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An explicit projection algorithm with viscosity technique is constructed for finding the fixed points of the pseudocontractive
mapping in Hilbert spaces. Strong convergence theorem is demonstrated. Consequently, as an application, we can approximate
to the minimum-norm fixed point of the pseudocontractive mapping.

1. Introduction

Let H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let C be a nonempty closed convex
subset of H.

Recall that a mapping T : C → C is said to be

(i) 𝐿-Lipschitz ⇔ there exists a constant 𝐿 > 0 such that
‖T𝑢−TV‖ ≤ 𝐿‖𝑢−V‖ for all 𝑢, V ∈ C; if 𝐿 ∈ (0, 1), then
T is said to be contractive; if 𝐿 = 1, then T is said to
be nonexpansive;

(ii) pseudocontractive

⇔ ⟨T𝑢 − TV, 𝑢 − V⟩ ≤ ‖𝑢 − V‖2;
⇔ ‖T𝑢 − TV‖2 ≤ ‖𝑢 − V‖2+‖(𝐼 − T)𝑢 − (𝐼 − T)V)‖2;
⇔ ⟨𝑢 − V, (𝐼 − T)𝑢 − (𝐼 − T)V⟩ ≥ 0,

for all 𝑢, V ∈ C.

Interest in pseudocontractive mappings stems mainly
from their firm connection with the class of nonlinear
accretive operators. It is a classical result, see Deimling [1],
that if T is an accretive operator, then the solutions of the
equations T𝑥 = 0 correspond to the equilibrium points
of some evolution systems. This explains the importance,
from this point of view, of the improvement brought by the

Ishikawa iteration which was introduced by Ishikawa [2] in
1974.The original result of Ishikawa is stated in the following.

Theorem 1. Let C be a convex compact subset of a Hilbert
space H and let T : C → C be an 𝐿-Lipschitzian
pseudocontractive mapping with Fix(T) ̸= 0. For any 𝑥

0
∈ C,

define the sequence {𝑥
𝑛
} iteratively by

𝑦
𝑛
= (1 − 𝜂

𝑛
) 𝑥
𝑛
+ 𝜂
𝑛
T𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝜉
𝑛
) 𝑥
𝑛
+ 𝜉
𝑛
T𝑦
𝑛
,

(1)

for all 𝑛 ∈ N, where {𝜉
𝑛
} ⊂ [0, 1] and {𝜂

𝑛
} ⊂ [0, 1] satisfy

the conditions: lim
𝑛→∞

𝜂
𝑛

= 0 and ∑
∞

𝑛=1
𝜉
𝑛
𝜂
𝑛

= ∞. Then
the sequence {𝑥

𝑛
} generated by (1) converges strongly to a fixed

point of T .

The iteration (1) is now referred to as the Ishikawa
iterative sequence. However, we note that 𝐶 is compact
subset. Now, we know that strong convergence has not been
achieved without compactness assumption on the involved
operation or the underlying spaces. A counter example can
be found in Chidume and Mutangadura [3].

In order to obtain a strong convergence result for pseu-
docontractive mappings without the compactness assump-
tion, in [4], Zhou coupled the Ishikawa algorithm with the
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hybrid technique and presented the following algorithm for
Lipschitz pseudocontractive mappings:

𝑦
𝑛
= (1 − 𝜉

𝑛
) 𝑥
𝑛
+ 𝜉
𝑛
T𝑥
𝑛
,

𝑧
𝑛
= (1 − 𝜂

𝑛
) 𝑥
𝑛
+ 𝜂
𝑛
T𝑦
𝑛
,

C
𝑛
= {𝑧 ∈ C :

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩
2

− 𝜉
𝑛
𝜂
𝑛
(1 − 2𝜉

𝑛
− 𝜉
2

𝑛
𝐿
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − T𝑥

𝑛

󵄩󵄩󵄩󵄩
2

} ,

Q
𝑛
= {𝑧 ∈ C : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= projC
𝑛
∩Q
𝑛

𝑥
0
, 𝑛 ∈ N.

(2)

Zhou proved that the sequence {𝑥
𝑛
} generated by (2) con-

verges strongly to the fixed point of T . Further, in [5], Yao
et al. introduced the hybrid Mann algorithm as follows.

LetC be a nonempty closed convex subset of a realHilbert
spaceH. Let {𝜉

𝑛
} be a sequence in (0, 1). Let 𝑥

0
∈ H. ForC

1
=

C and 𝑥
1
= projC

1

𝑥
0
, define a sequence {𝑥

𝑛
} of C as follows:

𝑦
𝑛
= (1 − 𝜉

𝑛
) 𝑥
𝑛
+ 𝜉
𝑛
T𝑥
𝑛
,

C
𝑛+1

= {𝑧 ∈ C
𝑛
:
󵄩󵄩󵄩󵄩𝜉𝑛 (𝐼 − T) 𝑦

𝑛

󵄩󵄩󵄩󵄩
2

≤ 2𝜉
𝑛
⟨𝑥
𝑛
− 𝑧, (𝐼 − T) 𝑦

𝑛
⟩} ,

𝑥
𝑛+1

= projC
𝑛+1

𝑥
0
, 𝑛 ∈ N.

(3)

Note that, in iterations (2) and (3), we need to compute
the half-spaces C

𝑛
(and/or Q

𝑛
). Very recently, Zegeye et al.

[6] further studied the convergence analysis of the Ishikawa
iteration (1).They proved ingeniously the strong convergence
of the Ishikawa iteration (1). However, we have to assume
that the interior of Fix(T) is nonempty. This appears very
restrictive since even in R with the usual norm, Lipschitz
pseudocontractivemapswith finite number of fixed points do
not enjoy this condition that intFix(T) ̸= 0. For some related
works, please refer to [7–19].

On the other hand, we notice that it is quite often to
seek a particular solution of a given nonlinear problem, in
particular, the minimum-norm solution. For instance, given
a closed convex subsetC of a Hilbert spaceH

1
and a bounded

linear operator B : H
1

→ H
2
, where H

2
is another Hilbert

space. The C-constrained pseudoinverse of B, B†C, is then
defined as the minimum-norm solution of the constrained
minimization problem

B
†

C (𝑏) := argmin
𝑥∈C

‖B𝑥 − 𝑏‖ (4)

which is equivalent to the fixed point problem

𝑢 = projC (𝑢 − 𝜇B
∗
(B𝑢 − 𝑏)) , (5)

where B∗ is the adjoint of B, 𝜇 > 0 is a constant, and 𝑏 ∈ H
2

is such that proj
B(C)

(𝑏) ∈ B(C).
It is, therefore, an interesting problem to invent iterative

algorithms that can generate sequences which converge
strongly to the minimum-norm solution of a given fixed

point problem. The purpose of this paper is to solve such
a problem for pseudocontractions. More precisely, we will
introduce an explicit projection algorithm with viscosity
technique for finding the fixed points of a Lipschitzian
pseudocontractive mapping. Strong convergence theorem is
demonstrated. Consequently, as an application, we can find
the minimum-norm fixed point of the pseudocontractive
mapping.

2. Preliminaries

Recall that themetric projection projC : H → C satisfies ‖𝑢−
projC𝑢‖ = inf{‖𝑢 − V‖ : V ∈ C}. The metric projection projC
is a typical firmly nonexpansive mapping. The characteristic
inequality of the projection is ⟨𝑢−projC𝑢, V−projC𝑢⟩ ≤ 0 for
all 𝑢 ∈ H, V ∈ C.

In the sequel we will use the following expressions:

(i) Fix(T) denotes the set of fixed points of T ;
(ii) 𝑥
𝑛
⇀ 𝑥
† denotes the weak convergence of 𝑥

𝑛
to 𝑥
†;

(iii) 𝑥
𝑛
→ 𝑥
† denotes the strong convergence of 𝑥

𝑛
to 𝑥
†.

The following lemmas will be useful for the next section.

Lemma2 (see [20]). LetC be a nonempty closed convex subset
of a real Hilbert space H. Let T : C → C be a nonexpansive
mapping with Fix(T) ̸= 0. Then,

{
C ⊃ 𝑢

𝑛
⇀ 𝑢
‡

(I − T) 𝑢
𝑛
󳨀→ ]} 󳨐⇒ (I − T) 𝑢

‡
= ]. (6)

Lemma 3 (see [21]). LetC be a nonempty closed convex subset
of a realHilbert spaceH. Assume that amappingA : C → H is
monotone and weakly continuous along segments (i.e., A(𝑥 +

𝑡𝑦) → A(𝑥) weakly, as 𝑡 → 0, whenever 𝑥 + 𝑡𝑦 ∈ C for
𝑥, 𝑦 ∈ C). Then the variational inequality

𝑥
‡
∈ 𝐶, ⟨A𝑥

‡
, 𝑥 − 𝑥

‡
⟩ ≥ 0, ∀𝑥 ∈ C, (7)

is equivalent to the dual variational inequality

𝑥
‡
∈ C, ⟨A𝑥, 𝑥 − 𝑥

‡
⟩ ≥ 0, ∀𝑥 ∈ C. (8)

Lemma 4 (see [22]). Assume that the sequence {𝑎
𝑛
} satisfies

𝑎
𝑛
≥ 0 and 𝑎

𝑛+1
≤ (1 − ]

𝑛
)𝑎
𝑛
+ 𝜍
𝑛
]
𝑛
where {]

𝑛
} is a sequence

in (0, 1) and {𝜍
𝑛
} is a sequence such that ∑∞

𝑛=1
]
𝑛

= ∞ and
lim sup

𝑛→∞
𝜍
𝑛
≤ 0 (or ∑∞

𝑛=1
|𝜍
𝑛
]
𝑛
| < ∞). Then lim

𝑛→∞
𝑎
𝑛
=

0.

3. Main Results

In order to prove our main result, we need the following
proposition.

Proposition 5. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let W : C → C be a nonexpansive
mapping with Fix(W) ̸= 0. Let 󰜚 : C → H be a 𝜅-contraction.

For each 𝑡 ∈ (0, 1), let the net {𝑢
𝑡
} be defined by

𝑢
𝑡
= W projC [𝑡󰜚 (𝑢

𝑡
) + (1 − 𝑡) 𝑢

𝑡
] . (9)
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Then, as 𝑡 → 0
+, the net {𝑢

𝑡
} converges strongly to a point

𝑥
‡
∈ Fix(W) which solves the following variational inequality:

𝑥
‡
∈ Fix (W) , ⟨(𝐼 − 󰜚) 𝑥

‡
, 𝑧 − 𝑥

‡
⟩ ≥ 0, 𝑧 ∈ Fix (W) .

(10)
Proof. For 𝑡 ∈ (0, 1), define a mappingW

𝑡
: C → C by

W
𝑡
𝑢 = W projC [𝑡󰜚 (𝑢) + (1 − 𝑡) 𝑢] , 𝑢 ∈ C. (11)

For any 𝑢, V ∈ C, we have
󵄩󵄩󵄩󵄩W𝑡𝑢 −W

𝑡
V󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩W projC [𝑡󰜚 (𝑢) + (1 − 𝑡) 𝑢]

−W projC [𝑡󰜚 (V) + (1 − 𝑡) V]󵄩󵄩󵄩󵄩

≤ 𝑡
󵄩󵄩󵄩󵄩󰜚 (𝑢) − 󰜚 (V)󵄩󵄩󵄩󵄩 + (1 − 𝑡) ‖𝑢 − V‖

≤ [1 − (1 − 𝜅) 𝑡] ‖𝑢 − V‖ .

(12)

Hence, W
𝑡
is a 1 − (1 − 𝜅)𝑡-contraction on C with 𝑢

𝑡
∈ C as

its unique fixed point. So, {𝑢
𝑡
} is well defined.

Let 𝑢 ∈ Fix(W). From (9), we have
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩W projC [𝑡󰜚 (𝑢

𝑡
) + (1 − 𝑡) 𝑢

𝑡
] −W projC𝑢

󵄩󵄩󵄩󵄩

≤ 𝑡
󵄩󵄩󵄩󵄩󰜚 (𝑢𝑡) − 󰜚 (𝑢)

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩󰜚 (𝑢) − 𝑢

󵄩󵄩󵄩󵄩 + (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩

≤ [1 − (1 − 𝜅) 𝑡]
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩󰜚 (𝑢) − 𝑢

󵄩󵄩󵄩󵄩 .

(13)
It follows that

󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󰜚 (𝑢) − 𝑢
󵄩󵄩󵄩󵄩

1 − 𝜅
. (14)

Thus, {𝑢
𝑡
} and {󰜚(𝑢

𝑡
)} are bounded.

Again from (9), we get
󵄩󵄩󵄩󵄩𝑢𝑡 −W𝑢

𝑡

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩W projC [𝑡󰜚 (𝑢

𝑡
) + (1 − 𝑡) 𝑢

𝑡
] −W projC𝑢𝑡

󵄩󵄩󵄩󵄩

≤ 𝑡
󵄩󵄩󵄩󵄩󰜚 (𝑢𝑡) − 𝑢

𝑡

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑡 󳨀→ 0
+
.

(15)

Let {𝑡
𝑛
} ⊂ (0, 1) be a sequence such that 𝑡

𝑛
→ 0
+ as 𝑛 → ∞.

Put 𝑢
𝑛
:= 𝑢
𝑡
𝑛

. From (15), we have
󵄩󵄩󵄩󵄩𝑢𝑛 −W𝑢

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (16)
From (9), we obtain
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩W projC[𝑡󰜚(𝑢𝑡) + (1 − 𝑡)𝑢

𝑡
] −W projC𝑢

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢 + 𝑡 (󰜚 (𝑢

𝑡
) − 𝑢
𝑡
)
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 2𝑡 ⟨󰜚 (𝑢
𝑡
) − 𝑢
𝑡
, 𝑢
𝑡
− 𝑢⟩

+ 𝑡
2󵄩󵄩󵄩󵄩󰜚(𝑢𝑡) − 𝑢

𝑡

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 2𝑡 ⟨󰜚 (𝑢
𝑡
) − 󰜚 (𝑢) , 𝑢

𝑡
− 𝑢⟩

+ 2𝑡 ⟨󰜚 (𝑢) − 𝑢, 𝑢
𝑡
− 𝑢⟩

+ 2𝑡⟨𝑢 − 𝑢
𝑡
, 𝑢
𝑡
− 𝑢⟩ + 𝑡

2󵄩󵄩󵄩󵄩󰜚(𝑢𝑡) − 𝑢
𝑡

󵄩󵄩󵄩󵄩
2

≤ [1 − 2 (1 − 𝜅) 𝑡]
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩
2

+ 2𝑡 ⟨󰜚 (𝑢) − 𝑢, 𝑢
𝑡
− 𝑢⟩ + 𝑡

2󵄩󵄩󵄩󵄩󰜚(𝑢𝑡) − 𝑢
𝑡

󵄩󵄩󵄩󵄩
2

.

(17)

It follows that

󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢
󵄩󵄩󵄩󵄩
2

≤
1

1 − 𝜅
⟨󰜚 (𝑢) − 𝑢, 𝑢

𝑡
− 𝑢⟩ + 𝑡𝑀, (18)

where𝑀 > 0 is a constant such that

𝑀 >
1

2 (1 − 𝜅)
sup {

󵄩󵄩󵄩󵄩󰜚(𝑢𝑡) − 𝑢
𝑡

󵄩󵄩󵄩󵄩
2

: 𝑡 ∈ (0, 1)} . (19)

In particular, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩
2

≤
1

1 − 𝜅
⟨󰜚 (𝑢) − 𝑢, 𝑢

𝑛
− 𝑢⟩ + 𝑡

𝑛
𝑀, 𝑢 ∈ Fix (W) .

(20)

Noting that {𝑢
𝑛
} is bounded, without loss of generality, we

assume that 𝑢
𝑛
⇀ 𝑥
‡. It is obvious that 𝑥‡ ∈ C. From (16)

and Lemma 2, we deduce 𝑥‡ ∈ Fix(W). Substitute 𝑥‡ for 𝑢 in
(20) to get

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑥
‡󵄩󵄩󵄩󵄩󵄩

2

≤
1

1 − 𝜅
⟨󰜚 (𝑥
‡
) − 𝑥
‡
, 𝑥
𝑛
− 𝑥
‡
⟩ + 𝑡
𝑛
𝑀. (21)

Since 𝑢
𝑛
⇀ 𝑥
‡, we deduce from (21) that 𝑢

𝑛
→ 𝑥
‡. The net

{𝑢
𝑡
} is, therefore, relatively compact, as 𝑡 → 0

+, in the norm
topology.

In (20), letting 𝑛 → ∞, we get

󵄩󵄩󵄩󵄩󵄩
𝑥
‡
− 𝑢

󵄩󵄩󵄩󵄩󵄩

2

≤
1

1 − 𝜅
⟨󰜚 (𝑢) − 𝑢, 𝑥

‡
− 𝑢⟩ , 𝑢 ∈ Fix (W) .

(22)

Therefore, 𝑥‡ solves the variational inequality

𝑥
‡
∈ Fix (W) , ⟨(𝐼 − 󰜚) 𝑢, 𝑢 − 𝑥

‡
⟩ ≥ 0, 𝑢 ∈ Fix (W) .

(23)

By Lemma 3, (23) equals its dual variational inequality

𝑥
‡
∈ Fix (W) , ⟨(I − 󰜚) 𝑥

‡
, 𝑢 − 𝑥

‡
⟩ ≥ 0, 𝑢 ∈ Fix (W) .

(24)

This indicates that 𝑥‡ = (projFix(W)󰜚)𝑥
‡. That is, 𝑥‡ is the

unique fixed point in Fix(W) of the contraction projFix(W)󰜚.
So, the entire net {𝑢

𝑡
} converges in norm to 𝑥

‡ as 𝑡 → 0
+.

This completes the proof.

Corollary 6. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let W : C → C be a nonexpansive
mapping with Fix(W) ̸= 0.

For each 𝑡 ∈ (0, 1), let the net {𝑢
𝑡
} be defined by

𝑢
𝑡
= W projC [(1 − 𝑡) 𝑢

𝑡
] . (25)

Then, as 𝑡 → 0
+, the net {𝑢

𝑡
} converges strongly to the

minimum-norm fixed point ofW.

Proof. As a matter of fact, in (9), we choose 󰜚 = 0, and then
(9) reduces to (25). From Proposition 5, (24) is reduced to

0 ≤ ⟨𝑥
‡
, 𝑢 − 𝑥

‡
⟩ , 𝑢 ∈ Fix (W) . (26)



4 Abstract and Applied Analysis

Equivalently,

󵄩󵄩󵄩󵄩󵄩
𝑥
‡󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥
‡
, 𝑢⟩ , 𝑢 ∈ Fix (W) . (27)

This implies that
󵄩󵄩󵄩󵄩󵄩
𝑥
‡󵄩󵄩󵄩󵄩󵄩

≤ ‖𝑢‖ , 𝑢 ∈ Fix (W) . (28)

Therefore, 𝑥‡ is the minimum-norm fixed point of W. This
completes the proof.

Algorithm 7. Let C be a nonempty closed subset of a real
Hilbert space H. Let T : C → C be a pseudocontraction
and let 󰜚 : C → H be a 𝜅-contraction. Let {𝜉

𝑛
} ⊂ [0, 1] and

{𝜂
𝑛
} ⊂ [0, 1] be two real number sequences. For 𝑥

0
∈ C, we

define a sequence {𝑥
𝑛
} iteratively by

𝑥
𝑛+1

= projC [𝜉
𝑛
󰜚 (𝑥
𝑛
) + (1 − 𝜉

𝑛
− 𝜂
𝑛
) 𝑥
𝑛
+ 𝜂
𝑛
T𝑥
𝑛
] , 𝑛 ≥ 0.

(29)

Theorem 8. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let T : C → C be an 𝐿-Lipschitzian
and pseudocontraction with Fix(T) ̸= 0 and 󰜚 : C → H a 𝜅-
contraction. Suppose the following conditions are satisfied:

(C1) lim
𝑛→∞

𝜉
𝑛
= 0 and ∑

∞

𝑛=0
𝜉
𝑛
= ∞;

(C2) lim
𝑛→∞

(𝜉
𝑛
/𝜂
𝑛
) = lim

𝑛→∞
(𝜂
2

𝑛
/𝜉
𝑛
) = 0;

(C3) lim
𝑛→∞

((𝜉
𝑛
𝜂
𝑛−1

− 𝜉
𝑛−1

𝜂
𝑛
)/𝜉
2

𝑛
𝜂
𝑛−1

) = 0.

Then the sequence {𝑥
𝑛
} generated by the algorithm (29)

converges strongly to 𝑥
‡
= (projFix(T)󰜚)𝑥

‡.

Proof. First, we prove that the sequence {𝑥
𝑛
} is bounded. We

will show this fact by induction. According to conditions (C1)
and (C2), there exists a sufficiently large positive integer 𝑚

such that

1 −
2

1 − 𝜅
(𝐿 + 1) (𝐿 + 3) (𝜉

𝑛
+ 2𝜂
𝑛
+

𝜂
2

𝑛

𝜉
𝑛

) > 0, 𝑛 ≥ 𝑚.

(30)

Fix a 𝑝 ∈ Fix(T) and take a constant𝑀
1
> 0 such that

max {󵄩󵄩󵄩󵄩𝑥0 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥1 − 𝑝
󵄩󵄩󵄩󵄩 , . . . ,

󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝
󵄩󵄩󵄩󵄩 , 2

󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩}

≤ 𝑀
1
.

(31)

Next, we show that ‖𝑥
𝑚+1

− 𝑝‖ ≤ 𝑀
1
.

Set

𝑦
𝑚

= 𝜉
𝑚
󰜚 (𝑥
𝑚
) + (1 − 𝜉

𝑚
− 𝜂
𝑚
) 𝑥
𝑚
+ 𝜂
𝑚
T𝑥
𝑚
;

thus, 𝑥
𝑚+1

= projC [𝑦
𝑚
] .

(32)

Then we have

⟨𝑥
𝑚+1

− 𝑦
𝑚
, 𝑥
𝑚+1

− 𝑝⟩ ≤ 0. (33)

Since T is pseudocontractive, I − T is monotone. So, we have

⟨(I − T) 𝑥
𝑚+1

− (I − T) 𝑝, 𝑥
𝑚+1

− 𝑝⟩ ≥ 0. (34)

From (29), (33), and (34), we obtain

󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝
󵄩󵄩󵄩󵄩
2

= ⟨𝑥
𝑚+1

− 𝑝, 𝑥
𝑚+1

− 𝑝⟩

= ⟨𝑥
𝑚+1

− 𝑦
𝑚
, 𝑥
𝑚+1

− 𝑝⟩ + ⟨𝑦
𝑚
− 𝑝, 𝑥

𝑚+1
− 𝑝⟩

≤ ⟨𝑦
𝑚
− 𝑝, 𝑥

𝑚+1
− 𝑝⟩

= ⟨𝑥
𝑚
− 𝑝, 𝑥

𝑚+1
− 𝑝⟩

− 𝜉
𝑚
⟨𝑥
𝑚
− 󰜚 (𝑥

𝑚
) , 𝑥
𝑚+1

− 𝑝⟩

+ 𝜂
𝑚
⟨T𝑥
𝑚
− 𝑥
𝑚
, 𝑥
𝑚+1

− 𝑝⟩

= ⟨𝑥
𝑚
− 𝑝, 𝑥

𝑚+1
− 𝑝⟩

+ 𝜉
𝑚
⟨𝑥
𝑚+1

− 𝑥
𝑚
, 𝑥
𝑚+1

− 𝑝⟩

+ 𝜉
𝑚
⟨󰜚 (𝑥
𝑚
) − 󰜚 (𝑝) , 𝑥

𝑚+1
− 𝑝⟩

+ 𝜉
𝑚
⟨𝑓 (𝑝) − 𝑝, 𝑥

𝑚+1
− 𝑝⟩

− 𝜉
𝑚
⟨𝑥
𝑚+1

− 𝑝, 𝑥
𝑚+1

− 𝑝⟩

+ 𝜂
𝑚
⟨T𝑥
𝑚
− T𝑥
𝑚+1

, 𝑥
𝑚+1

− 𝑝⟩

+ 𝜂
𝑚
⟨𝑥
𝑚+1

− 𝑥
𝑚
, 𝑥
𝑚+1

− 𝑝⟩

− 𝜂
𝑚
⟨𝑥
𝑚+1

− T𝑥
𝑚+1

, 𝑥
𝑚+1

− 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑚

󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑥
𝑚

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑚
𝜅
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝜉
𝑚

󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 − 𝜉
𝑚

󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑚
(
󵄩󵄩󵄩󵄩T𝑥𝑚 − T𝑥

𝑚+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑥

𝑚

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 + 𝜉
𝑚
𝜅)

󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑚

󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 − 𝜉
𝑚

󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝
󵄩󵄩󵄩󵄩
2

+ (𝐿 + 1) (𝜉
𝑚
+ 𝜂
𝑚
)
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑥

𝑚

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 .

(35)

It follows that

(1 + 𝜉
𝑚
)
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 + 𝜉
𝑚
𝜅)

󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝
󵄩󵄩󵄩󵄩

+𝜉
𝑚

󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ (𝐿 + 1) (𝜉
𝑚
+ 𝜂
𝑚
)
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑥

𝑚

󵄩󵄩󵄩󵄩 .

(36)
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By (29), we have

󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑥
𝑚

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩projC [𝜉

𝑚
󰜚 (𝑥
𝑚
) + (1 − 𝜉

𝑚
− 𝜂
𝑚
) 𝑥
𝑚
+ 𝜂
𝑚
T𝑥
𝑚
]

−projC [𝑥
𝑚
]
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜉𝑚󰜚 (𝑥𝑚) + (1 − 𝜉

𝑚
− 𝜂
𝑚
) 𝑥
𝑚
+ 𝜂
𝑚
T𝑥
𝑚
− 𝑥
𝑚

󵄩󵄩󵄩󵄩

≤ 𝜉
𝑚
(
󵄩󵄩󵄩󵄩󰜚 (𝑥𝑚) − 󰜚 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝜂
𝑚
(
󵄩󵄩󵄩󵄩T𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩)

≤ 𝜉
𝑚
(
󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩 + (1 + 𝜅)
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩)

+ (𝐿 + 1) 𝜂
𝑚

󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝
󵄩󵄩󵄩󵄩

≤ (𝐿 + 1 + 𝜅) (𝜉
𝑚
+ 𝜂
𝑚
)
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜉
𝑚

󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

≤ (𝐿 + 3) (𝜉
𝑚
+ 𝜂
𝑚
)𝑀
1
.

(37)

Substitute (37) into (36) to obtain

(1 + 𝜉
𝑚
)
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 + 𝜉
𝑚
𝜅)

󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜉
𝑚

󵄩󵄩󵄩󵄩󰜚 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

+ (𝐿 + 1) (𝐿 + 3) (𝜉
𝑚
+ 𝜂
𝑚
)
2

𝑀
1

≤ (1 +
1 + 𝜅

2
𝜉
𝑚
)𝑀
1
+ (𝐿 + 1) (𝐿 + 3) (𝜉

𝑚
+ 𝜂
𝑚
)
2

𝑀
1
;

(38)

that is,
󵄩󵄩󵄩󵄩𝑥𝑚+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ [1 −
((1 − 𝜅) 𝜉

𝑚
/2) − (𝐿 + 1) (𝐿 + 3) (𝜉

𝑚
+ 𝜂
𝑚
)
2

1 + 𝜉
𝑚

]𝑀
1

= {1 − (((
(1 − 𝜅) 𝜉

𝑚

2
)[1 −

2

1 − 𝜅
(𝐿 + 1) (𝐿 + 3)

× (𝜉
𝑚
+ 2𝜂
𝑚
+ (

𝜂
2

𝑚

𝜉
𝑚

))])

× (1 + 𝜉
𝑚
)
−1

)}𝑀
1

≤ 𝑀
1
.

(39)

By induction, we get
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝑀
1
, ∀𝑛 ≥ 0, (40)

which implies that {𝑥
𝑛
} is bounded and so is {T𝑥

𝑛
}. Now, we

take a constant𝑀
2
> 0 such that

𝑀
2
= sup
𝑛

{
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩T𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩} . (41)

Set S = (2I − T)
−1 (i.e., S is a resolvent of the monotone

operator I − T). We then have that S is a nonexpansive self
mapping of C and Fix(S) = Fix(T).

By Proposition 5, we know that, whenever {𝛾
𝑛
} ⊂ (0, 1)

and 𝛾
𝑛
→ 0
+, the sequence {𝑧

𝑛
} defined by

𝑧
𝑛
= S projC [𝛾

𝑛
󰜚 (𝑧
𝑛
) + (1 − 𝛾

𝑛
) 𝑧
𝑛
] (42)

converges strongly to the fixed point 𝑥‡ of S (and of T as
Fix(S) = Fix(T)). Without loss of generality, we may assume
that ‖𝑧

𝑛
‖ ≤ 𝑀

2
for all 𝑛.

It suffices to prove that ‖𝑥
𝑛+1

− 𝑧
𝑛
‖ → 0 as 𝑛 → ∞ (for

some 𝛾
𝑛
→ 0
+). To this end, we rewrite (42) as

(2I − T) 𝑧
𝑛
= projC [𝛾

𝑛
󰜚 (𝑧
𝑛
) + (1 − 𝛾

𝑛
) 𝑧
𝑛
] , 𝑛 ≥ 0. (43)

By using the property of the metric projection, we have

⟨𝛾
𝑛
󰜚 (𝑧
𝑛
) + (1 − 𝛾

𝑛
) 𝑧
𝑛
− (2𝑧
𝑛
− T𝑧
𝑛
) , 𝑥
𝑛+1

− (2𝑧
𝑛
− T𝑧
𝑛
)⟩ ≤ 0

󳨐⇒ ⟨−𝛾
𝑛
(𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) , 𝑥
𝑛+1

− 𝑧
𝑛
− (𝑧
𝑛
− T𝑧
𝑛
)⟩

+ ⟨T𝑧
𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
− (𝑧
𝑛
− T𝑧
𝑛
)⟩ ≤ 0

󳨐⇒ ⟨−𝛾
𝑛
(𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) + T𝑧

𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

+
󵄩󵄩󵄩󵄩𝑧𝑛 − T𝑧

𝑛

󵄩󵄩󵄩󵄩
2

≤ ⟨𝛾
𝑛
(𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) , T𝑧

𝑛
− 𝑧
𝑛
⟩

󳨐⇒ ⟨−𝛾
𝑛
(𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) + T𝑧

𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚 (𝑧
𝑛
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩T𝑧𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

󳨐⇒ ⟨− (𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) +

T𝑧
𝑛
− 𝑧
𝑛

𝛾
𝑛

, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚 (𝑧

𝑛
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩T𝑧𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 .

(44)

Note that

󵄩󵄩󵄩󵄩𝑧𝑛 − T𝑧
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩projC [𝛾

𝑛
󰜚 (𝑧
𝑛
) + (1 − 𝛾

𝑛
) 𝑧
𝑛
] − 𝑧
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛾𝑛󰜚 (𝑧𝑛) + (1 − 𝛾

𝑛
) 𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩

= 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚 (𝑧
𝑛
)
󵄩󵄩󵄩󵄩 .

(45)

Hence, we get

⟨− (𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) +

T𝑧
𝑛
− 𝑧
𝑛

𝛾
𝑛

, 𝑥
𝑛+1

− 𝑧
𝑛
⟩ ≤ 𝛾

𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚(𝑧
𝑛
)
󵄩󵄩󵄩󵄩
2

.

(46)
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From (42), we have
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩S projC [𝛾

𝑛+1
󰜚 (𝑧
𝑛+1

) + (1 − 𝛾
𝑛+1

) 𝑧
𝑛+1

]

−S projC [𝛾
𝑛
󰜚 (𝑧
𝑛
) + (1 − 𝛾

𝑛
) 𝑧
𝑛
]
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛾𝑛+1󰜚 (𝑧𝑛+1) + (1 − 𝛾

𝑛+1
) 𝑧
𝑛+1

−𝛾
𝑛
󰜚 (𝑧
𝑛
) − (1 − 𝛾

𝑛
) 𝑧
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛾

𝑛+1
) (𝑧
𝑛+1

− 𝑧
𝑛
) + (𝛾
𝑛
− 𝛾
𝑛+1

)

× (𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) + 𝛾

𝑛+1
(󰜚 (𝑧
𝑛+1

) − 󰜚 (𝑧
𝑛
))
󵄩󵄩󵄩󵄩

≤ [1 − (1 − 𝜅) 𝛾
𝑛+1

]
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾

𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚 (𝑧

𝑛
)
󵄩󵄩󵄩󵄩 .

(47)

It follows that
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾
𝑛

󵄨󵄨󵄨󵄨

(1 − 𝜅) 𝛾
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚 (𝑧
𝑛
)
󵄩󵄩󵄩󵄩 . (48)

Set

𝛾
𝑛
:=

𝜉
𝑛

𝜂
𝑛

. (49)

By condition (C2), 𝛾
𝑛

→ 0
+ and 𝛾

𝑛
∈ (0, 1), for 𝑛 large

enough. Hence, by (46) and (48), we have

⟨−(𝑧
𝑛
− 󰜚 (𝑧

𝑛
)) +

𝜂
𝑛
(T𝑧
𝑛
− 𝑧
𝑛
)

𝜉
𝑛

, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

≤
𝜉
𝑛

𝜂
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚(𝑧
𝑛
)
󵄩󵄩󵄩󵄩
2

≤
𝜉
𝑛

𝜂
𝑛

𝑀
2

2
,

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
𝑛−1

󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨𝜉𝑛𝜂𝑛−1 − 𝜉
𝑛−1

𝜂
𝑛

󵄨󵄨󵄨󵄨

𝜉
𝑛
𝜂
𝑛−1

𝑀
2
.

(50)

By (29), we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩projC [𝜉

𝑛
󰜚 (𝑥
𝑛
) + (1 − 𝜉

𝑛
− 𝜂
𝑛
) 𝑥
𝑛
+ 𝜂
𝑛
T𝑥
𝑛
]

−projC𝑥𝑛
󵄩󵄩󵄩󵄩

≤ 𝜉
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 󰜚 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 + 𝜂
𝑛

󵄩󵄩󵄩󵄩T𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ (𝜉
𝑛
+ 𝜂
𝑛
)𝑀
2
.

(51)

Next, we estimate ‖𝑥
𝑛+1

− 𝑧
𝑛+1

‖. Since 𝑥
𝑛+1

= projC[𝑦𝑛],
⟨𝑥
𝑛+1

− 𝑦
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩ ≤ 0. Then, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

= ⟨𝑥
𝑛+1

− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

= ⟨𝑥
𝑛+1

− 𝑦
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝑦
𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

≤ ⟨𝑦
𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

= ⟨[𝜉
𝑛
󰜚 (𝑥
𝑛
) + (1 − 𝜉

𝑛
− 𝜂
𝑛
) 𝑥
𝑛
+ 𝜂
𝑛
T𝑥
𝑛
]

−𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

= (1 − 𝜉
𝑛
− 𝜂
𝑛
) ⟨𝑥
𝑛
− 𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

+ 𝜂
𝑛
⟨T𝑥
𝑛
− T𝑥
𝑛+1

, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

+ 𝜂
𝑛
⟨T𝑥
𝑛+1

− T𝑧
𝑛
, 𝑥
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝜉
𝑛
(󰜚 (𝑥
𝑛
) − 𝑧
𝑛
)

+ 𝜂
𝑛
(T𝑧
𝑛
− 𝑧
𝑛
) , 𝑥
𝑛+1

− 𝑧
𝑛
⟩ .

(52)

It follows that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 𝜉
𝑛
− 𝜂
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

+ 𝜂
𝑛
𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

+ 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

+ 𝜉
𝑛
⟨󰜚 (𝑧

𝑛
) − 𝑧
𝑛
+

𝜂
𝑛

𝜉
𝑛

(T𝑧
𝑛
− 𝑧
𝑛
) , 𝑥
𝑛+1

− 𝑧
𝑛
⟩

≤
1 − 𝜉
𝑛
− 𝜂
𝑛

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩
2

)

+
𝜂
2

𝑛

2

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

+
𝐿
2

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩
2

+ 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

+
𝜉
2

𝑛

𝜂
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚(𝑧
𝑛
)
󵄩󵄩󵄩󵄩
2

.

(53)

Thus,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

≤
1 − 𝜉
𝑛
− 𝜂
𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

+
𝐿
2

1 + 𝜉
𝑛
− 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+
2𝜉
2

𝑛

(1 + 𝜉
𝑛
− 𝜂
𝑛
) 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 󰜚(𝑧
𝑛
)
󵄩󵄩󵄩󵄩
2

+
𝜂
2

𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 −
2𝜉
𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩
2

+
(𝜉
𝑛
+ 𝜂
𝑛
)
2

1 + 𝜉
𝑛
− 𝜂
𝑛

𝐿
2
𝑀
2

2
+

2𝜉
2

𝑛

(1 + 𝜉
𝑛
− 𝜂
𝑛
) 𝜂
𝑛

𝑀
2

2

+
𝜂
2

𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

4𝑀
2

2

≤ (1 −
2𝜉
𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩)
2
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+ {
(𝜉
𝑛
+ 𝜂
𝑛
)
2

1 + 𝜉
𝑛
− 𝜂
𝑛

+
2𝜉
2

𝑛

(1 + 𝜉
𝑛
− 𝜂
𝑛
) 𝜂
𝑛

+
𝜂
2

𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

}𝑀

≤ (1 −
2𝜉
𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩
2

+
1

1 + 𝜉
𝑛
− 𝜂
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
𝑛−1

󵄩󵄩󵄩󵄩

× (2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩)

+ {
(𝜉
𝑛
+ 𝜂
𝑛
)
2

1 + 𝜉
𝑛
− 𝜂
𝑛

+
2𝜉
2

𝑛

(1 + 𝜉
𝑛
− 𝜂
𝑛
) 𝜂
𝑛

+
𝜂
2

𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

}𝑀

≤ (1 −
2𝜉
𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩
2

+
1

1 + 𝜉
𝑛
− 𝜂
𝑛

󵄨󵄨󵄨󵄨𝜉𝑛𝜂𝑛−1 − 𝜉
𝑛−1

𝜂
𝑛

󵄨󵄨󵄨󵄨

𝜉
𝑛
𝜂
𝑛−1

𝑀

+ {
(𝜉
𝑛
+ 𝜂
𝑛
)
2

1 + 𝜉
𝑛
− 𝜂
𝑛

+
2𝜉
2

𝑛

(1 + 𝜉
𝑛
− 𝜂
𝑛
) 𝜂
𝑛

+
𝜂
2

𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

}𝑀,

(54)

where the finite constant𝑀 > 0 is given by

𝑀 := max {𝐿2𝑀2
2
, 4𝑀
2

2
,

𝑀
2
sup
𝑛

(2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩)} .

(55)

Set

𝛿
𝑛
=

2𝜉
𝑛

1 + 𝜉
𝑛
− 𝜂
𝑛

≈ 2𝜉
𝑛

(as 𝑛 󳨀→ ∞) ,

𝜃
𝑛
= {

𝜉
𝑛
𝜂
𝑛−1

− 𝜉
𝑛−1

𝜂
𝑛

2𝜉2
𝑛
𝜂
𝑛−1

+
1

2
(𝜉
𝑛
+ 2𝜂
𝑛
+

𝜂
2

𝑛

𝜉
𝑛

) +
𝜉
𝑛

𝜂
𝑛

+
𝜂
2

𝑛

2𝜉
𝑛

}𝑀.

(56)

Then (54) can be rewritten as
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛−1

󵄩󵄩󵄩󵄩
2

+ 𝛿
𝑛
𝜃
𝑛
. (57)

By the conditions (C1)–(C3), we deuce that

lim
𝑛→∞

𝛿
𝑛
= 0,

∞

∑
𝑛=1

𝛿
𝑛
= ∞, lim

𝑛→∞
𝜃
𝑛
= 0. (58)

From Lemma 4 and (57), we get ‖𝑥
𝑛+1

− 𝑧
𝑛
‖
2

→ 0 as 𝑛 →

∞. This completes the proof.

Algorithm 9. Let C be a nonempty closed subset of a real
Hilbert space H. Let T : C → C be a pseudocontraction. Let
{𝜉
𝑛
} ⊂ [0, 1] and {𝜂

𝑛
} ⊂ [0, 1] be two real number sequences.

For 𝑥
0
∈ C, we define a sequence {𝑥

𝑛
} iteratively by

𝑥
𝑛+1

= projC [(1 − 𝜉
𝑛
− 𝜂
𝑛
) 𝑥
𝑛
+ 𝜂
𝑛
T𝑥
𝑛
] , 𝑛 ≥ 0. (59)

Corollary 10. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let T : C → C be an 𝐿-Lipschitzian
and pseudocontraction with Fix(T) ̸= 0. Suppose the following
conditions are satisfied:

(C1) lim
𝑛→∞

𝜉
𝑛
= 0 and ∑

∞

𝑛=0
𝜉
𝑛
= ∞;

(C2) lim
𝑛→∞

(𝜉
𝑛
/𝜂
𝑛
) = lim

𝑛→∞
(𝜂
2

𝑛
/𝜉
𝑛
) = 0;

(C3) lim
𝑛→∞

((𝜉
𝑛
𝜂
𝑛−1

− 𝜉
𝑛−1

𝜂
𝑛
)/𝜉
2

𝑛
𝜂
𝑛−1

) = 0.
Then the sequence {𝑥

𝑛
} generated by the algorithm (59)

converges strongly to the minimum-norm fixed point of T .
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