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This paper describes a method for nonrigid registration of monomodal MRI based on physical laws. The proposed method assumes
that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid
and a viscous fluid. Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global
registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the
deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive
force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to
evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of
both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear

viscoelastic model improves the registration accuracy.

1. Introduction

A current major topic in computational neuroanatomy is
the development of nonrigid image registration algorithms.
Nonrigid image registration has many potential applications.
It can be applied to building atlases, segmentation, quantify-
ing local morphological differences, comparing the variance
of different population, and detecting pathological changes
[1-4]. Various methods have been developed to deal with
nonrigid image registration. The methods are usually clas-
sified into two categories: feature-based and intensity-based
[5]. The former first needs to build a geometric model and
identify a number of anatomic characters in the model. These
characters include point landmarks, curves, and surfaces [6-
8]. The anatomical characters are then parameterized. The
aim of the registration is to find the optimal combinations
of the model parameters. These methods are critically depen-
dent on feature extraction quality. However, the anatomical
structures are complex, making it difficult to extract them
accurately. Usually, human interaction is required during
registration, thereby making the process inconvenient and

time consuming. The intensity-based method is used to
match regional intensity patterns based on mathematical or
statistical criteria [9-13]. This method reduces the need for
direct feature extraction or segmentation, can be automatic,
and can obtain satisfactory results and is thus widely used.
Fluid registration uses physics models and assumes that
the deformation obeys fluid mechanics laws. These methods
allow flexible deformation with large freedom and are used in
many applications.

In the early 1980s, the elastic model was proposed as a
means to match images [14]. Brain images are modeled as an
elastic solid and the deformations are calculated from elastic
mechanic equations [15, 16]. However, this model is only
suitable for small deformations. To address this problem, the
properties of brain images were assumed to be like those of
viscous fluid, and the viscous fluid model was proposed [17],
where the deformations are driven by forces that are equal to
the gradient of the sum of squared intensity difference (SSD)
metrics. The orientation and magnitude of deformation
fields are computed using the fluid-dynamical Navier-Stokes
equation. This method allows large deformations and serious
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FIGURE 1: Maxwell model is made of springs (E) and dashpots (#) in
series, and the forces acting on two parts are equal.

—e—> 0

localized distortions, but with increased likelihood of misreg-
istration [18]. The Navier-Stokes equation is solved by means
of the relaxation method and requires much time. To reduce
the computation cost, Bro-Nielson proposed a convolution
filter method to solve the equation quickly [19]. However,
Wollny et al. [20] obtained unsatisfactory results when using a
small filter width in the convolution filter methods. However,
if the filter width is large, the computational costs are not
more advantageous than when using iterative methods. Thus
the relaxation method is currently the best method. The brain
images are also modeled as diffusions [21-23] and have been
shown to be similar to the method proposed by Bro-Nielsen
etal. [19].

In this study, we try to use the properties of both elastic
solids and viscous fluids to register images. Linear viscoelastic
matter has these properties. The deformation properties of
brain images are assumed to be similar to those of viscoelastic
matter and obey viscoelastic laws [24, 25]. As the Maxwell
model has the abilities to describe linear viscoelastic defor-
mation [26], this study hence utilizes the Maxwell model
to represent and capture large deformation of the brain
images. When a force acts on the Maxwell model, the motion
of the fluid component relaxes over time, allowing large
displacements. The deformation fields are constrained by
both elastic and fluid components. To speed up the algorithm,
an adaptive force is introduced. Given our aim of monomodal
anatomic image registration, the SSD is used as a similarity
metric in the registration. Both synthetic and real images
are used to demonstrate the performance of the proposed
method. The performances of both models (Maxwell and
fluid) with both forces (standard and adaptive) are compared
with each other. The fluid model with adaptive forces (FMAF)
has the fastest registration speed, the Maxwell model with
adaptive force (MMAF) is the second, the Maxwell model
with standard force (MMSF) is the third, and the fluid model
with standard force (FMSF) is the slowest. The ranking of
registration accuracy from high to low is as follows: MMAF,
MMSE FMAF, and FMSE

2. Materials and Methods

2.1. Maxwell Model. The Maxwell model [26] is made of a
spring and a dashpot in series (Figure 1), which is perfectly
elastic and viscous. Since the deformation process is assumed
to be quasistatic, inertia can be neglected and the force or
stress is the same in both parts. The total deformation is the
sum deformations of both parts. If the displacement of spring

or dashpot is #&* or 71, the total displacement i is

=i+l )
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If E is Young’s modulus of the spring and # is the viscosity of
the dashpot, o, and o, are the stresses of the spring and the
dashpot. The stresses are

d

o, = Eil’, oy =it , o, =0y (2

Given that the force on the spring and the depot is equal at any
given time, the two parts can be processed independently.

2.2. Reference Frame. Two kinds of reference frames are used
to describe deformations in a floating image that is deformed
to a target image. One is the Lagrangian reference frame,
which describes the deformations by observing changes in
the positions and velocities of definite particles. The other
is the Eulerian reference frame, which describes the defor-
mations by observing velocity changes at fixed points. The
Eulerian reference frame is suitable for large deformations
because it does not trace the motion of the particles [27].
Therefore, the Eulerian reference frame is used to track the
deformations in our method. Voxel grids are used as the fixed
points. A particle at grid position X in floating image I, (X)
at time ¢ is originated at the position X(t) — #(X,t), where
(X, t) is the displacement field. The corresponding velocity
field ¥(%, t) is expressed as

V(1) =

(1) = ou(x 1)
; +levj 3)

0 axj ’

where ¥ = [v,v,,v3]. It comes from the derivative of
the displacement field about time. The second term in (3)
represents the nonlinearities of the displacement field.

2.3. The Viscoelastic Fluid Algorithm. We extend the Maxwell
model to three dimensions. The spring becomes an elastic
solid, and the dashpot becomes a viscous fluid. Therefore,
the total deformation is similar to that in (1), where #® =
[u}, u5,u3] and it = [uf, ug,u‘;] are displacements of the
elastic solid part and the viscous fluid part, respectively. The
force of the two parts is equal and is expressed as

F=7 4)

where 7* and f are the forces acting on the elastic solid part
and the viscous fluid part, respectively.

We used the continuum mechanics method to com-
pute the displacements. The elastic solid displacements are
described by the following partial differential equations:

WV + (X + )V (Vi) + f =0, (5)

where 4 and A° are Lame’s elastic coefficients and #° =
[1 (5, 1), w5 (x, ), u3(x, t)]. The velocity of the viscous fluid
part is determined using the following equation:

w (A ) v (Vo) + f =0, (6)

where 7 = [v¥(x, £), v4(x, 1), v (x, 1)] and pu? and A? are the

viscosity constants.
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The velocity field of viscous fluid in an Eulerian reference
frame can be determined by the following equation:

# (21 = (X t) Z da (x l‘) )

The displacement fields 71 are updated iteratively over time
step At and are determined as follows:

@ (t+an) = a () + At [ () - vat 07 1)), (8)

Time step At is chosen according to the perturbation of the
deformation field; we have
t) ] >

At = max<

The boundary conditions #°(X,#) = 0 and 7d(5c', t) = 0,
and the total displacements on the boundary are set to zero.
The elastic equation (5) and fluid equation (6) are solved
simultaneously to obtain the total deformation.

3
v (&) - Y (31
i=1

2.4. The Adaptive Force. The motivation of the adaptive force
is to speed up the registration. In the proposed method, the
key parts of the partial differential equations (PDEs) (5) and
(6) are the forces that drive the floating image to deform to the
target image I, (X). The gradient of the SSD metrics is used as
these forces. The standard force is defined as
fe-a(l,E-a@&D) -LE) VL ®)s gz (10)
where « is a constant.

The VI, (%)|5_zz, is the gradient of the floating image at
X—u(X,t). (X —u(X,t)) — I,(X) is the difference in intensity
between the deformed floating image and the target image
and weighs the VI, (X)[;_;; - The force is minimized at the
location where the floating image and the target image are
aligned.

As the registration progresses, the forces become smaller
and the corresponding velocities also become smaller which
lead to very small deformation in the iteration. Therefore,
more iterations are needed to reach the final deformations.
To speed up the registration, the forces should increase in
the next iteration. Hence, an adaptive force is introduced to
solve the problem in the proposed method. The maximum of
the displacements should not stay below a specific threshold.
When the maximum of the displacements is below the
threshold at the current iteration, the forces are adjusted
automatically to increase the maximum of the displacements
in the next iteration. In our method, an empirical formula is
used to define the adaptive force. The adaptive force in the
Eulerian reference frame is expressed as

funr = fo G (%,0) = fi) (R1(%,1))

~0tyy X (I (X =8 (%,1)) = I, (R) VI; D],

X-u(Z,t)’

(11)

where n + 1 is the next iteration and «,,, is the function
with respect to the maximum displacements of the current
iteration. It is described as

a, (1+ B (y — max (it (%,1)]))) »

~ { if (max ([[z (X, 1)])) <y,
Xpp1 = o,

if (max ([lit (%, 0)l)) =y,
(12)

where max(||i#(%, t)||) is the maximum of the displacements
of the current iteration.

If the maximum displacement is below the threshold v,
1 + B(y — max(||i(%, t)[)) should be larger than one, thereby
making «,,,, larger than «,. The parameter «,,; of the next
iteration increases automatically. Therefore, the correspond-

ing forces ]?n +1 also increase to prevent the displacement from
becoming too small.

2.5. Implementation. When the floating image is deformed by
the corresponding deformation field in the registration, the
topology of the floating image should be preserved. Keeping
all Jacobian of the deformation fields positive can preserve
the topology. In the implementation, when the minimum of
the Jacobian is below 0.5, the transformation is applied to the
floating image to produce a new image and the displacement
field i is set to zero. The new image is then used as the
floating image in the subsequent registration. The process
continues as long as the SSD decreases. The pseudocode of
the algorithm is as follows.

(1) Let t = 0 and #(%,0) = 0.
(2) Calculate the force using (10), (11), and (12).

(3) If the SSD stops decreasing or the maximum number
of iterations is reached, then stop.

(4) Solve PDE:s (5) and (6) for displacements #i*(X, t) and
instantaneous velocity 7 (%, t), respectively.

(5) Choose time step At according to (8) and calculate
a4(%,1).

(6) Calculate the total displacement #i(X, t)
74(z,1).

(7) If the Jacobian of the transformation is less than 0.5, a
new floating image is constructed, and then go to Step

1. Otherwise, update the displacement field according
to (4), then set t = t + At, and go to Step 2.

= 0°(%,t) +

As it has been proved that relaxation is currently the
best method [20], we solve PDEs (6) and (7) by means of
successive overrelaxation [28].

2.6. Evaluation. The performance of the proposed method
is evaluated on the basis of three analyses. The first analysis

uses the golden deformation field T. We then compare the

recovered deformation field T’ by the root mean square
(RMS) error over all voxels:

RMS = \/ % S (7' @) -T®), (13)

where N is the number of total voxels in the image.
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TaBLE 1: Computing time of various methods. TABLE 2: Comparison of RMS and SSD for various methods.
FMSF (s) FMAF (s) MMSE (s) MMAF (s) FMSF FMAF MMSF MMAF
2D simulated data 36 12 26 18 RMS (mm) 0.3783 0.3066 0.2742 0.2412
2D MRI data 60 23 41 32 SSD 0.0381 0.0293 0.0367 0.0293
IBSR database 2891 1143 2025 1793
Real data 1256 532 1077 625

The second analysis uses the mean of the SSD. They are
defined as

1
so=L\Y(h@w-T@ @)y,

where N is the number of total voxels in the image, I,(X)
and I,(X) are floating and target images, respectively. While
T(I,(X)) is the deformed floating image.

The last analysis uses tissue overlaps, which are defined as

V(L& NT (I (X))

=2 R
VL@ +V (@)

(15)

where V is the volume of the tissues.

If the floating image completely matches the target image,
the O value would be one, and the RMS or SSD would be
minimized. If there is no overlap between the two images,
the O value would be zero, and the RMS or SSD would be
maximized.

3. Experiments and Results

Four experiments are conducted to demonstrate the pro-
posed method. The first two experiments are about 2D data
and the rest 3D volumes. The method is implemented in C
and complies with VC++ [29]. The whole image is modeled
using a single set of material parameters for simplification
purposes. The parameters u*, A%, 4 are all set to one and A* is
set to zero. The parameters o, and f3 are both set to 1, and y is
set to 0.8 voxels. The maximum iteration is set to 200. These
parameters are used in all the experiments.

3.1. 2D Synthetic Datasets. The experiment shows that the
proposed method can deal with large deformation well. The
image sizes are 128 x 128 pixels, as shown in Figure 2.
Figure 2(a) is the floating image, with a rectangular image,
and Figure 2(b) is the target image, a C-shape image. The
results of FMSE MMSF, FMAF, and MMAF are all suc-
cessful to deform the rectangular image to C-shape image.
Figure 2(c) shows the results of FMAFE. The computing costs
are listed in the second row of Table 1. The computing times
of FMSE, FMAF, MMSE, and MMAF are 36, 12, 26, and 18
seconds, respectively. The ranking of speed from the fastest to
the slowest is as follows: FMAF, MMAF, MMSE, and FMSE.

3.2. 2D Brain MRI Datasets. The second experiment shows
the effectiveness of the proposed method when it is applied
to brain MRI. The floating image size is 256 x 256, as shown
in Figure 3(a). This image is registered to a selected image by

the ﬁnite element method [30] and obtains the deformation
fields T', which is used as the golden standard. The known
deformation fields T are applied to the floating image to
obtain a target image, as shown in Figure 3(b). The known
field is shown in Figure 3(c) using the following equation:

T=\T2+T, (16)

where T, T, are the known deformation fields in the x and y
directions, respectively.

The fluid model and the Maxwell model with the standard
forces and the adaptive forces are applied to the images.
The computing time is listed in the third row of Table 1.
The FMAD only costs 23 seconds, which is the fastest. By
contrast, the MMAF and the MMSF cost 32 and 41 seconds,
respectively, and they are the second and the third in terms of
speed. The FMSEF is the slowest and costs 60 seconds.

All of these methods can successfully deform the floating
image to the target image. However, the matching accuracy
is different. Table 2 lists the RMS and SSD acquired by the
various methods. The RMS of FMSE, FMAF, MMSE, and
MMFA are 0.3783, 0.3066, 0.2742, and 0.2412. According to
RMS, MMAF has obtained the best result, followed by the
MMSE, then FMAE, and FMSF last.

Figure 4 shows the difference among the known defor-
mation fields obtained using various methods using the
following equation:

AT = \/(Tx -~y + (1, -1, (17)

where AT is the difference of the known deformation fields.
T., T}', are the deformation fields of x and y directions,
respectively. We find that regardless of which forces act, the
differences of the known deformation fields with that of the
fluid model (shown in Figures 4(a) and 4(b)) are much larger
than that with the Maxwell model (shown in Figures 4(c)
and 4(d)). The Maxwell model has obtained better results.
Among them, the Maxwell model with the adaptive forces
has obtained the best result, whereas the fluid model with
the standard forces has the worst results. The SSD of FMSE
FMAF, MMSEF, and MMFA are 0.0381, 0.0293, 0.0367, and
0.0293. Based on the SSD, the results of the MMAF and FMAF
have the same rank, whereas the results of the MMSF and
the FMSF are ranked as third and fourth. It indicates that
the adaptive force is superior to the standard force and the
Maxwell model is more robust.

3.3. The Internet Brain Segmentation Repository (IBSR)
Database. High-resolution 3D MR images are used to evalu-
ate the proposed method. The MRI data are downloaded from
the IBSR [31] and include 20 normal MR brain datasets and
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(a)

()

()

FIGURE 2: Results on 2D simulated datasets: (a) floating image, (b) target image, and (c) the result of Maxwell model with adaptive forces

(MMAF).

() (b)

FIGURE 3: (a) Floating image. (b) Target image obtained by deforming the floating image with the known deformation field. (c) The known
deformation field is obtained from FEM-based deformable registration method.

the skulls are all stripped. The column and row are 256, and
the slice is from 58 to 64. The voxel size is 1 x 1 x 3mm”>. We
have randomly selected 30 couples from the data to test the
methods. The mean time is listed in the fourth row of Table 1.
The computing times of FMSE, FMAF, MMSE, and MMAF
are 2891, 1143, 2025, and 1793. The computation time of the
fluid model with the adaptive forces is the fastest, the Maxwell
model with the adaptive forces is the second, the model with
the standard forces is the third, and the fluid model with the
standard force is the slowest.

The mean of SSD is listed in the second row of Table 3.
The SSD of the FMSE, FMAE, MMSF, and MMAF are 0.0553,
0.0490, 0.0504, and 0.0484, respectively. According to the
SSD value, the results obtained by the MMAF and the FMAF
are ranked as the first and the second, respectively, and those
acquired by the MMSF are the third. The result obtained using
the FMSF is the worst. However, finding the difference using
visual inspections in the results is difficult. An example is
shown in Figure 5.

The average tissue overlap values are listed in the second
row of Table 4. The overlap values of FMSEF, FMAF, MMSE,
and MMAF are 0.8813, 0.8879, 0.8872, and 0.8917. The overlap

values of the Maxwell model are larger than that of the fluid
model, and the model with the adaptive forces performs
better than that with the standard forces.

3.4. Real Datasets. The real datasets are acquired from the
local hospital. The scans are acquired using a SSEMENS TRIO
3 Tesla scanner installed at the Institute of Biophysics of the
Chinese Academy of Sciences. These scans are T1 sagittal
images (TR = 1730 ms, TE = 3.93 ms, thickness = 1.0 mm,
no gap, in-plane resolution = 256 x 256, slice = 192, and flip
angle = 15). The scans are resampled as 120 x 120 x 96 mm’
and the voxel size is 2.0 x 2.0 x 2.0 mm®. Thirty couples are
randomly selected from the datasets. The mean time is listed
in the fifth row of Table 1, and the SSD is listed in the third row
of Table 3. The computing times of FMSF, FMAE, MMSE, and
MMAF are 1256, 532, 1077, and 625, respectively. The SSD of
FMSE FMAFE, MMSE and MMAF are 0.0328, 0.0293, 0.0301,
and 0.0279. The computation costs and matching accuracy
of the real datasets are similar to those of the IBSR datasets.
The overlap values are listed in the third row of Table 4.
The overlap values of FMSE, FMAE, MMSEF, and MMAF are
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FIGURE 4: The differences of the known deformation fields with those got by various methods. (a) The difference of known deformation field
with that obtained by the FMSE (b) The difference of known deformation field with that obtained by the FMAF. (c) The difference of known
deformation field with that obtained by the MMSE. (d) The difference of known deformation field with that obtained by the MMSE

TaBLE 3: Comparison of the mean values of SSD for various
databases.

FMSF FMAF MMSF MMAF
IBSR database 0.0553 0.0490 0.0504 0.0484
Real data 0.0328 0.0293 0.0301 0.0279

TABLE 4: Comparison of the overlap values for various methods.

FMMI FMSF FMAF MMSF MMAF
IBSR database 0.8794  0.8813  0.8879  0.8872 0.8917
Real data 0.8801  0.8823  0.8912  0.8892 0.8920

0.8823, 0.8912, 0.8892, and 0.8920. The results are similar
to those obtained in Section 3.3. The proposed method is
also compared with a method using fluid model and mutual
information (FMMI) [32]. As the second column of Table 4
shows, the overlaps of the IBSR dataset and the real dataset
from FMMI are the smallest, respectively. This indicates that
the SSD is better than mutual information in monomodal
images.

4. Conclusions

The proposed method is driven by the fluid and elastic
models [15-17], which uses the Maxwell model, a linear
viscoelastic model that combines the properties of elastic
and fluid models, to represent the image deformation. The
proposed method introduces an adaptive force to speed up
the registration.

The performances of the elastic and fluid models are
compared in [17]. Therefore, we only compare the proposed
method with the fluid method in this paper. The successive
over relaxation method is used to solve the corresponding
PDE, which is not the fastest but the most accurate among the
evaluated methods. The computational cost can be reduced
it PDEs are solved quickly, such as when using filter convo-
lution [19] with a small filter width and parallel computing.
However, the relative computation costs should be the same
as those obtained in this paper. Actually, the fluid model is a
special case of the linear viscoelastic model. When p* = 0 and
A* = 0, the linear viscoelastic model becomes a fluid model.

Our experimental results show that the linear viscoelastic
model has several potential applications and that adaptive
force can greatly reduce the registration time. The proposed
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(d)
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FIGURE 5: An example of the results of the 24th slice with various methods on IBSR Database is shown. (a) Floating image. (b) Target image.
(c) The result of the fluid model with standard force (FMSF). (d) The result of the fluid model with adaptive force (FMAF). (e) The result of
the Maxwell model with standard force (MMSEF). (f) The result of the Maxwell model with adaptive force (MMAF).

method includes many parameters, and these should be
analyzed further. We would also like to analyze the char-
acterization of the transformation and how to obtain the
optimal parameters for the corresponding transformation in
the future.
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