦) ≤ 𝑟 ⇔ 𝑦 ∈ 𝑟𝑞−𝐾 (i.e., 𝜉𝑞(𝑦) > 𝑟 ⇔ 𝑦 ∉ 𝑟𝑞−𝐾);
(iii) 𝜉𝑞(𝑦) = 𝑟 ⇔ 𝑦 ∈ 𝑟𝑞 − bd𝐾, where bd𝐾 denotes the

topological boundary of 𝐾;
(iv) 𝜉𝑞(𝑟𝑞) = 𝑟, in particular, 𝜉𝑞(0𝑌) = 0;
(v) 𝜉𝑞(𝑦 + 𝑟𝑞) = 𝜉𝑞(𝑦) + 𝑟 (translation property).

Let 𝑞 ∈ int𝐾 be a fixed point. The set

𝐾
𝑞
:= {𝜆 ∈ 𝐾

∗
| ⟨𝜆, 𝑞⟩ = 1} (2)

is a weak∗-compact set of 𝑌∗. Clearly,𝐾𝑞 is a weak∗-compact
base of 𝐾∗; that is, 𝐾𝑞 is convex and weak∗-compact such
that 0𝑌∗ ∉ 𝐾𝑞 and 𝐾∗ = ⋃

𝑡≥0
𝑡𝐾𝑞. Notice that [14, Lemma

2.4] we have𝐾𝑞 = 𝜕𝜉𝑞(0𝑌), where 𝜕𝜉𝑞(𝑦) denotes the classical
(Fenchel) subdifferential of 𝜉𝑞 at 𝑦 ∈ 𝑌. Generally, for every
𝑦 ∈ 𝑌, 𝜕𝜉𝑞(𝑦) = {𝜆 ∈ 𝐾𝑞 | ⟨𝜆, 𝑦⟩ = 𝜉𝑞(𝑦)} ⊂ 𝐾𝑞.

Proposition 3 (see [15, 16]). Let 𝑞 ∈ int𝐾.Then for any𝑦 ∈ 𝑌,
𝜉𝑞(𝑦) = max𝜆∈𝐾𝑞⟨𝜆, 𝑦⟩.

Remark that the form of (𝐾, 𝑞)-max scalarizing function
𝜙(𝑦) := max𝜆∈𝐾𝑞⟨𝜆, 𝑦⟩ is alsowidely developed and hasmany
applications, such as stability analysis of vector equilibrium
problems [24] and optimality conditions for vector optimiza-
tion problems [39].

Another famous scalarizing function is the oriented
distance function Δ(𝑦) := 𝑑−𝐾(𝑦) − 𝑑𝑌\(−𝐾)(𝑦) introduced
in [6], where 𝑑𝐴(𝑦) := inf{‖𝑦 − 𝑎‖ | 𝑎 ∈ 𝐴} denotes the
distance from𝑦 ∈ 𝑌 to the set𝐴 ⊂ 𝑌. It is well known that this
function has very good general properties (see [3, Proposition
3.2]), especially, which is always 1-Lipschitz.
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Remark 4. The oriented distance function Δ is not applicable
for studying Hölder continuity of solution mappings to para-
metric vector equilibrium problems (PVEP) and (PVAEP) in
this paper, unlike the Gerstewitz function 𝜉 done in the next
section. This is because the properties like Proposition 2 (ii)
and (v) with 𝑟 ̸= 0 are not satisfied by the function Δ, while
they play important roles in our study.

Let B(𝑥0, 𝛿) be the closed ball centered at 𝑥0 and radius
𝛿 > 0. It is said that 𝑔 : 𝑋 → 𝑌 is Lipschitz around 𝑥0 ∈ 𝑋
iff there exist 𝐿 > 0 and 𝛿 > 0 such that ‖𝑔(𝑥) − 𝑔(𝑥)‖ ≤
𝐿‖𝑥 − 𝑥‖, ∀𝑥, 𝑥 ∈ B(𝑥0, 𝛿), and 𝑔 is locally Lipschitz on
𝐴 ⊂ 𝑋 if and only if 𝑔 is Lipschitz around each 𝑥0 ∈ 𝐴. 𝑔 is
called (globally) Lipschitz on𝐴 if and only if ‖𝑔(𝑥)−𝑔(𝑥)‖ ≤
𝐿‖𝑥 − 𝑥‖, ∀𝑥, 𝑥 ∈ 𝐴.

Proposition 5 (see [15, 16]). 𝜉𝑞 is globally Lipschitz on 𝑌, and
its Lipschitz constant is 𝐿 := sup

𝜆∈𝐾𝑞
‖𝜆‖ ∈ [1/‖𝑞‖, +∞[. In

particular, under the scalar case of 𝑌 = R and 𝐾 = R+, the
Lipschitz constant of 𝜉𝑞 is 𝐿 = (1/𝑞) (𝑞 > 0).

Remark 6. Let 𝑞 ∈ int𝐾 and 𝑎 ∈ 𝑌. The nonlinear
scalarization function 𝜉𝑞,𝑎 : 𝑌 → R is defined as 𝜉𝑞,𝑎(𝑦) :=

min{𝑡 ∈ R | 𝑦 ∈ 𝑎 + 𝑡𝑞 − 𝐾}. It is easy to see that 𝜉𝑞,𝑎
is still globally Lipschitz on 𝑌 with Lipschitz constant 𝐿 =
sup

𝜆∈𝐾𝑞
‖𝜆‖, because 𝜉𝑞,𝑎(𝑦) = max𝜆∈𝐾𝑞⟨𝜆, 𝑦 − 𝑎⟩.

Assume that 𝑌 is a separated locally convex space, and
𝐾 ⊂ 𝑌 is a proper, closed, and convex cone with int𝐾 ̸= 0.
Let 𝑞 ∈ int𝐾. Then it follows from the proof of [8, Theorem
3.1(ii)] (see inequality (6) therein) that 𝜉𝑞 is Lipschitz on 𝑌;
namely,

𝜉𝑞 (𝑦) − 𝜉𝑞 (𝑦

)
 ≤ 𝑝𝑉 (𝑦 − 𝑦


) , ∀𝑦, 𝑦


∈ 𝑌, (3)

where 𝑝𝑉 : 𝑌 → R is the Minkowski functional associated
with 𝑉 and 𝑉 ⊂ 𝑌 is a symmetric closed and convex
neighborhood of 0𝑌 such that 𝑞 + 𝑉 ⊂ 𝐾.

When𝑌 is a linear normed space and𝑉 := 𝜏𝐾,𝑞B for some
𝜏𝐾,𝑞 > 0 (B denotes the closed unit ball), because

𝑝𝑉 (𝑥) := inf {𝛼 > 0 |
𝑥

𝛼
∈ 𝑉}

= inf {𝛼 > 0 |
𝑥

𝛼
∈ 𝜏𝐾,𝑞B} =

‖𝑥‖

𝜏𝐾,𝑞

,

(4)

we get from (3) that, for all 𝑦, 𝑦 ∈ 𝑌,

𝜉𝑞 (𝑦) − 𝜉𝑞 (𝑦

)
 ≤

𝑦 − 𝑦
𝜏𝐾,𝑞

. (5)

Whence,

𝜉𝑞 (𝑦) − 𝜉𝑞 (𝑦

)
 ≤

𝑦 − 𝑦
𝜏max
𝐾,𝑞

, ∀𝑦, 𝑦

∈ 𝑌, (6)

where 𝜏max
𝐾,𝑞

:= sup{𝜏 > 0 | 𝑞 + 𝜏B ⊂ 𝐾} = sup{𝜏 > 0 |

B(𝑞, 𝜏) ⊂ 𝐾}. Therefore, the following conclusion holds for 𝑌
a linear normed space.

Proposition 7. 𝜉𝑞 is globally Lipschitz on 𝑌 with Lipschitz
constant 𝐿 := 1/𝜏max

𝐾,𝑞
.

Note that 𝐿 = 1/𝜏max
𝐾,𝑞

= inf{1/𝜏 > 0 | 𝑞 + 𝜏B ⊂ 𝐾}.
Tammer and Zălinescu [8] recently have studied the

Lipschitz property of the Gerstewitz function under more
general settings than ours, using the primal space approach,
which is different from the dual space approach adopted by
us [15, 16]. In this paper, we limit our discussions in linear
normed spaces to get more exact characterizations and more
clear geometrical interpretations.

Whether the two Lipschitz constants 𝐿 = 𝐿 hold, we
show it as follows.

Proposition 8. Consider sup
𝜆∈𝐾𝑞

‖𝜆‖ = 1/𝜏max
𝐾,𝑞

(i.e., 𝐿 = 𝐿).

Proof. Let 𝐿 := sup
𝜆∈𝐾𝑞

‖𝜆‖ and 𝐿 := 1/𝜏max
𝐾,𝑞

. Firstly, we prove
that 𝐿 ≥ 𝐿.

By the definition of 𝜏max
𝐾,𝑞

, for any given 𝜖 > 0, we have 𝑞 +

(𝜏max
𝐾,𝑞

+𝜖)B ̸⊂ 𝐾.Thus there exists 𝑏 ∈ B such that 𝑞 + (𝜏max
𝐾,𝑞

+

𝜖)𝑏 ∉ 𝐾. It follows from [2, Lemma 3.21(a)] that 𝐾 = {𝑘 ∈
𝑌 | ⟨𝜆, 𝑘⟩ ≥ 0, ∀𝜆 ∈ 𝐾∗}, as 𝐾 is a closed and convex cone.
Whence, there is an �̃� ∈ 𝐾∗ satisfying ⟨�̃�, 𝑞+(𝜏max

𝐾,𝑞
+𝜖)𝑏⟩ < 0.

Obviously, �̃� ̸= 0𝑌∗ . As 𝑞 ∈ int𝐾, ⟨�̃�, 𝑞⟩ > 0. Without loss of
generality, we may assume that ⟨�̃�, 𝑞⟩ = 1; that is, �̃� ∈ 𝐾𝑞.
Hence, we can deduce that

0 > ⟨�̃�, 𝑞 + (𝜏
max
𝐾,𝑞

+ 𝜖) 𝑏⟩

= ⟨�̃�, 𝑞⟩ + ⟨�̃�, (𝜏
max
𝐾,𝑞

+ 𝜖) 𝑏⟩

= 1 + (𝜏
max
𝐾,𝑞

+ 𝜖) ⟨�̃�, 𝑏⟩

≥ 1 − (𝜏
max
𝐾,𝑞

+ 𝜖)
�̃�

 ⋅
𝑏



≥ 1 − (𝜏
max
𝐾,𝑞

+ 𝜖)
�̃�

 .

(7)

Thus,

1

𝜏max
𝐾,𝑞

+ 𝜖
<

�̃�
 ≤ 𝐿. (8)

By the arbitrariness of 𝜖 > 0, we obtain that 𝐿 ≤ 𝐿.
Secondly, we prove that 𝐿 ≤ 𝐿.
Take any 𝜆 ∈ 𝐾𝑞 and 𝜏 ∈ Γ := {𝑡 > 0 | 𝑞 + 𝑡B ⊂ 𝐾}.

Then, ⟨𝜆, 𝑞 + 𝜏B⟩ ≥ 0; namely, for any 𝑏 ∈ B, ⟨𝜆, 𝑞 + 𝜏𝑏⟩ ≥ 0.
As ⟨𝜆, 𝑞⟩ = 1 and 𝜏 > 0, we deduce that 1/𝜏 + ⟨𝜆, 𝑏⟩ ≥ 0.
Hence, 1/𝜏 ≥ −⟨𝜆, 𝑏⟩ = ⟨𝜆, −𝑏⟩. By the symmetry of B and
the arbitrariness of 𝑏 ∈ B, we have 1/𝜏 ≥ ⟨𝜆, 𝑏⟩, ∀𝑏 ∈ B.
Whence, we get

inf
𝜏∈Γ

1

𝜏
≥ sup

𝜆∈𝐾𝑞 ,𝑏∈B

⟨𝜆, 𝑏⟩ = sup
𝜆∈𝐾𝑞

‖𝜆‖ , (9)

where the last equality holds by the Cauchy-Schwarz inequal-
ity and that 𝑏 ∈ B. Note that 𝐿 = 1/𝜏max

𝐾,𝑞
= inf{1/𝜏 > 0 |

𝑞 + 𝜏B ⊂ 𝐾}. Thus, we obtain that 𝐿 ≥ 𝐿.
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Based on the above analysis, the equivalence that 𝐿 = 𝐿

holds.
It is obvious that 𝜏max

𝐾,𝑞
= dist(𝑞, bd𝐾), where the latter

one denotes the distance from 𝑞 ∈ int𝐾 to the boundary of
𝐾; that is, dist(𝑞, bd𝐾) := inf𝜅∈bd𝐾‖𝑞 − 𝜅‖. Thus, we also have
that 𝐿 = 1/ dist(𝑞, bd𝐾) (see also [14, Lemma 2.4]). However,
the expression of the form 𝐿 = 1/𝜏max

𝐾,𝑞
= inf{1/𝜏 > 0 | 𝑞 +

𝜏B ⊂ 𝐾} has its advantage: it is convenient to describe the
dual characterization concerning 𝐿 = sup

𝜆∈𝐾𝑞
‖𝜆‖ (see also

Remark 13).
Due to the observation above, we could give another

proof of the second part of Proposition 8 (i.e., the weak
duality between the problems (𝑃) and (𝐷): inf(𝑃) = 𝐿 ≥ 𝐿 =
sup(𝐷); see Remark 13 below). As 𝑞 + dist(𝑞, bd𝐾)B ⊂ 𝐾,
then, for any 𝑏 ∈ B, 𝑞 + dist(𝑞, bd𝐾)𝑏 ∈ 𝐾. It follows
from the symmetry of B and the arbitrariness of 𝑏 ∈ B

that 𝑞/ dist(𝑞, bd𝐾) − 𝑏 ∈ 𝐾. Take any 𝜆 ∈ 𝐾𝑞. Then 0 ≤
⟨𝜆, 𝑞/ dist(𝑞, bd𝐾) − 𝑏⟩ = ⟨𝜆, 𝑞⟩/ dist(𝑞, bd𝐾) − ⟨𝜆, 𝑏⟩ =
1/ dist(𝑞, bd𝐾) − ⟨𝜆, 𝑏⟩. Hence 𝐿 = 1/ dist(𝑞, bd𝐾) ≥
sup

𝜆∈𝐾𝑞 ,𝑏∈B⟨𝜆, 𝑏⟩ = sup
𝜆∈𝐾𝑞

‖𝜆‖ = 𝐿.

We give several examples to illustrate Proposition 8.

Example 9 (see [16, Example 2.1]). Let 𝑌 = R2 and 𝐾 =
{(𝑦1, 𝑦2) ∈ R2 | 1/4𝑦1 ≤ 𝑦2 ≤ 2𝑦1}. Obviously, 𝐾

∗ = {𝜆 =

(𝜆1, 𝜆2) ∈ R2 | 𝜆2 ≥ −(1/2)𝜆1, 𝜆2 ≥ −4𝜆1}, and𝐾 ⊂ 𝐾∗.
Take 𝑞 = (2, 3) ∈ int𝐾. Then, 𝐾𝑞 = {𝜆 = (𝜆1, 𝜆2) ∈ R2 |

2𝜆1 + 3𝜆2 = 1, 𝜆1 ∈ [−1/10, 2]}. We have calculated that the
Lipschitz constant 𝐿 = sup

𝜆∈𝐾𝑞
‖𝜆‖ = ‖(2, −1)‖ = √5. Nowwe

calculate another Lipschitz constant 𝐿 = 1/𝜏max
𝐾,𝑞

. Notice that
the distance from a point (𝑥0, 𝑦0) ∈ R2 to the line 𝑦 = 𝑘𝑥 + 𝑏
(resp., 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0) is

𝑑 =

𝑘𝑥0 − 𝑦0 + 𝑏


√𝑘2 + 1
(resp., 𝑑 =

𝐴𝑥0 + 𝐵𝑦0 + 𝐶


√𝐴2 + 𝐵2
) . (10)

It is easy to verify that

𝜏
max
𝐾,𝑞

=

(2, 3) − (

8

5
,
16

5
)

=

|2 × 2 − 3|

√22 + 1
=

√5

5
. (11)

Thus, we also get that the Lipschitz constant 𝐿 = 1/𝜏max
𝐾,𝑞

=

√5.

Example 10. Let 𝑌 = R2 and 𝐾 = {(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥

−𝑦1, 𝑦2 ≥ 0}. It is clear that 𝐾∗ = {𝜆 = (𝜆1, 𝜆2) ∈ R2 | 𝜆1 ≥
0, 𝜆2 ≥ 𝜆1} and𝐾∗ ⊂ 𝐾.

Case i. Take 𝑞 = (−1, 2) ∈ int𝐾 \ 𝐾∗. Then, 𝐾𝑞 = {𝜆 =

(𝜆1, 𝜆2) ∈ R2 | −𝜆1 + 2𝜆2 = 1, 𝜆1 ∈ [0, 1]}. Thus, 𝐿 =
sup

𝜆∈𝐾𝑞
‖𝜆‖ = ‖(1, 1)‖ = √2. Moreover, 𝜏max

𝐾,𝑞
= ‖(−1, 2) −

(−3/2, 3/2)‖ = |(−1) × (−1) − 2|/√(−1)2 + 1 = √2/2, and
hence 𝐿 = 1/𝜏max

𝐾,𝑞
= √2.

Case ii. Take 𝑞 = (1, 1/2) ∈ int𝐾 \ 𝐾∗. Then, 𝐾𝑞 = {𝜆 =

(𝜆1, 𝜆2) ∈ R2 | 2𝜆1 + 𝜆2 = 2, 𝜆1 ∈ [0, 2/3]}. Thus, 𝐿 =
sup

𝜆∈𝐾𝑞
‖𝜆‖ = ‖(0, 2)‖ = 2. Moreover, 𝜏max

𝐾,𝑞
= ‖(1, 1/2) −

(1, 0)‖ = 1/2, and hence 𝐿 = 1/𝜏max
𝐾,𝑞

= 2.

Case iii. Take 𝑞 = (1/2, 3/2) ∈ int𝐾 ∩ 𝐾∗. Then, 𝐾𝑞 =

{𝜆 = (𝜆1, 𝜆2) ∈ R2 | 𝜆1 + 3𝜆2 = 2, 𝜆1 ∈ [0, 1/2]}. Thus,
𝐿 = sup

𝜆∈𝐾𝑞
‖𝜆‖ = ‖(1/2, 1/2)‖ = √2/2. Moreover, 𝜏max

𝐾,𝑞
=

‖(1/2, 3/2)−(−1/2, 1/2)‖ = |(−1)×(1/2)−3/2|/√(−1)2 + 1 =

√2, and hence 𝐿 = 1/𝜏max
𝐾,𝑞

= √2/2.

Example 11. Let 𝑌 = R2 and 𝐾 = R2

+
. Then 𝐾∗ = 𝐾. Take

𝑞 = (𝑞1, 𝑞2) ∈ int𝐾. We have 𝐾𝑞 = {𝜆 = (𝜆1, 𝜆2) ∈ R2 |
𝜆1𝑞1 + 𝜆2𝑞2 = 1, 𝜆1 ∈ [0, 1/𝑞1]}. Thus, 𝐿 = sup

𝜆∈𝐾𝑞
‖𝜆‖ =

max{1/𝑞1, 1/𝑞2}. Meanwhile, 𝜏max
𝐾,𝑞

= min{𝑞1, 𝑞2}, so 𝐿 =

1/𝜏max
𝐾,𝑞

= 1/min{𝑞1, 𝑞2} = max{1/𝑞1, 1/𝑞2}.

Now we calculate 𝜏max
𝐾,𝑞

when 𝐾 has the following explicit
structure (it is said to be a polyhedral convex cone in [40,
Definition 2.1.7]), which contains the above examples as
special cases. Herein we use the notation 𝑥𝑇𝑦, instead of
⟨𝑥, 𝑦⟩, to denote the standard inner product on R𝑛.

Proposition 12. If the polyhedral ordering cone 𝐾 ⊂ R𝑛 with
nonempty interior is described by linear inequalities,𝐾 := {𝑥 ∈

R𝑛 | 𝑎𝑇
𝑖
𝑥 ≤ 0, 𝑖 = 1, . . . , 𝑚}, where 𝑎𝑖 ∈ R𝑛 and 𝑎𝑖 ̸= 0R𝑛 ,

then for given 𝑞 ∈ int𝐾, 𝜏max
𝐾,𝑞

= min1≤𝑖≤𝑚{−𝑎
𝑇

𝑖
𝑞/‖𝑎𝑖‖}. Thus,

𝐿 = 𝐿 = max1≤𝑖≤𝑚{−‖𝑎𝑖‖/𝑎
𝑇

𝑖
𝑞}.

Proof. Obviously,𝐾 is a closed convex cone. By the definition
of 𝜏max

𝐾,𝑞
, we wish to maximize 𝜏 > 0 subject to the constraint

B(𝑞, 𝜏) = {𝑞 + 𝑟 | ‖𝑟‖ ≤ 𝜏} ⊂ 𝐾; that is, 𝑎𝑇
𝑖
𝑥 ≤ 0, 𝑖 = 1, . . . , 𝑚

for all 𝑥 ∈ B(𝑞, 𝜏). Therefore, B(𝑞, 𝜏) ⊂ 𝐾 if and only if

sup {𝑎
𝑇

𝑖
(𝑞 + 𝑟) | ‖𝑟‖ ≤ 𝜏} ≤ 0. (12)

Since sup{𝑎𝑇
𝑖
𝑟 | ‖𝑟‖ ≤ 𝜏} = 𝜏‖𝑎𝑖‖, we can rewrite (12) as

𝑎
𝑇

𝑖
𝑞 + 𝜏

𝑎𝑖
 ≤ 0, 𝑖 = 1, . . . , 𝑚. (13)

Thus, we have

𝜏 ≤ −
𝑎𝑇
𝑖
𝑞

𝑎𝑖

, 𝑖 = 1, . . . , 𝑚. (14)

Because 𝑞 ∈ int𝐾, 𝑎𝑇
𝑖
𝑞 < 0, 𝑖 = 1, . . . , 𝑚. Whence, we obtain

that

𝜏
max
𝐾,𝑞

= max{𝜏 > 0 | 𝜏 ≤ −
𝑎𝑇
𝑖
𝑞

𝑎𝑖

, 𝑖 = 1, . . . , 𝑚}

= min
1≤𝑖≤𝑚

{−
𝑎𝑇
𝑖
𝑞

𝑎𝑖

} > 0.

(15)

This completes the proof.

Remark 13. Proposition 8 implies that Propositions 5 and 7
(or see [14, Lemma 2.4]) are equivalent. Proposition 8 also
shows that the property of strong duality (i.e., inf(𝑃) = 𝐿 =
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𝐿 = sup(𝐷)) holds between the following primal problem (𝑃)
and dual problem (𝐷) for fixed 𝑞 ∈ int𝐾:

(𝑃)

{{{
{{{
{

inf 1

𝜏
s.t. 𝜏 > 0,

𝑞 + 𝜏B ⊂ 𝐾,

(𝐷)
{{
{{
{

sup ‖𝜆‖

s.t. 𝜆 ∈ 𝐾∗,

⟨𝜆, 𝑞⟩ = 1.

(16)

Clearly, the Lipschitz constants 𝐿 and 𝐿 are deduced via two
approaches: the primal space and the dual space approaches,
respectively.

Remark 14. Relative to 𝐿, the expression for Lipschitz con-
stant 𝐿 is natural and exhibits a clear geometrical interpre-
tation. In the setting of linear normed space 𝑌, if 𝑟 > 0 is
the largest radius such that the closed ball B(𝑞, 𝑟) centered at
given 𝑞 ∈ int𝐾 with radius 𝑟 lies in the ordering cone 𝐾 of
𝑌, that is, B(𝑞, 𝑟) ⊂ 𝐾, then 1/𝑟 is the Lipschitz constant 𝐿.
Clearly, the value of 𝑟 coincideswith the distance from 𝑞 to the
boundary of𝐾. Based on the geometrical interpretation of 𝐿,
we know that the choice of 𝑞 ∈ int𝐾, namely, the location of
𝑞, will directly confirm themodulus of Lipschitz continuity of
𝜉𝑞. It is obvious that the Lipschitz constant 𝐿

 becomes larger
whenever 𝑞 is closer to the boundary of𝐾.

As a direct application to the proof of Proposition 8, we
give a note on Lipschitz properties of the directional minimal
time function [18].

Given a vector V ∈ 𝑌, V ̸= 0𝑌, and a nonempty closed set
Ω ⊂ 𝑌 andΩ ̸=𝑌, the directionalminimal time function with
direction V and target set Ω is defined by

𝑇V (𝑦;Ω) := inf {𝑡 ≥ 0 | 𝑦 + 𝑡V ∈ Ω} . (17)

This class of functions is similar to the class of nonlinear
scalarization functions that has been extensively used to study
vector optimization problems (see [7, 8]):

𝜑V (𝑦; Ω) := inf {𝑡 ∈ R | 𝑦 + 𝑡V ∈ Ω} . (18)

Obviously, 𝜉𝑞 is a special but popular case of 𝜑V, by taking
Ω := −𝐾 and V := −𝑞 ∈ − int𝐾.

Recall that the recession cone ofΩ is given by

Ω∞ := {𝑢 ∈ 𝑌 | 𝜔 + 𝑡𝑢 ∈ Ω, ∀𝜔 ∈ Ω, ∀𝑡 ∈ R+} . (19)

It is known that Ω∞ is a convex cone, and Ω∞ is also closed
asΩ is closed (see [8]). From [18, Proposition 2.1] we see that
if V ∈ Ω∞, then 𝑇V(𝑦; Ω) = max{𝜑V(𝑦; Ω), 0}, ∀𝑦 ∈ 𝑌.

We recall a result of the globally Lipschitz property for 𝑇V
[18, Proposition 4.1].

Proposition 15 (see [18]). Suppose that V ∈ intΩ∞.Then𝑇V is
globally Lipschitz on 𝑌 with Lipschitz constant ℓ := inf{1/𝑟 >
0 | B(V, 𝑟) ⊂ Ω∞} = 1/ dist(V, bdΩ∞).

Notice that ℓ = 1/𝜏max
Ω
∞
,V, where 𝜏max

Ω
∞
,V := sup{𝜏 > 0 |

V + 𝜏B ⊂ Ω∞} = sup{𝜏 > 0 | B(V, 𝜏) ⊂ Ω∞}. Based on a
similar proof to that of 𝐿 = 𝐿, letting 𝐾 := Ω∞, which is a
closed and convex cone, and 𝑞 := V, we can get

ℓ

= ℓ := sup {‖𝜆‖ | 𝜆 ∈ Ω

∗

∞
, ⟨𝜆, V⟩ = 1} , (20)

whereΩ∗

∞
is the dual cone ofΩ∞.Thus, we have the following

equivalent proposition.

Proposition 16. If V ∈ intΩ∞, then 𝑇V is globally Lipschitz on
𝑌 with Lipschitz constant ℓ.

Remark 17. The relation (20) implies that the strong duality
(i.e., inf(𝑃) = ℓ = ℓ = sup(𝐷)) holds between the following
primal problem (𝑃) and dual problem (𝐷) for fixed V ∈
intΩ∞:

(𝑃)

{{{
{{{
{

inf 1

𝑟
s.t. 𝑟 > 0,

B (V, 𝑟) ⊂ Ω∞,

(𝐷)
{{
{{
{

sup ‖𝜆‖

s.t. 𝜆 ∈ Ω∗

∞
,

⟨𝜆, V⟩ = 1.

(21)

In what follows, we deduce more exact characterizations
to the globally Lipschitz property for 𝜑−V(𝑦; Ω) := inf{𝑡 ∈ R |
𝑦 ∈ 𝑡V+Ω}, which has been studied in [8,Theorem 3.1].These
results would further complete the theory of [8, 18] and could
be applied in many aspects of vector optimization.

Proposition 18. If V ∈ int𝐾 and Ω satisfies the free-disposal
assumptionΩ−𝐾 = Ω, then 𝜑−V is globally Lipschitz on𝑌with
Lipschitz constant 𝐿𝜑 := sup

𝜆∈𝐾V‖𝜆‖ (or equivalently, 𝐿

𝜑
:=

1/𝜏max
K,V = inf{1/𝜏 > 0 | B(V, 𝜏) ⊂ 𝐾} = 1/ dist(V, bd𝐾)).

Proof. According to [8, Theorem 3.1(ii)], 𝜑−V is finite on 𝑌.
Moreover, by [8, Theorem 3.1(i)], we get, for any 𝑦, 𝑦 ∈ 𝑌,
𝜑−V(𝑦; Ω) ≤ 𝜑−V(𝑦

; Ω) + 𝜑−V(𝑦 − 𝑦; −𝐾). Thus, it follows
from Proposition 3 that

𝜑−V (𝑦;Ω) − 𝜑−V (𝑦

; Ω) ≤ 𝜑−V (𝑦 − 𝑦


; −𝐾)

= 𝜉V (𝑦 − 𝑦

)

= max
𝜆∈𝐾V

⟨𝜆, 𝑦 − 𝑦

⟩

≤ sup
𝜆∈𝐾V

‖𝜆‖ ⋅
𝑦 − 𝑦



= 𝐿𝜑

𝑦 − 𝑦
 .

(22)

This implies |𝜑−V(𝑦; Ω)−𝜑−V(𝑦
; Ω)| ≤ 𝐿𝜑‖𝑦−𝑦

‖ = 𝐿

𝜑
‖𝑦−𝑦‖

(see Proposition 8), because of the symmetry between 𝑦 and
𝑦.

Remark 19. Compared to [8, Theorem 3.1(ii)], the exact
expressions for globally Lipschitz constants 𝐿𝜑 and 𝐿

𝜑
(𝐿𝜑 =
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𝐿

𝜑
) are given in Proposition 18. In addition, they are proved

based on different ideas, respectively. Our simplified proof
mainly relies on known results of [8, Theorem 3.1(i)] and
Proposition 3.

Corollary 20. If V ∈ int𝐾 and Ω satisfies the free-disposal
assumptionΩ+𝐾 = Ω, then 𝜑V is globally Lipschitz on 𝑌 with
Lipschitz constant 𝐿𝜑 (or equivalently, 𝐿

𝜑
).

Note that 𝑇V also holds in Corollary 20, which is new to
[18]. This is because the free-disposal condition Ω = Ω + 𝐾
yields that𝐾 ⊂ Ω∞, so V ∈ Ω∞; then 𝑇V = max{𝜑V, 0}.

Corollary 21. If V ∈ intΩ∞, then 𝜑V is globally Lipschitz on 𝑌
with Lipschitz constant ℓ (or equivalently, ℓ).

Proof. The free-disposal conditionΩ = Ω−𝐾 shows that𝐾 ⊂
−Ω∞. AsΩ∞ is a closed and convex cone becauseΩ is closed,
hence −Ω∞ is the largest closed convex cone 𝐾 verifying the
free-disposal assumption Ω = Ω − 𝐾. So, the conclusion
follows by applying Proposition 18 with 𝐾 := −Ω∞.

Similarly, the conclusion also follows by applying Corol-
lary 20 with𝐾 := Ω∞.

Corollary 22. If −V ∈ intΩ∞, then 𝜑−V is globally Lipschitz
on 𝑌 with Lipschitz constant ℓ𝜑 := sup{‖𝜆‖ | 𝜆 ∈ Ω∗

∞
, ⟨𝜆, V⟩ =

−1} (or equivalently, ℓ
𝜑

:= inf{1/𝑟 > 0 | B(V, 𝑟) ⊂ −Ω∞} =

1/ dist(V, bd(−Ω∞)) = 1/𝜏max
−Ω
∞
,V).

Remark that from [8, Corollary 3.4] and [18, Proposition
4.2] we see that the function 𝜑−V (resp.,𝑇V, 𝜑V) is finite-valued
and Lipschitz if and only if −V ∈ intΩ∞ (resp., V ∈ intΩ∞,
V ∈ intΩ∞).

When Ω = −𝐾 and V ∈ int𝐾, 𝜑−V(𝑦; Ω) = 𝜉V(𝑦),
Proposition 18 and Corollary 22 reduce to Proposition 5 or
Proposition 7. When Ω = 𝐾 and V ∈ int𝐾, Corollaries 20
and 21 reduce to the case that 𝜉V(𝑦) := 𝜑V(𝑦; 𝐾) = inf{𝑡 ∈ R |
𝑦 ∈ −𝑡V + 𝐾}.

3. Applications to the Hölder Continuity

The globally Lipschitz property of the nonlinear scalarization
function 𝜉𝑞 seems to be good at dealing with stability and
sensitivity analysis of vector optimization problems, such as
[15–17]. In this section, we will give some direct applications
of this property to theHölder continuity of solutions for para-
metric vector equilibrium problems.The proofs of the results
obtained are applications of the corresponding ones in [25, 31]
for the scalar problems, by using the mentioned scalarization
function 𝜉𝑞.The results are new and generalizations of known
ones for the corresponding scalar cases.

3.1. A Single-Valued Case. In this subsection, let (𝑋, 𝑑𝑋) be
a linear metric space, let 𝑌 be a linear normed space, let Λ
and Ω be nonempty subsets of metric spaces, and let 𝐶 ⊂ 𝑌
be a pointed, closed, and convex cone with int𝐶 ̸= 0. Let 𝐾 :
Λ  𝑋 be a set-valued mapping with nonempty, closed, and

convex values and let 𝐹 : 𝑋 ×𝑋×Ω → 𝑌 be a vector-valued
mapping.

For the parameters 𝜆 ∈ Λ and 𝜇 ∈ Ω, we consider the
following parametric vector equilibrium problem (PVEP) of
finding 𝑥 ∈ 𝐾(𝜆) such that

𝐹 (𝑥, 𝑦, 𝜇) ∉ − int𝐶, ∀𝑦 ∈ 𝐾 (𝜆) . (23)

Remark that when𝑌 = R and𝐶 = R+, themodel (PVEP)
reduces to the scalar one (PKFI) studied in [25].

Let 𝑆(𝜆, 𝜇) be the subset of 𝐾(𝜆) of the solutions of
(PVEP). For the reference point (𝜆, 𝜇) ∈ Λ × Ω, we always
assume that 𝑆(𝜆, 𝜇) ̸= 0 for every 𝜆 ∈ 𝑈(𝜆) and 𝜇 ∈ 𝑈(𝜇),
where 𝑈(]) denotes some neighborhood of the reference
point ].

Definition 23 (classical notion). A set-valued mapping 𝐺 :
Ω  𝑋 is said to be ℓ ⋅𝛼-Hölder continuous at 𝜇0, if and only
if there is a neighborhood 𝑈(𝜇0) of 𝜇0 such that, ∀𝜇1, 𝜇2 ∈
𝑈(𝜇0),

𝐺 (𝜇1) ⊆ 𝐺 (𝜇2) + ℓ𝑑
𝛼
(𝜇1, 𝜇2)B𝑋, (24)

where ℓ ≥ 0 and 𝛼 > 0, and B𝑋 denotes the unit ball of𝑋.
In particular, when𝑋 is a linear normed space, the vector-

valued mapping 𝑔 : Ω → 𝑋 is said to be ℓ ⋅ 𝛼-Hölder
continuous at 𝜇0, if and only if ‖𝑔(𝜇1) − 𝑔(𝜇2)‖ ≤ ℓ𝑑𝛼(𝜇1, 𝜇2).

We say that 𝑔 (or 𝐺) is ℓ-Lipschitz continuous at 𝜇0 if anf
only if 𝑔 (or 𝐺) is ℓ ⋅ 1-Hölder continuous at 𝜇0.

Next, we introduce the concept of strong 𝐶-convexity for
a vector-valued mapping, which extends [25, Definition 2.1]
from real-valued to vector-valued case.

Definition 24. Let (𝑋, 𝑑) be a linear metric space. A vector-
valued mapping 𝑔 : 𝑋 → 𝑌 is said to be ℎ ⋅ 𝛼-strongly 𝐶-
convex with respect to 𝑒 ∈ int𝐶 on 𝑋, if and only if there
exists 𝑒 ∈ int𝐶 such that

𝑡𝑔 (𝑥) + (1 − 𝑡) 𝑔 (𝑦)

− 𝑔 (𝑡𝑥 + (1 − 𝑡) 𝑦) − ℎ𝑡 (1 − 𝑡) 𝑑
𝛼
(𝑥, 𝑦) 𝑒 ∈ 𝐶,

(25)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 ∈]0, 1[, where ℎ, 𝛼 > 0.

Note that 𝑒 ∈ int𝐶plays the role of the “modulus of strong
𝐶-convexity” of the mapping 𝑔. Clearly, as in the scalar case,
strong 𝐶-convexity implies (strict) 𝐶-convexity. As shown in
[25], the strong 𝐶-convexity of 𝑔 plays important roles.

Lemma 25. If 𝑔 : 𝑋 → 𝑌 is ℎ ⋅ 𝛼-strongly 𝐶-convex with
respect to 𝑒 ∈ int𝐶 on 𝑋, then the real-valued function 𝑥 →
𝜉𝑒(𝑔(𝑥)) is ℎ ⋅ 𝛼-strongly convex on𝑋.

Proof. For any 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 ∈]0, 1[, we have

𝜉𝑒 (𝑔 (𝑡𝑥 + (1 − 𝑡) 𝑦))

≤ 𝜉𝑒 (𝑡𝑔 (𝑥) + (1 − 𝑡) 𝑔 (𝑦) − ℎ𝑡 (1 − 𝑡) 𝑑
𝛼
(𝑥, 𝑦) 𝑒)

= 𝜉𝑒 (𝑡𝑔 (𝑥) + (1 − 𝑡) 𝑔 (𝑦)) − ℎ𝑡 (1 − 𝑡) 𝑑
𝛼
(𝑥, 𝑦)

≤ 𝑡𝜉𝑒 (𝑔 (𝑥)) + (1 − 𝑡) 𝜉𝑒 (𝑔 (𝑦)) − ℎ𝑡 (1 − 𝑡) 𝑑
𝛼
(𝑥, 𝑦) ,

(26)
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where the first and the third inequalities follow from the
monotonicity and sublinearity of 𝜉𝑒, respectively, and the
second equality follows from Proposition 2(v). Whence, the
composite function 𝜉𝑒 ∘ 𝑔 is ℎ ⋅ 𝛼-strongly convex on𝑋.

Now we state and prove the following results.

Theorem 26. For problem (PVEP), assume that the solutions
exist in a neighborhood of considered point (𝜆, 𝜇) ∈ Λ × Ω.
Suppose that the following conditions hold.

(i) 𝐾(⋅) is ℎ ⋅ 𝛼-Hölder continuous at 𝜆.

(ii) There exist neighborhoods𝑈(𝜆) of 𝜆 and𝑈(𝜇) of 𝜇 such
that, for each 𝜇 ∈ 𝑈(𝜇), 𝐹(⋅, ⋅, 𝜇) is pseudomonotone
on 𝐾(𝑈(𝜆)), where 𝐾(𝑈(𝜆)) := ⋃

𝑢∈𝑈(𝜆)
𝐾(𝑢); that

is, ∀𝑥, 𝑦 ∈ 𝐾(𝑈(𝜆)): 𝑥 ̸= 𝑦, 𝐹(𝑥, 𝑦, 𝜇) ∉ − int𝐶 ⇒
𝐹(𝑦, 𝑥, 𝜇) ∈ −𝐶.

(iii) For any 𝑥 ∈ 𝐾(𝑈(𝜆)), 𝜇 ∈ 𝑈(𝜇), 𝐹(𝑥, 𝑥, 𝜇) ∈ −bd𝐶.

(iv) For any 𝑦 ∈ 𝐾(𝑈(𝜆)), 𝜇 ∈ 𝑈(𝜇), 𝐹(⋅, 𝑦, 𝜇) is ℓ-
Lipschitz continuous on 𝐾(𝑈(𝜆)), and for any 𝑥 ∈

𝐾(𝑈(𝜆)), 𝜇 ∈ 𝑈(𝜇), 𝐹(𝑥, ⋅, 𝜇) is 𝑘 ⋅𝛽-strongly𝐶-convex
with respect to 𝑒 ∈ int𝐶 on 𝑋 as well as ℓ-Lipschitz
continuous on 𝐾(𝑈(𝜆)).

(v) 𝐹(𝑥, 𝑦, ⋅) is �̃� ⋅ 𝛾-Hölder continuous at 𝜇 with 𝜃-
relative to 𝐾(𝑈(𝜆)); that is, ∀𝜇1, 𝜇2 ∈ 𝑈(𝜇),
∀𝑥, 𝑦 ∈ 𝐾(𝑈(𝜆)): 𝑥 ̸= 𝑦, ‖𝐹(𝑥, 𝑦, 𝜇1) − 𝐹(𝑥, 𝑦, 𝜇2)‖ ≤

�̃�𝑑𝜃

𝑋
(𝑥, 𝑦)𝑑𝛾(𝜇1, 𝜇2).

(vi) 𝛽 > 𝜃 > 0.

Then for every (𝜆, 𝜇) ∈ 𝑈(𝜆) × 𝑈(𝜇), the solution of (PVEP) is
unique, 𝑥(𝜆, 𝜇), and this function satisfies the Hölder condition

𝑑𝑋 (𝑥 (𝜆1, 𝜇1) , 𝑥 (𝜆2, 𝜇2))

≤ (
2𝛾𝑒 (ℓ + ℓ) ℎ

𝑘
)

1/𝛽

𝑑
𝛼/𝛽

(𝜆1, 𝜆2)

+ (
2𝛾𝑒�̃�

𝑘
)
1/(𝛽−𝜃)

𝑑
𝛾/(𝛽−𝜃)

(𝜇1, 𝜇2) ,

(27)

where 𝛾𝑒 := sup
𝑠∈𝐶𝑒

‖𝑠‖ ∈ [1/‖𝑒‖, +∞[ (or 𝛾𝑒 = 1/𝜏max
𝐶,𝑒

) is the
Lipschitz constant of 𝜉𝑒 on 𝑌.

Proof. It follows from Proposition 2(i) that, for given 𝑒 ∈
int𝐶,

𝑆 (𝜆, 𝜇) = {𝑥 ∈ 𝐾 (𝜆) | 𝜉𝑒 (𝐹 (𝑥, 𝑦, 𝜇)) ≥ 0, ∀𝑦 ∈ 𝐾 (𝜆)} .

(28)

Thus, we could apply Theorem 3.1 of [25] by replacing 𝑓
therein with 𝜉𝑒 ∘ 𝐹. Now we need to check all conditions of
𝜉𝑒 ∘ 𝐹.

First, by virtue of the globally Lipschitz property of 𝜉𝑒
(see Proposition 5 or 7), on one hand, for 𝜇 ∈ 𝑈(𝜇) and
𝑦 ∈ 𝐾(𝑈(𝜆)), ∀𝑥1, 𝑥2 ∈ 𝐾(𝑈(𝜆)),

𝜉𝑒 (𝐹 (𝑥1, 𝑦, 𝜇)) − 𝜉𝑒 (𝐹 (𝑥2, 𝑦, 𝜇))


≤ 𝛾𝑒
𝐹 (𝑥1, 𝑦, 𝜇) − 𝐹 (𝑥2, 𝑦, 𝜇)

 ≤ 𝛾𝑒ℓ𝑑𝑋 (𝑥1, 𝑥2) ,

(29)

and for 𝜇 ∈ 𝑈(𝜇) and 𝑥 ∈ 𝐾(𝑈(𝜆)), ∀𝑦1, 𝑦2 ∈ 𝐾(𝑈(𝜆)),

𝜉𝑒 (𝐹 (𝑥, 𝑦1, 𝜇)) − 𝜉𝑒 (𝐹 (𝑥, 𝑦2, 𝜇))


≤ 𝛾𝑒
𝐹 (𝑥, 𝑦1, 𝜇) − 𝐹 (𝑥, 𝑦2, 𝜇)

 ≤ 𝛾𝑒ℓ

𝑑𝑋 (𝑦1, 𝑦2) .

(30)

On the other hand, ∀𝜇1, 𝜇2 ∈ 𝑈(𝜇), ∀𝑥, 𝑦 ∈ 𝐾(𝑈(𝜆)): 𝑥 ̸= 𝑦,

𝜉𝑒 (𝐹 (𝑥, 𝑦, 𝜇1)) − 𝜉𝑒 (𝐹 (𝑥, 𝑦, 𝜇2))


≤ 𝛾𝑒
𝐹 (𝑥, 𝑦, 𝜇1) − 𝐹 (𝑥, 𝑦, 𝜇2)



≤ 𝛾𝑒�̃�𝑑
𝜃

𝑋
(𝑥, 𝑦) 𝑑

𝛾
(𝜇1, 𝜇2) .

(31)

Letting 𝑓 := 𝜉𝑒 ∘ 𝐹, whence the Lipschitz or Hölder constants
of [25, Theorem 3.1] are fulfilled with 𝑙 := 𝛾𝑒ℓ, 𝑙

 := 𝛾𝑒ℓ
 and

𝑚 := 𝛾𝑒�̃�.
Second, using Proposition 2(i)-(ii), condition (ii) implies

that

𝜉𝑒 (𝐹 (𝑥, 𝑦, 𝜇)) ≥ 0 ⇒ 𝜉𝑒 (𝐹 (𝑦, 𝑥, 𝜇)) ≤ 0, (32)

which shows that 𝜉𝑒∘𝐹(⋅, ⋅, 𝜇) is pseudomonotone on𝐾(𝑈(𝜆)).
In addition, it follows from Proposition 2(iii) and condition
(iii) that, for any 𝑥 ∈ 𝐾(𝑈(𝜆)), 𝜇 ∈ 𝑈(𝜇), 𝜉𝑒(𝐹(𝑥, 𝑥, 𝜇)) = 0.

Third, by virtue of Lemma 25, it is clear that 𝜉𝑒 ∘
𝐹(𝑥, ⋅, 𝜇) is 𝑘 ⋅ 𝛽-strongly convex on 𝑋. Thus, all conditions
of [25, Theorem 3.1] are satisfied, and hence the conclusion
follows.

Apply Theorem 3.2 of [25] by replacing 𝑓 therein with
𝜉𝑒 ∘ 𝐹, and combining with similar analysis of Theorem 26,
we obtain the following result readily.

Theorem 27. Suppose that the conditions of Theorem 26 are
satisfied except (ii) and (iv), which are replaced by the following
ones, respectively.

(ii) There exist neighborhoods𝑈(𝜆) of 𝜆 and𝑈(𝜇) of 𝜇 such
that, for each 𝜇 ∈ 𝑈(𝜇), 𝐹(⋅, ⋅, 𝜇) is monotone with
respect to 𝜉𝑒 on 𝐾(𝑈(𝜆)); that is, ∀𝑥, 𝑦 ∈ 𝐾(𝑈(𝜆)):
𝑥 ̸= 𝑦, 𝜉𝑒(𝐹(𝑥, 𝑦, 𝜇)) + 𝜉𝑒(𝐹(𝑦, 𝑥, 𝜇)) ≤ 0.

(iv) For any 𝑥 ∈ 𝐾(𝑈(𝜆)), 𝜇 ∈ 𝑈(𝜇), 𝐹(𝑥, ⋅, 𝜇) is 𝑘 ⋅ 𝛽-
strongly 𝐶-convex with respect to 𝑒 ∈ int𝐶 on 𝑋 as
well as ℓ-Lipschitz continuous on 𝐾(𝑈(𝜆)).
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Then for every (𝜆, 𝜇) ∈ 𝑈(𝜆) × 𝑈(𝜇), the solution of (PVEP) is
unique, 𝑥(𝜆, 𝜇), and this function satisfies the Hölder condition

𝑑𝑋 (𝑥 (𝜆1, 𝜇1) , 𝑥 (𝜆2, 𝜇2))

≤ (
4𝛾𝑒ℓ

ℎ

𝑘
)

1/𝛽

𝑑
𝛼/𝛽

(𝜆1, 𝜆2)

+ (
𝛾𝑒�̃�

𝑘
)
1/(𝛽−𝜃)

𝑑
𝛾/(𝛽−𝜃)

(𝜇1, 𝜇2) .

(33)

Remark 28. When 𝑌 = R, 𝐶 = R+, and 𝑒 = 1, 𝛾𝑒 =
1, Theorem 26 (Theorem 27, resp.) reduces to Theorem 3.1
(Theorem 3.2, resp.) of [25]. So we have generalized [25,
Theorems 3.1 and 3.2] to vector-valued setting. These results
are new in the literature, and the proof is totally based on the
technique of nonlinear scalarization.

Remark 29. (a) The monotonicity of 𝐹(⋅, ⋅, 𝜇) (condition (ii)
of Theorem 27) is stronger than the pseudomonotonicity
(condition (ii) of Theorem 26). Under this case, we see that
the assumption on the Lipschitz property of 𝐹(⋅, 𝑦, 𝜇) in
(PVEP) is superfluous. (b) If 𝐾(𝑈(𝜆)) in condition (v) of
Theorem 26 (Theorem 27, resp.) is bounded, then without
loss of generality we can take 𝜃 = 0 in assumption (v), since
𝑑𝑋(𝑥, 𝑦) ≤ 𝑤 for some 𝑤 > 0, ∀𝑥, 𝑦 ∈ 𝐾(𝑈(𝜆)). Thus, the
condition “𝛽 > 𝜃” in Theorem 26 (Theorem 27, resp.) can be
omitted.

3.2. A Set-Valued Case. In this subsection, let 𝑋, 𝑊, 𝑍 be
linear normed spaces, 𝐴 ⊂ 𝑋 nonempty, and Λ ⊂ 𝑊,
Ω ⊂ 𝑍 nonempty and convex subsets. Let 𝐾 : Λ  𝐴 have
nonempty bounded convex values. Let 𝑌 be a linear normed
space, and let 𝐶 ⊂ 𝑌 be a pointed, closed, and convex cone
with int𝐶 ̸= 0. Let 𝐹 : 𝑋 × 𝑋 × Ω → 𝑌 be a vector-valued
mapping.

For (𝜆, 𝜇) ∈ Λ × Ω, 𝜀 ≥ 0 and fixed 𝑒 ∈ int𝐶, in
this subsection we mainly consider the following parametric
vector approximate equilibrium problem (PVAEP) of finding
𝑥 ∈ 𝐾(𝜆) such that

𝐹 (𝑦, 𝑥, 𝜇) ∈ 𝜀𝑒 − 𝐶, ∀𝑦 ∈ 𝐾 (𝜆) . (34)

Obviously, it is a special case of themodel of finding 𝑥 ∈ 𝐾(𝜆)
such that

𝐹 (𝑦, 𝑥, 𝜇) ∉ 𝜀𝑒 + int𝐶, ∀𝑦 ∈ 𝐾 (𝜆) , (35)

which is the Minty-type dual problem to the Stampacchia-
type primal problem (e.g., [41, Section 4]) of finding 𝑥 ∈ 𝐾(𝜆)
such that

𝐹 (𝑥, 𝑦, 𝜇) ∉ −𝜀𝑒 − int𝐶, ∀𝑦 ∈ 𝐾 (𝜆) . (36)

Stability for parametric variational problems of theMinty
type has not received much attention so far. Very recently,
Lalitha and Bhatia [38] have studied upper and lower
semicontinuity of the solutions as well as the approximate
solutions to a parametric quasivariational inequality of the
Minty type. Chen and Li [30] have established upper Hölder

continuity of the solutions to Minty-type parametric vector
quasiequilibrium problems. In this subsection, by using non-
linear scalarization technique, we will study a special Minty-
type parametric vector approximate equilibrium problem
(PVAEP).

To (PVAEP) combining with Proposition 2(ii), we could
introduce the following equivalent scalarization equilibrium
problem (SEP) of finding 𝑥 ∈ 𝐾(𝜆) such that

𝜉𝑒 (𝐹 (𝑦, 𝑥, 𝜇)) − 𝜀 ≤ 0, ∀𝑦 ∈ 𝐾 (𝜆) . (37)

Set 𝑆𝑒(𝜀, 𝜆, 𝜇) := {𝑥 ∈ 𝐾(𝜆) | 𝜉𝑒(𝐹(𝑦, 𝑥, 𝜇)) − 𝜀 ≤ 0, ∀𝑦 ∈
𝐾(𝜆)}.

In this subsection, for fixed 𝑒 ∈ int𝐶, we assume that
𝑆𝑒(𝜀, 𝜆, 𝜇) ̸= 0 for small positive 𝜀 and (𝜆, 𝜇) in a neighborhood
of the considered point (𝜆0, 𝜇0). In general, 𝑆𝑒(𝜀, 𝜆, 𝜇)maynot
be a singleton.

As pointed out in [15], we will show how to estab-
lish the Hölder continuity of set-valued solution mappings
to parametric vector equilibrium problems without using
any priori information of the solution sets, by employing
nonlinear scalarization approach. In [17], we have given a
positive answer to this subject. Now we give another answer
herein.

For 𝐴, 𝐵 ⊂ 𝑋, the Pompeiu-Hausdorff distance between
𝐴 and 𝐵 is defined as

𝐻(𝐴, 𝐵) := max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (38)

where 𝑑(𝑎, 𝐵) := inf𝑏∈𝐵𝑑(𝑎, 𝑏) and 𝑑(𝐴, 𝑏) := inf𝑎∈𝐴𝑑(𝑎, 𝑏).

Theorem 30. For problem (SEP) (i.e., (PVAEP)), let 𝑆𝑒(𝜀, 𝜆, 𝜇)
be nonempty for small 𝜀 > 0 and (𝜆, 𝜇) in a neighborhood of the
considered point (𝜆0, 𝜇0). Assume that the following conditions
hold.

(i) 𝐾(⋅) is 𝑙 ⋅ 𝛼-Hölder continuous at 𝜆0; that is, there is
a neighborhood 𝑁 of 𝜆0 such that, for all 𝜆1, 𝜆2 ∈ 𝑁,
𝐾(𝜆1) ⊆ 𝐾(𝜆2) + 𝑙‖𝜆1 − 𝜆2‖

𝛼
B𝑋.

(ii) There is a neighborhood𝑈 of 𝜇0 such that, for each 𝑦 ∈
𝐾(𝑁) and 𝜇 ∈ 𝑈, 𝐹(𝑦, ⋅, 𝜇) is 𝐶-convex on 𝐾(𝑁); that
is, for every 𝑥1, 𝑥2 ∈ 𝐾(𝜆) and 𝑡 ∈ [0, 1], 𝑡𝐹(𝑦, 𝑥1, 𝜇) +
(1 − 𝑡)𝐹(𝑦, 𝑥2, 𝜇) ∈ 𝐹(𝑦, 𝑡𝑥1 + (1 − 𝑡)𝑥2, 𝜇) + 𝐶.

(iii) For 𝑥, 𝑦 ∈ 𝐾(𝑁), 𝐹(𝑦, 𝑥, ⋅) is ℎ ⋅ 𝛽-Hölder continuous
on 𝑈.

(iv) For 𝜇 ∈ 𝑈 and 𝑥 ∈ 𝐾(𝑁), 𝐹(⋅, 𝑥, 𝜇) is 𝑞 ⋅ 𝛿-Hölder
continuous on 𝐾(𝑁).

Then, for any 𝜀 > 0, 𝑆𝑒 satisfies the following Hölder property
on [𝜀, +∞[×𝑁 × 𝑈:

𝐻(𝑆𝑒 (𝜀1, 𝜆1, 𝜇1) , 𝑆𝑒 (𝜀2, 𝜆2, 𝜇2))

≤ 𝑘1
𝜀1 − 𝜀2

 + 𝑘2
𝜇1 − 𝜇2


𝛽
+ 𝑘3

𝜆1 − 𝜆2


𝛼𝛿
,

(39)

where 𝑘1, 𝑘2, 𝑘3 > 0 and depends on 𝜀, 𝑙, 𝛼, ℎ, 𝛽, 𝑞, 𝛿, 𝛾𝑒, and so
forth. Herein 𝛾𝑒 := sup

𝑠∈𝐶𝑒
‖𝑠‖ ∈ [1/‖𝑒‖, +∞[ (or 𝛾𝑒 = 1/𝜏max

𝐶,𝑒
)

is the Lipschitz constant of 𝜉𝑒 on 𝑌.
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Proof. To apply [31, Theorem 2.1] by exchanging the roles
of 𝑥 and 𝑦, we need to check the convexity and the Hölder
continuity of 𝜉𝑒 ∘ 𝐹. First, by virtue of the globally Lipschitz
property of 𝜉𝑒, on one hand, for 𝑥, 𝑦 ∈ 𝐾(𝑁), ∀𝜇1, 𝜇2 ∈ 𝑈,

𝜉𝑒 (𝐹 (𝑦, 𝑥, 𝜇1)) − 𝜉𝑒 (𝐹 (𝑦, 𝑥, 𝜇2))


≤ 𝛾𝑒
𝐹 (𝑦, 𝑥, 𝜇1) − 𝐹 (𝑦, 𝑥, 𝜇2)

 ≤ 𝛾𝑒ℎ
𝜇1 − 𝜇2


𝛽
.

(40)

On the other hand, for 𝜇 ∈ 𝑈 and 𝑥 ∈ 𝐾(𝑁), ∀𝑦1, 𝑦2 ∈ 𝐾(𝑁),
𝜉𝑒 (𝐹 (𝑦1, 𝑥, 𝜇)) − 𝜉𝑒 (𝐹 (𝑦2, 𝑥, 𝜇))



≤ 𝛾𝑒
𝐹 (𝑦1, 𝑥, 𝜇) − 𝐹 (𝑦2, 𝑥, 𝜇)

 ≤ 𝛾𝑒𝑞
𝑦1 − 𝑦2


𝛿
.
(41)

Letting 𝑓 := −𝜉𝑒 ∘ 𝐹, whence the Hölder constants of [31,
Theorem 2.1] are fulfilled with ℎ := 𝛾𝑒ℎ and 𝑞 := 𝛾𝑒𝑞.

Second, using themonotonicity and sublinearity of 𝜉𝑒, for
𝑦 ∈ 𝐾(𝑁) and 𝜇 ∈ 𝑈, ∀𝑥1, 𝑥2 ∈ 𝐾(𝜆) and 𝑡 ∈ [0, 1],

𝜉𝑒 (𝐹 (𝑦, 𝑡𝑥1 + (1 − 𝑡) 𝑥2, 𝜇))

≤ 𝜉𝑒 (𝑡𝐹 (𝑦, 𝑥1, 𝜇) + (1 − 𝑡) 𝐹 (𝑦, 𝑥2, 𝜇))

≤ 𝑡𝜉𝑒 (𝐹 (𝑦, 𝑥1, 𝜇)) + (1 − 𝑡) 𝜉𝑒 (𝐹 (𝑦, 𝑥2, 𝜇)) ,

(42)

which implies that 𝜉𝑒 ∘ 𝐹 is convex with respect to the second
argument, so 𝑓 := −𝜉𝑒 ∘ 𝐹 is concave.

Thus, all conditions of [31, Theorem 2.1] by exchanging
the roles of 𝑥 and 𝑦 therein are satisfied, and hence the
conclusion follows.

Remark 31. When 𝑌 = R, 𝐶 = R+, and 𝑒 = 1, 𝑆𝑒(𝜀, 𝜆, 𝜇) =
{𝑥 ∈ 𝐾(𝜆) | 𝐹(𝑦, 𝑥, 𝜇) − 𝜀 ≤ 0, ∀𝑦 ∈ 𝐾(𝜆)}, Theorem 30
becomes that of Minty type corresponding to [31, Theorem
2.1].Theorem30 is new in the literature. In addition, the proof
approach via nonlinear scalarization is different from the
ones used in previous works [26–30] for set-valued solution
mappings.

Similar to the discussion of [31, Corollary 2.3], we readily
get the following result when 𝐾(𝜆) ≡ 𝐾, ∀𝜆 ∈ Λ.

Corollary 32. For problem (SEP), assume that 𝐾(𝜆) = 𝐾, a
nonempty bounded convex subset of𝐴 and 𝑆𝑒(𝜀, 𝜇) is nonempty
for small 𝜀 > 0 and 𝜇 in a neighborhood of the considered point
𝜇0. Assume further that

(i) there is a neighborhood 𝑈 of 𝜇0 such that, for each 𝑦 ∈
𝐾 and 𝜇 ∈ 𝑈, 𝐹(𝑦, ⋅, 𝜇) is 𝐶-convex on 𝐾;

(ii) for 𝑥, 𝑦 ∈ 𝐾, 𝐹(𝑦, 𝑥, ⋅) is ℎ ⋅ 𝛽-Hölder continuous on𝑈.

Then, for any 𝜀 > 0, 𝑆𝑒 satisfies the following Hölder property
on [𝜀, +∞[×𝑈:

𝐻(𝑆𝑒 (𝜀1, 𝜇1) , 𝑆𝑒 (𝜀2, 𝜇2)) ≤ 𝑘1
𝜀1 − 𝜀2

 + 𝑘2
𝜇1 − 𝜇2


𝛽
,

(43)

where 𝑘1, 𝑘2 > 0 and depends on 𝜀, ℎ, 𝛽, 𝛾𝑒, and so forth. Herein
𝛾𝑒 is the Lipschitz constant of 𝜉𝑒 on 𝑌.

4. Conclusions

In this paper, motivated by the work of Tammer and
Zălinescu [8], we deduce the globally Lipschitz property of
𝜉𝑞 in linear normed spaces via the primal space approach.
This is different from the dual space approach adopted
by our previous works [15, 16]. The equivalence between
them is established, and primal-dual interpretations of both
expressions for globally Lipschitz constants are explained.
Furthermore, exact characterizations to the globally Lipschitz
property for general Gerstewitz function 𝜑−V are discussed.
Wemention that the expression for calculating Lipschitz con-
stant is givenwhen the ordering cone is polyhedral. As simple
applications, Hölder continuity of solutions for parametric
vector equilibrium problems is also showed. Besides this,
the globally Lipschitz property of 𝜉𝑞 and 𝜑−V seems to have
many potential applications, for example, the stability and
sensitivity analysis of vector equilibrium problems [15–17]
and optimality conditions for vector optimization problems
[8, 14]. For more applications, we will exploit in future
research.
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tions to generalized vector equilibrium problems,” European
Journal of Operational Research, vol. 199, no. 2, pp. 334–338,
2009.

[27] S. J. Li and X. B. Li, “Hölder continuity of solutions to
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parametric primal and dual vector quasi-equilibria,” Journal of
Industrial and Management Optimization, vol. 8, no. 3, pp. 691–
703, 2012.

[31] L. Q. Anh, P. Q. Khanh, and T. N. Tam, “On Hölder continuity
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