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Recent research confirms that slip of a fluid on the solid surface occurs at micrometer scale. Slip on solid surface may cause the
change of interior material deformation which consequently leads to the change of velocity profile and stress field. This paper
concerns the time periodic electroosmotic flow in a channel with slip boundary driven by an alternating electric field, which arises
from the study of particlemanipulation and separation such as flowpumping andmixing enhancement. Although exact solutions to
various flow problems of electroosmotic flows under the no-slip condition have been obtained, exact solutions for problems under
slip boundary conditions have seldombeen addressed. In this paper, an exact solution is derived for the time periodic electroosmotic
flow in two-dimensional straight channels under slip boundary conditions.

1. Introduction

One of themajor focuses in scientific research during the past
decades has been the study of material behaviour at micro-
and nanoscale. The subject of micro- and nanofluidics con-
cerns mass and momentum transfer in micro- and nanoscale
systems or around micro- or nanosized objects, as well as the
design and application of biological and engineering devices
and systems involving fluid flow through microchannels [1–
3]. The study of microflows has attracted great attention
from the science and engineering communities in the effort
of developing a better understanding of the mechanism of
microflows and consequently developing better models and
control. Traditionally, in themodel for fluid flows, the no-slip
boundary condition is used; that is, the fluid velocity relative
to the solid is assumed to be zero on the fluid-solid interface.
However, it has been established that the no-slip condition is a
hypothesis instead of a condition deduced from any principle.
Evidence of slip of a fluid on the solid surface was reported by
many researchers [4, 5].

In recent years, time periodic electroosmosis has been
studied intensively due to the recent development of

microfluidic devices. Time periodic electroosmosis is known
as AC electroosmosis, and the driving force is generated by
an alternative electric field. Dose and Guiochon published
numerical results for impulsive started electroosmotic flow
[6]. Green et al. studied the electroosmosis on a planner
microelectrode under both steady and unsteady fields [7].
Soderman and Jonsson investigated the electroosmotic flows
for various geometries and derived various analytical results
for the flow in two-dimensional microchannels and for the
flow over a flat plate [8]. By using the green functionmethod,
Kang and coworkers [9] analysed the instantaneous velocity
of the flow through a microchannel with time-dependent
electric field. Jian et al. [10] studied the time periodic
electroosmotic flow through circular microchannels. They
discussed two different kinds of situations, which are the
electroosmotic flow through the parallel plates and circular
tubes.

Although analytical and numerical solutions to many
flow problems of Newtonian fluids have been established
under the no-slip assumption [11–13], very few exact solutions
for time-dependent problems have been obtained for the slip
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Figure 1: The flow channel and coordinate system used.

case [14, 15]. Hence, we investigate, in this paper, the time
periodic electroosmotic flows in a microchannel under the
Navier slip assumption. The rest of the paper is organized
as follows. In Section 2, the mathematical equations for
the channel flow are presented, which include the partial
differential equations and the boundary conditions based on
the slip assumption. In Section 3, the general solution for
the velocity of the fluid in the channel is derived with some
arbitrary constants. Then the slip boundary condition and
symmetric condition are used to determine the arbitrary con-
stants. Numerical investigations are then given in Section 4,
followed by a concluding remark in Section 5.

2. Problem Description and
Mathematical Formation

The problem considered is the electrically driven flow of
fluid through channels with height 2 ℎ. The geometry of the
channels and the coordinates (𝑥, 𝑦, 𝑧) used are shown in
Figure 1.

Based on the principle of continuous mechanics, the
governing equations for the flow of an incompressible ionized
fluid are the standard Navier-Stokes equations:

𝜌𝑓 (
𝜕�⃗�

𝜕𝑡
+ (�⃗� ⋅ ∇) �⃗�) = −∇𝑃 + 𝜇∇

2
�⃗� + 𝜌𝑒�⃗�, (1)

where 𝑃 is the pressure, 𝜌𝑓 and 𝜌𝑒 are, respectively, the fluid
density and the electric charge density, and �⃗� = (𝑢, V, 𝑤) is
the velocity vector with 𝜇 being the fluid viscosity. The last
term on the right side denotes the electroosmotic body forces
and �⃗� denotes the externally applied electric field.

We assume fully developed symmetric channel flow, and
thus the swirling flow and consequently the velocity com-
ponents in 𝑦 and 𝑧 directions can be neglected. This allows
us to use the superposition principle because the resulted
unsteady Navier-Stokes equations for this case are linear in
velocity.Thismeans that we can solve exactly the pressure and
electroosmotically driven flows separately and then combine
the two solutions to get the solution of the problem with the
combined effects. The form of the electroosmotic body force,
in general, depends on the formof the electric field applied on
the system. In this paper, we will focus on sinusoidally driven
flows.

Taking into account the above assumptions, (1) reduces to

𝜌𝑓

𝜕𝑢

𝜕𝑡
= 𝜇

𝜕
2
𝑢

𝜕𝑦
2
+ 𝜌𝑒𝐸𝑥 sin (Ω𝑡) , (2)

where 𝐸𝑥 and Ω are, respectively, the magnitude and the
frequency of the external electric field �⃗�. With (2), we can
then determine the velocity of the flow driven by the time
periodic electric field.

Based on the theory of electric field [16], the 𝜌𝑒 in (2) can
be determined by

𝜌𝑒 = −2𝑛0𝑒𝑧 sinh(
𝑒𝑧𝜓

𝑘𝐵𝑇
) , (3)

where 𝑛0 denotes the average number of positive or negative
ions in the buffer, 𝑧 is the valance, 𝑒 is the electron charge, 𝑇
is the absolute temperature, 𝜓 is the electric potential, and 𝑘𝐵

is the Boltzmann constant. Let 𝜓∗ = 𝜓/𝜉 be the normalized
electroosmotic potential in which 𝜉 is the zeta potential and
let 𝛼 = (𝑒𝑧𝜉/𝑘𝐵)𝑇 be a parameter; then we have

𝜌𝑒 = −2𝑛0𝑒𝑧 sinh (𝛼𝜓
∗
) . (4)

Based on the work in [16], 𝜓 is governed by the Poisson-
Boltzmann equation:

∇
2
𝜓 = −

𝜌𝑒

𝜖
. (5)

in which 𝜖 is the permittivity, and we have assumed that the
effect of time fluctuation of the external electric field on the
electric potential is negligible.

It has been established in the literature that the effective
thickness of the electric double layer (EDL) depends on the
ionic energy parameter𝛼. For example, for𝛼 = 5, the effective
electric double layer thickness is about 4.217 𝜆, where 𝜆 is
related to other system parameters by

𝜔 =
1

𝜆
= √

8𝜋𝑛0𝑒
2
𝑧
2

𝐷𝑘𝐵𝑇
. (6)

In most microfluidic applications, the value of 𝜆 is
about 10–100 nm, which is generally much smaller than the
height of a typical microchannel. Hence, the electroosmotic
potential generally reaches zero in the channel center, and
its distribution along the channel height can be expressed by
[16, 17]

𝜓
∗
=

4

𝛼
tanh−1 [tanh(

𝛼

4
) exp(−𝜒)] , (7)

where 𝜒 = 𝑦/𝜆 denotes the distance from the channel wall.
From the definition of theDebye-Huckel parameter𝜔, we can
write the electroosmotic body force as

−2𝑛0𝑒𝑧𝐸𝑥 sinΩ𝑡 =
𝜔
2
𝜇𝑢HS
𝛼

sinΩ𝑡, (8)

where 𝑢HS = −𝜖𝜁𝐸𝑥/𝜇 is the Helmholtz-Smoluchowski
velocity. Then, (2) can be written as

𝜌𝑓

𝜕𝑢

𝜕𝑡
= 𝜇

𝜕
2
𝑢

𝜕𝑦
2
+

𝜔
2
𝜇𝑢HS
𝛼

sinh (𝛼𝜓
∗
) sinΩ𝑡. (9)

To completely determine the fluid flow in the channel,
the differential equation (2) must be supplemented by a
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Table 1: 𝐴 and 𝐵 values for different sets of model parameters.

𝜅 𝛼 𝐴 𝐵

0.1
1 −1.5583 − 1.6348𝑖 −4.6373 + 2.0952𝑖

3 −18.0859 − 2.6534𝑖 −23.1309 + 3.2856𝑖

5 −23.6809 − 3.3261𝑖 −30.0499 + 4.0098𝑖

0.01
1 23.9849 − 37.1567𝑖 −34.8651 + 38.3333𝑖

3 38.9742 − 59.1730𝑖 −57.6358 + 60.8270𝑖

5 10.9090 − 537.4980𝑖 −104.6609 + 610.5019𝑖

0.001
1 372.8097 − 389.5891𝑖 −385.0603 + 389.7408𝑖

3 593.6919 − 619.3798𝑖 −611.3080 + 619.6202𝑖

5 732.7149 − 764.5012𝑖 −754.4851 + 764.7988𝑖

set of boundary and initial conditions. To describe the slip
characteristics of a fluid on the solid surface, the Navier slip
condition is used; namely, the velocity of fluid, relative to the
solid surface, is assumed to be proportional to the sheer stress
on the fluid-solid surface; that is,

𝑢 (0, 𝑡) + 𝑙
𝜕𝑢

𝜕𝑦
(0, 𝑡) = 0, (10)

where 𝑙 is the so-called slip length. We should address here
that, for 𝑙 = 0, condition (10) reduces to the no-slip boundary
condition.

In addition, due to the symmetry of velocity about the
symmetric plane 𝑦 = ℎ, we have

𝜕𝑢

𝜕𝑦
(ℎ, 𝑡) = 0. (11)

Now the partial differential equation (9) together with
conditions (10) and (11) constitutes a complete boundary
value problem for the fluid flow in the channel.

3. Solution of the Boundary Value Problems

By introducing the characteristic time 1/Ω and the character-
istic length 𝜆, (9) can be expressed in normalized form

𝜌𝑓𝑢HSΩ
𝜕𝑈

𝜕𝜃
= 𝜇𝑢HS𝜔

2
[
𝜕
2
𝑈

𝜕
2
𝜒

+
sin (𝜃)

𝛼
sinh (𝛼𝜓

∗
)] , (12)

in which 𝜃 = Ω𝑡 denotes the nondimensional time, 𝜒 =

𝑦/𝜆 denotes the nondimensional distance, and 𝑈 = 𝑢/𝑢HS
denotes the nondimensional velocity. From (12), we have

𝜕𝑈

𝜕𝜃
=

1

𝜅
2
[
𝜕
2
𝑈

𝜕
2
𝜒

+
sin (𝜃)

𝛼
sinh (𝛼𝜓

∗
)] , (13)

where 𝜅 = (Ω𝜆
2
/𝜇)
1/2 is a normalized parameter expressed

as a function of the Debye length (𝜆), the electric field
excitation frequency (Ω), and the kinematic viscosity (𝜇).The
parameter 𝜅 represents the ratio of the Debye length to a
diffusion length scale (𝐼𝐷) given by

𝐼𝐷 =
𝜆

𝜅
. (14)

Let �̃� be the solution of the following equation:

𝜕�̃�

𝜕𝜃
=

1

𝜅
2
[
𝜕
2
�̃�

𝜕
2
𝜒

+
𝑒
𝑖𝜃

𝛼
sinh (𝛼𝜓

∗
)] . (15)

Then, from the linearity and the superposition principle, the
solution of (13) will be𝑈 = Im(�̃�). It is noted that (15) admits
solution of the form �̃� = 𝑒

𝑖𝜃
𝐹(𝜒)wherewe havewritten sin(𝜃)

as the imaginary part of exp(𝑖𝜃), and thus we proceed to solve
(15) first.

The derivative of𝑈(𝜒, 𝜃) with respect to time can then be
written as

𝜕�̃�

𝜕𝜃
= 𝑖 exp(𝑖𝜃) 𝐹(𝜒) (16)

and the second space derivatives can be written as

𝜕
2
�̃�

𝜕
2
𝜒

= exp(𝑖𝜃) 𝑑
2
𝐹

𝑑𝜒
2
. (17)

Therefore (15) becomes

𝑖 exp(𝑖𝜃) 𝐹(𝜒) =
exp(𝑖𝜃)

𝜅
2

[
𝑑
2
𝐹

𝑑𝜒
2

+
sinh (𝛼𝜓

∗
)

𝛼
] . (18)

For the above to be true for all 𝜃 values, we require

𝑑
2
𝐹(𝜒)

𝑑𝜒
2

− 𝑖𝜅
2
𝐹(𝜒) = −

sinh (𝛼𝜓
∗
)

𝛼
. (19)

The general solution of (19) includes a complimentary solu-
tion and a particular solution. The complimentary solu-
tion can be derived by solving the associated homogenous
equation, while the particular solution can be obtained by
using the variation of parameter methods. Through some
calculation, we have

𝐹(𝜒) = 𝐴 exp(𝜅𝜒√𝑖) + 𝐵 exp(−𝜅𝜒√𝑖)

+
1

2𝜅𝛼√𝑖

[ exp(−𝜅𝜒√𝑖)
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Figure 2: Effect of slip length on velocity profile obtained from the model with 𝜃 = 𝜋/2, 𝛼 = 1, and ℎ = 100 𝜆 for various 𝜅 values: (a)
𝜅 = 0.001; (b) 𝜅 = 0.01; (c) 𝜅 = 0.03; (d) 𝜅 = 0.07.

×∫

𝜒

0
exp(𝜅𝜒√𝑖) sinh (𝛼𝜓

∗
) 𝑑𝜒]

−
1

2𝜅𝛼√𝑖

exp(𝜅𝜒√𝑖)

× ∫

𝜒

0
exp(−𝜅𝜒√𝑖) sinh (𝛼𝜓

∗
) 𝑑𝜒,

(20)

and consequently we have

�̃� (𝜒, 𝜃) = 𝐴 exp(𝑖𝜃) exp(𝜅𝜒√𝑖) + 𝐵 exp(𝑖𝜃) exp(−𝜅𝜒√𝑖)

+
exp(𝑖𝜃)
2𝜅𝛼√𝑖

[ exp(−𝜅𝜒√𝑖)

×∫

𝜒

0
exp(𝜅𝜒√𝑖) sinh (𝛼𝜓

∗
) 𝑑𝜒]
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Figure 3: Effect of 𝜅 on velocity profile obtained from the model with 𝜃 = 𝜋/2, 𝛼 = 1, and ℎ = 100 𝜆 for various slip lengths: (a) ℓ = 0; (b)
ℓ = 0.05; (c) ℓ = 0.1; (d) ℓ = 0.5.

−
exp(𝑖𝜃)
2𝜅𝛼√𝑖

[exp(𝜅𝜒√𝑖)∫

𝜒

0
exp(−𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒] .

(21)

Now we proceed to determine the arbitrary constants in
(21). In terms of the nondimensional time 𝜃, the nondimen-

sional distance 𝜒, and the nondimensional velocity 𝑈, the
boundary conditions (10) and (11) become

𝑈 (0, 𝜃) +
𝑙

𝜆

𝜕𝑈

𝜕𝜒
(0, 𝜃) = 0,

𝜕𝑈

𝜕𝜒
(
ℎ

𝜆
, 𝜃) = 0.

(22)
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Figure 4: 3D plot of 𝑈(𝜒, 𝜅) and 𝑈(𝜒, 𝑙) obtained from the model with 𝜃 = 𝜋/2, 𝛼 = 1, and ℎ = 100 𝜆.

As 𝑈(𝜒, 𝜃) = Im(�̃�(𝜒, 𝜃)), (22) will be satisfied if �̃� satis-
fies the following boundary conditions:

�̃� (0, 𝜃) +
𝑙

𝜆

𝜕�̃�

𝜕𝜒
(0, 𝜃) = 0,

𝜕�̃�

𝜕𝜒
(
ℎ

𝜆
, 𝜃) = 0.

(23)

Noticing that �̃� = 𝑒
𝑖𝜃
𝐹(𝜒), the above boundary conditions

become

𝐹(0) +
𝑙

𝜆
𝐹

(0) = 0,

𝐹

(
ℎ

𝜆
) = 0.

(24)

To apply the boundary condition (24), we first need to
calculate the spatial derivative of 𝐹(𝜒). From (7) and (20), we
have

𝐹

(𝜒) = 𝐴 (𝜅√𝑖) exp(𝜅𝜒√𝑖) + 𝐵 (−𝜅√𝑖) exp(−𝜅𝜒√𝑖)

−
1

2𝛼
[exp(−𝜅𝜒√𝑖)∫

𝜒

0
exp(𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒]

−
1

2𝛼
[exp(𝜅𝜒√𝑖)∫

𝜒

0
exp(−𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒] .

(25)

At the centre of the channel, 𝜒 = ℎ/𝜆 and 𝑑𝐹/𝑑𝜒 = 0 and
so from (24) and (25) we have

𝐹

(
ℎ

𝜆
) = 𝐴 (𝜅√𝑖) exp(𝜅

ℎ

𝜆

√𝑖) + 𝐵 (−𝜅√𝑖) exp(−𝜅
ℎ

𝜆

√𝑖)

−
1

2𝛼
exp(−𝜅

ℎ

𝜆

√𝑖)∫

ℎ/𝜆

0
exp(𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒

−
1

2𝛼
exp(𝜅

ℎ

𝜆

√𝑖)∫

ℎ/𝜆

0
exp(−𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒 = 0.

(26)

From (20), (25), and the first equation of (24), we get

(1 +
𝑙

𝜆
𝜅√𝑖)𝐴 + (1 −

𝑙

𝜆
𝜅√𝑖)𝐵 = 0 (27)

and hence

𝐵 = −(1 −
𝑙

𝜆
𝜅√𝑖)

−1

(1 +
𝑙

𝜆
𝜅√𝑖)𝐴. (28)

Substituting (28) into (26) yields

𝐴 = {exp(𝜅
ℎ

𝜆

√𝑖) + (1 −
𝑙

𝜆
𝜅√𝑖)

−1

×(1 +
𝑙

𝜆
𝜅√𝑖) exp(−𝜅

ℎ

𝜆

√𝑖)}

−1
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Figure 5: Effect of the energy parameter 𝛼 on the velocity profile obtained from the model with 𝜃 = 𝜋/2, ℎ = 100 𝜆, and 𝑙 = 0.05 for two
different 𝜅 values: (a) 𝜅 = 0.001 and (b) 𝜅 = 0.03.

× {
1

2𝛼𝜅√𝑖

exp(−𝜅
ℎ

𝜆

√𝑖)∫

ℎ/𝜆

0
exp(𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒

+
1

2𝛼𝜅√𝑖

exp(𝜅
ℎ

𝜆

√𝑖)∫

ℎ/𝜆

0
exp(−𝜅𝜒√𝑖)

× sinh (𝛼𝜓
∗
) 𝑑𝜒} . (29)

4. Numerical Investigation

In this section, we investigate the characteristic of the electric
driven flow. In particular, we will investigate the influence of
various model parameters on the flow behaviour, including
the 𝜅 value, the energy parameter 𝛼, the channel height ℎ, and
the slip parameter 𝑙. Table 1 shows the solutions of𝐴 and𝐵 for
various sets of the model parameters.

In the first example of investigation, we set the channel
height 2 ℎ to be 200 𝜆 where the 𝜆 typically has value of
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different 𝜅 values: (a) 𝜅 = 0.001 and (b) 𝜅 = 0.03.

hundreds of nanometres. Other parameters are chosen as
𝛼 = 1 and 𝜆 = 1. Figures 2 and 3 show the distribution of
velocity along the channel height obtained from the model
with various 𝑙 and 𝜅 values at 𝜃 = 𝜋/2, as functions of 𝜒 for
different values of the parameters 𝜅 and 𝑙. Figure 4 presents

the velocity distribution 𝑈(𝜒, 𝜅) and 𝑈(𝜒, 𝑙), at 𝜃 = 𝜋/2 for
𝛼 = 1 and ℎ = 100 𝜆. The results show that as 𝜅 increases,
the thickness of the layer with significant electrically driven
flow decreases and essentially the velocity at the centre of the
channel is zero for 𝜅 ≥ 0.07 as shown in Figures 3(d) and 4(a).
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It is also found that the slip parameter has significant
influence on the flow behaviour. At 𝜅 = 0.001, as 𝑙 increases
from 0 to 0.5, the flow velocity increases from 1 to about 1.685.

To investigate the effect of the energy parameter 𝛼 on the
flow behaviour, we choose four values of 𝛼 including 1, 3,
5, and 7. Figure 5 shows the influence of 𝛼 on the velocity
distribution for 𝜃 = 𝜋/2, ℎ = 100 𝜆, 𝑙 = 0.05 and two different
𝜅 values of 0.001 and 0.03. For a channelwith fixed dimension,
filled with a given buffer solution, the value of 𝜅 depends
directly on the frequency of the external electric field. Hence,
in practice, it is possible to obtain the desired velocity field by
controlling the frequency by electric switch [7].We found that
as 𝛼 increases, the flow velocity increases. At 𝜅 = 0.001, as 𝛼

increases from 1 to 7, the flow velocity at the centre increases
from 1 to 1.4 as shown in Figure 5. At 𝜅 = 0.03, as 𝛼 increases
from 1 to 7, the flow at the centre approaches zero.

At the typical values of 𝛼 = 1, 𝜅 = 0.03, and 𝑙 = 0.05,
the distributions of velocity along the height of the channel at
various instants of time in an oscillation cycle of electric field
are shown in Figure 6. The magnitude of the velocity varies
with time, which is because of the fluctuation of the external
electric field in time.

Figure 7 shows the influence of channel height on the
magnitude of velocity. It can be noted that the magnitude
of velocity is influenced by the channel height ℎ, while the
pattern of velocity profile along the channel is the same.
Figure 8 shows the influence of 𝜅 on the first derivative of the
velocity.

5. Concluding Results

In this paper, we study the time periodic electroosmotic
flow in a two-dimensional microchannel with slip boundary.
Some analytical and numerical solutions for the slip velocity
field under various different conditions have been obtained.

Our results show that the flow behaviour depends on
the parameters 𝜅 and 𝛼 as well as the slip parameter 𝑙 and
channel height. The parameter 𝜅 represents the ratio of the
electric double layer thickness to a characteristic diffusion
length scale 𝐼𝐷, while 𝛼 is an energy parameter.

We found that, depending on the value of the parameter
𝜅, the flow pattern may change from oscillatory plug flow to
uniform flat flow. Generally, as 𝜅 increases, the velocity at the
centre drops to zero dramatically. We also found that the slip
parameter has significant influence on the flow behaviour. As
𝑙 increases, the flow rate increases.
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“A nanoscale probe for fluidic and ionic transport,” Nature
Nanotechnology, vol. 2, no. 2, pp. 104–107, 2007.

[2] H. Herwig and O. Hausner, “Critical view on new results in
micro-fluid mechanics : an example,” International Journal of
Heat and Mass Transfer, vol. 46, no. 5, pp. 935–937, 2003.



10 Abstract and Applied Analysis

[3] H. Huang, T. S. Lee, and C. Shu, “Lattice Boltzmann method
simulation gas slip flow in long microtubes,” International
Journal of Numerical Methods for Heat and Fluid Flow, vol. 17,
no. 6, pp. 587–607, 2007.

[4] G. Chauveteau, “Rodlike polymer solution flow through fine
pores: influence of pore size on rheological behavior,” Journal
of Rheology, vol. 26, no. 2, pp. 111–142, 1982.

[5] R. Pit, H. Hervet, and L. Leger, “A sequential quadratic pro-
gramming algorithm for nonconvex, nonsmooth constrained
optimization,” Physics Review Letters, vol. 2, no. 85, p. 980, 2000.

[6] E. V. Dose and G. J. Guiochon, “Time scales of transient pro-
cesses in capillary electrophoresis,” Journal of Chromatography,
vol. 652, no. 1, pp. 263–275, 1993.

[7] N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A.
Castellanos, “Fluid flow induced by nonuniform ac electric
fields in electrolytes on microelectrodes. III. Observation of
streamlines and numerical simulation,” Physical Review E, vol.
66, no. 2, Article ID 026305, 2002.

[8] O. Soderman and B. Jonsson, “Electro-osmosis: velocity profiles
in different geometries with both temporal and spatial resolu-
tion,”The Journal of Chemical Physics, vol. 105, no. 23, pp. 10300–
10311, 1996.

[9] Y. J. Kang, C. Yang, and X. Y. Huang, “Dynamic aspects of elec-
troosmotic flow in a cylindrical microcapillary,” International
Journal of Engineering Science, vol. 40, no. 20, pp. 2203–2221,
2002.

[10] Y. J. Jian, L. G. Yang, and Q. S. Liu, “Time periodic electro-
osmotic flow through amicroannulus,” Physics of Fluids, vol. 22,
no. 4, Article ID 042001, 2010.

[11] B. Wiwatanapataphee, Y. H. Wu, J. Archapitak, P. F. Siew, and
B. Unyong, “A numerical study of the turbulent flow of molten
steel in a domain with a phase-change boundary,” Journal of
Computational andAppliedMathematics, vol. 166, no. 1, pp. 307–
319, 2004.

[12] B. Wiwatanapataphee, D. Poltem, Y. H. Wu, and Y. Lenbury,
“Simulation of pulsatile flow of blood in stenosed coronary
artery bypass with graft,” Mathematical Biosciences and Engi-
neering, vol. 3, no. 2, pp. 371–383, 2006.

[13] J. M. Hill, Y. H.Wu, and B.Wiwatanapataphee, “Analysis of flux
flow and the formation of oscillation marks in the continuous
caster,” Journal of Engineering Mathematics, vol. 36, no. 4, pp.
311–326, 1999.

[14] Y. H. Wu, B. Wiwatanapataphee, and M. Hu, “Pressure-driven
transient flows of Newtonian fluids through microtubes with
slip boundary,” Physica A: Statistical Mechanics and Its Appli-
cations, vol. 387, no. 24, pp. 5979–5990, 2008.

[15] B. Wiwatanapataphee, Y. H.Wu, M. Hu, and K. Chayantrakom,
“A study of transient flows of Newtonian fluids through micro-
annuals with a slip boundary,” Journal of Physics A: Mathemati-
cal and Theoretical, vol. 42, no. 6, Article ID 065206, 2009.

[16] P. Dutta and A. Beskok, “Analytical solution of time periodic
electroosmotic flows: analogies to stokes’ second problem,”
Analytical Chemistry, vol. 73, no. 21, pp. 5097–5102, 2001.

[17] R. J. Hunter, Zeta Potential in Colloid Science: Principles and
Applications, Academic Press, New York, NY, USA, 1981.


