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A class of planar cubic Kolmogorov systems with harvest and two positive equilibrium points is investigated. With the help of
computer algebra system MATHEMATICA, we prove that five limit cycles can be bifurcated simultaneously from the two critical
points (1, 1) and (2, 2), respectively, in the first quadrant. Moreover, the necessary conditions of centers are obtained.

1. Introduction

In mathematical ecology, a class of systems of the form

𝑑𝑥
𝑖

𝑑𝑡
= 𝑥
𝑖
𝐹 (𝑥
1
, . . . , 𝑥

𝑛
) , 𝑖 = 1, . . . , 𝑛, (1)

are frequently used to model the interaction of species occu-
pying the same ecological niche. The differential equations
modeling the interaction of two species

𝑑𝑥

𝑑𝑡
= 𝑥𝐹 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑦𝐺 (𝑥, 𝑦) ,

(2)

being known as Kolmogorov systems have been studied
extensively. It is well known that there is no limit cycles in
the classical Lotka-Volterra-Gause model, where 𝐹 and 𝐺 are
linear. There can of course only be one critical point in the
interior of the realistic quadrant (𝑥 > 0, 𝑦 > 0) in this
case, but this can be a centre; however, there are no isolated
periodic solutions.

If 𝐹 and 𝐺 are quadratic, one might think by analogy that
the behavior within the first quadrant is similar to that of
a quadratic system. The examples we give show that this is

not the case, even when 𝐹 and 𝐺 factories. There are many
contributions about this system (see [1, 2]). The latter poses
the question whether a predator-prey system can have two
or more ecologically stable cycles. If 𝐹 and 𝐺 are cubic, there
are also many works to consider its limit cycles and dynamics
behaviors, see [3, 4]. In [5], the authors discussed a class
of cubic Kolmogorov systems with three invariant algebraic
curves.

Recently, a system with three positive equilibrium points
has been investigated, the authors have investigated the
center-focus problems and limit cycles bifurcations. They
have proved that each of the two points (1, 2) and (2, 1) can
bifurcate 1 small limit cycle under a certain condition, and 3
limit cycles can occur near point (1, 1) at the same step [6].
Other Kolmogorov systems were also investigated recently
in [7, 8]. In this paper, we will consider limit cycles which
bifurcate from a class of systems of the form

𝑑𝑥

𝑑𝑡
= −2 (2𝛽 + 𝜃) + (8𝛽 + 5𝜃) 𝑥 −

7

2
(2𝛽 + 𝜃) 𝑥

2

+
1

2
(4𝛽 − 𝜃) 𝑥𝑦 + 𝑎

20
𝑥
3
+
1

2
(6𝛽 + 3𝜃 − 4𝑎

20
) 𝑥
2
𝑦

+
1

2
(−4𝛽 − 𝜃 + 2𝑎

20
) 𝑥
2
𝑦,
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𝑑𝑦

𝑑𝑡
= 2 (2𝛽 + 𝜃) − (8𝛽 + 5𝜃) 𝑦 +

7

2
(2𝛽 + 𝜃) 𝑦

2

+
1

2
(−4𝛽 + 𝜃) 𝑥𝑦 +

1

2
(2𝑏
20
− 4𝛽 − 𝜃) 𝑥

3
+ 𝑏
20
𝑥
2
𝑦

+
1

2
(2𝛽 − 𝜃 − 4𝑏

20
) 𝑥𝑦
2
,

(3)

which have two positive equilibrium points (1, 1) and
(2, 2). We use our Computer Algebra procedure Mathematic
(described in [9]) to compute the focal values at the critical
points (1, 1) and (2, 2). We will show that five limit cycles
can bifurcate from points (1, 1) and (2, 2) simultaneously.
Furthermore, some necessary and sufficient conditions for
two positive equilibrium points to be centers are also to be
given.

This paper is divided into three sections. In Section 2, we
use the recursive algorithm to obtain that 5 limit circles could
be bifurcated from points (1, 1) and (2, 2). In Section 3, nec-
essary and sufficient conditions for two positive equilibrium
points to be centers are proved.

2. Bifurcations of Limit Circles at Two Positive
Equilibrium Points

First of all, it is easy to testify that points (1, 1) and (2, 2) are
two positive equilibriums of system (3) and they are all center
or focus. So we need to compute the Lyapunov constants to
determine its kind of singular. Now, we consider the point
(1, 1).

Through the transformations 𝑥 = 𝑥−1, 𝑦 = 𝑦−1, 𝜏 = 𝛽𝑡,
we still denote 𝑥, 𝑦 by 𝑥, 𝑦 for convenience. The point (1, 1)
will be moved into (0, 0) of the new system, and the system
will be changed into the following system:

𝑑𝑥

𝑑𝜏
= 4𝑥
2
− 𝑦 − 4𝑥𝑦 − 3𝑥

2
𝑦 + 2𝑦

2
+ 2𝑥𝑦

2

−
(𝑎
20
𝑥
2
)

𝛽
−
(𝑎
20
𝑥
3
)

𝛽
+
(2𝑎
20
𝑥𝑦)

𝛽

+
(2𝑎
20
𝑥
2
𝑦)

𝛽
−
(𝑎
20
𝑦
2
)

𝛽
−
(𝑎
20
𝑥𝑦
2
)

𝛽
+
(2𝑥
2
𝜃)

𝛽

−
(3𝑥𝑦𝜃)

(2𝛽)
−
(3𝑥
2
𝑦𝜃)

(2𝛽)
+
(𝑦
2
𝜃)

(2𝛽)
+
(𝑥𝑦
2
𝜃)

(2𝛽)
,

𝑑𝑦

𝑑𝜏
= 𝑥 − 2𝑦

2
− 𝑥𝑦
2
+ 2𝑦
3
−
(𝑏
20
𝑥
2
)

𝛽
+
(2𝑏
20
𝑥𝑦)

𝛽

−
(𝑏
20
𝑥
2
𝑦)

𝛽
−
(𝑏
20
𝑦
2
)

𝛽
+
(2𝑏
20
𝑥𝑦
2
)

𝛽
−
(𝑏
20
𝑦
3
)

𝛽

+
(𝑥𝑦𝜃)

(2𝛽)
−
(3𝑦
2
𝜃)

(2𝛽)
+
(𝑥𝑦
2
𝜃)

(2𝛽)
+
(𝑦
3
𝜃)

(2𝛽)
.

(4)

Furthermore, by the transformations

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑥 − 𝑖𝑦,

𝑇 = 𝑖𝜏, 𝑖 = √−1,

(5)

system (4) can be transformed into the following system:

𝑑𝑧

𝑑𝑇
= 𝑧 +

1

8𝛽
(−2 (2𝑎20 + 2𝑖𝑏20 − (6 − 2𝑖) 𝛽 − (3 − 2𝑖) 𝜃) 𝑧

2

− 2 (−4𝑖𝑎
20
+ 4𝑏
20
+ (4 + 12𝑖) 𝛽 + (3 + 5𝑖) 𝜃) 𝑧𝑤

+ 2 (2𝑎
20
+ 2𝑖𝑏
20
− (2 + 2𝑖) 𝛽 − 𝑖𝜃)𝑤

2

+ (−2𝑎
20
− 2𝑏
20
+ (4 + 4𝑖) 𝛽 + (1 + 𝑖) 𝜃) 𝑧

3

+ 2 ((−1 + 2𝑖) 𝑎20 + (1 + 2𝑖) 𝑏20

+ (1 − 4𝑖) 𝛽 + (1 − 𝑖) 𝜃) 𝑧
2
𝑤

+ ((2 + 4𝑖) 𝑎20 + (2 − 4𝑖) 𝑏20

− (1 − 𝑖) (4𝛽 + 𝜃)) 𝑧𝑤
2

−2 (−𝑎
20
+ 𝑏
20
+ 𝛽 + 𝜃))𝑤

3
;

𝑑𝑤

𝑑𝑇
= −𝑤 −

1

8𝛽
(−2 (2𝑎20 − 2𝑖𝑏20 − (6 + 2𝑖) 𝛽 − (3 + 2𝑖) 𝜃)𝑤

2

− 2 (4𝑖𝑎
20
+ 4𝑏
20
+ (4 − 12𝑖) 𝛽+(3 − 5𝑖) 𝜃)𝑧𝑤

+ 2 (2𝑎
20
− 2𝑖𝑏
20
− (2 − 2𝑖) 𝛽 + 𝑖𝜃) 𝑧

2

+ (−2𝑎
20
− 2𝑏
20
+ (4 − 4𝑖) 𝛽 + (1 − 𝑖) 𝜃)𝑤

3

+ 2 ((−1 − 2𝑖) 𝑎20 + (1 − 2𝑖) 𝑏20

+ (1 + 4𝑖) 𝛽 + (1 + 𝑖) 𝜃)𝑤
2
𝑧

+ ((2 − 4𝑖) 𝑎20 + (2 + 4𝑖) 𝑏20

− (1 + 𝑖) (4𝛽 + 𝜃))𝑤𝑧
2

−2 (−𝑎
20
+ 𝑏
20
+ 𝛽 + 𝜃)) 𝑧

3
;

(6)

applying the recursive formulae in Theorem 2.5 in [9], we
compute singular point quantities and simplify them; then,
we have the following theorem.
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Theorem1. Thefirst four singular point quantities at the origin
of system (6) are as follows:

𝑢
1
=

𝑖

8𝛽2
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃)

× (−4𝑎
20
+ 4𝑏
20
+ 12𝛽 + 9𝜃) ,

𝑢
2
=

𝑖

192𝛽3
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃)

× (344𝛽
2
+ 750𝛽𝜃 + 325𝜃

2
) ,

𝑢
3
= −

𝑖

12288𝛽5
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃) 𝑓

1
,

𝑢
4
= −

𝑖

5898240𝛽7
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃) 𝑓

2
,

(7)

where

𝑓
1
= −213760𝑏

2

20
𝛽
2
− 213760𝑏

20
𝛽
3
+ 147392𝛽

4

− 323520𝑏
2

20
𝛽𝜃 − 697600𝑏

20
𝛽
2
𝜃 + 84104𝛽

3
𝜃

− 116000𝑏
2

20
𝜃
2
− 682160𝑏

20
𝛽𝜃
2
− 554530𝛽

2
𝜃
2

− 203000𝑏
20
𝜃
3
− 544505𝛽𝜃

3
− 128125𝜃

4
;

𝑓
2
= 14520162123939840𝛽

10
+ 77088521496444928𝛽

9
𝜃

+146627049158313472𝛽
8
𝜃
2
+98147703728382592𝛽

7
𝜃
3

−45397952769129120𝛽
6
𝜃
4
−116390817537863400𝛽

5
𝜃
5

− 79417641637292700𝛽
4
𝜃
6
−27193429543260550𝛽

3
𝜃
7

− 5139731868326875𝛽
2
𝜃
8
− 582232780375000𝛽𝜃

9

− 38940972656250𝜃
10
.

(8)

While 𝑢
1
= 𝑢
2
= 𝑢
3
= 0, 𝑢

4
̸= 0, the following theorem

holds.

Theorem 2. The origin of system (6) is a 4-order weak focus if
and only if

𝑎
20
=
1

4
(4𝑏
20
+ 12𝛽 + 9𝜃) ,

344𝛽
2
+ 750𝛽𝜃 + 325𝜃

2
= 0,

𝑓
1
= 0.

(9)

Proof. 𝑢
1
= 𝑢
2
= 𝑢
3
= 0 implies that the relations above

among parameters hold. Further, when 𝑎
20
= (1/4)(4𝑏

20
+

12𝛽 + 9𝜃), 344𝛽
2
+ 750𝛽𝜃 + 325𝜃

2
= 0,

𝑓
1

= −3164304640𝑏
2

20
+ 94432128√1153𝑏

2

20

− 505511440𝑏
20
𝜃 + 16321424√1153𝑏

20
𝜃

− 1443860355𝜃
2
+ 42746637√1153𝜃

2
;

𝑓
2

= −748902307758080𝑏
4

20
+ 22349440598016√1153𝑏

4

20

− 239280807055360𝑏
3

20
𝜃 + 7725648121856√1153𝑏

3

20
𝜃

+5835163629391040𝑏
2

20
𝜃
2
−171639395144768√1153𝑏

2

20
𝜃
2

+969876044134880𝑏
20
𝜃
3
−28776579351136√1153𝑏

20
𝜃
3

+ 3030081181205925𝜃
4
− 89269930142715√1153𝜃

4
,

(10)

we have

Resultant [𝑓
1
, 𝑓
2
, 𝑏
20
] = 2.87343 × 10

53
𝜃
8
̸= 0, (11)

where Resultant[𝑔(𝑥), 𝑓(𝑥), 𝑥] denotes the resultant of
𝑓(𝑥), 𝑔(𝑥) with respect to 𝑥. So 𝑓

2
̸= 0 when 𝑓

1
= 0. Namely,

point (1, 1) is a fourth-order weak focus.

We next study bifurcation of limit cycles of the perturbed
system of (4). When condition (9) holds, we can obtain

𝐽 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷 [𝑢
1
, 𝑎
20
] 𝐷 [𝑢

1
, 𝛽] 𝐷 [𝑢

1
, 𝑏
20
]

𝐷 [𝑢
2
, 𝑎
20
] 𝐷 [𝑢

2
, 𝛽] 𝐷 [𝑢

2
, 𝑏
20
]

𝐷 [𝑢
3
, 𝑎
20
] 𝐷 [𝑢

3
, 𝛽] 𝐷 [𝑢

3
, 𝑏
20
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̸= 0. (12)

In fact,

𝐽 =
7001704448𝑖

234375(−75 + √1153)
11

𝜃7

× (688𝑏
20
+ 227𝜃 + 5√1153𝜃)

2

× (−17721692278080𝑏
2

20
+ 519304637376√1153𝑏

2

20

− 2991374746080𝑏
20
𝜃 + 85097939808√1153𝑏

20
𝜃

−2771947690805𝜃
2
+ 80900776387√1153𝜃

2
) .

(13)

So Resultant[𝐽, 𝑓
3
, 𝑏
20
] ̸= 0, namely, 𝐽 ̸= 0, when 𝑎

20
=

(1/4)(4𝑏
20
+ 12𝛽 + 9𝜃), 344𝛽

2
+ 750𝛽𝜃 + 325𝜃

2
= 0.

The statement mentioned above yields that the following
theorem holds.

Theorem 3. If the origin of system (4) is a 4-order weak focus,
making a small perturbation to the coefficients of system (4),
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then, for perturbed system (4), in a small neighborhood of
the origin, there exist exactly 5 small amplitude limit cycles
enclosing the point (1, 1).

With a similar method, we could discuss the bifurcation
of limit cycles from point (2, 2).Through the transformations
𝑥 = 𝑥 − 2, 𝑦 = 𝑦 − 2, 𝜏 = 𝜃𝑡, we still denote 𝑥, 𝑦 by 𝑥, 𝑦 for
convenience.Then point (1, 1)will be moved into point (0, 0)
of the new system, and the system will be changed into the
following system:

𝑑𝑥

𝑑𝜏
=
𝑥
2

2
− 𝑦 −

(7𝑥𝑦)

2
−
(3𝑥
2
𝑦)

2

+ 𝑦
2
+
(𝑥𝑦
2
)

2
−
(2𝑎
20
𝑥
2
)

𝜃
−
(𝑎
20
𝑥
3
)

𝜃

+
(4𝑎
20
𝑥𝑦)

𝜃
+
(2𝑎
20
𝑥
2
𝑦)

𝜃
−
(2𝑎
20
𝑦
2
)

𝜃

−
(𝑎
20
𝑥𝑦
2
)

𝜃
+
(𝑥
2
𝛽)

𝜃
−
(6𝑥𝑦𝛽)

𝜃
−
(3𝑥
2
𝑦𝛽)

𝜃

+
(4𝑦
2
𝛽)

𝜃
+
(2𝑥𝑦
2
𝛽)

𝜃
,

𝑑𝑦

𝑑𝜏
= 𝑥 +

(3𝑥𝑦)

2
+
𝑦
2

2
+
(𝑥𝑦
2
)

2
+
𝑦
3

2

−
(2𝑏
20
𝑥
2
)

𝜃
+
(4𝑏
20
𝑥𝑦)

𝜃
−
(𝑏
20
𝑥
2
𝑦)

𝜃

−
(2𝑏
20
𝑦
2
)

𝜃
+
(2𝑏
20
𝑥𝑦
2
)

𝜃
−
(𝑏
20
𝑦
3
)

𝜃

−
(2𝑥𝑦𝛽)

𝜃
+
(3𝑦
2
𝛽)

𝜃
−
(𝑥𝑦
2
𝛽)

𝜃
+
(2𝑦
3
𝛽)

𝜃
.

(14)

Furthermore, by the transformations

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑥 − 𝑖𝑦, 𝑇 = 𝑖𝜏, 𝑖 = √−1,

(15)

system (14) can be transformed into the following system:

𝑑𝑧

𝑑𝑇
= 𝑧 +

1

8𝜃
(2 (−4𝑎

20
− 4𝑖𝑏
20
+ (3 + 5𝑖) 𝛽 + (3 − 𝑖) 𝜃) 𝑧

2

+ 2 (8𝑖𝑎
20
− 8𝑏
20
+ (6 − 10𝑖) 𝛽 + (1 − 3𝑖) 𝜃) 𝑧𝑤

− 2 (4𝑎
20
+ 4𝑖𝑏
20
− (9 − 𝑖) 𝛽 − (4 − 2𝑖) 𝜃)𝑤

2

+ (−2𝑎
20
− 2𝑏
20
+ 4 (1 + 4𝑖) 𝛽 + (1 + 𝑖) 𝜃) 𝑧

3

+ 2 ((−1 + 2𝑖) 𝑎20 + (1 + 2𝑖) 𝑏20

+ (1 − 4𝑖) 𝛽 + (1 − 𝑖) 𝜃) 𝑧
2
𝑤

+ (2 (1 + 2𝑖) 𝑎20 + 2 (1 − 2𝑖) 𝑏20 − (1 − 𝑖) (4𝛽 + 𝜃)) 𝑧𝑤
2

−2 (−𝑎
20
+ 𝑏
20
+ 𝛽 + 𝜃)𝑤

3
) ;

𝑑𝑤

𝑑𝑇
= −𝑤 −

1

8𝜃
(2 (−4𝑎

20
+ 4𝑖𝑏
20
+ (3 − 5𝑖) 𝛽 + (3 + 𝑖) 𝜃)𝑤

2

+ 2 (−8𝑖𝑎
20
− 8𝑏
20
+ (6 + 10𝑖) 𝛽 + (1 + 3𝑖) 𝜃) 𝑧𝑤

− 2 (4𝑎
20
− 4𝑖𝑏
20
− (9 + 𝑖) 𝛽 − (4 + 2𝑖) 𝜃) 𝑧

2

+ (−2𝑎
20
− 2𝑏
20
+ 4 (1 − 4𝑖) 𝛽 + (1 − 𝑖) 𝜃)𝑤

3

+ 2 ((−1 − 2𝑖) 𝑎20 + (1 − 2𝑖) 𝑏20

+ (1 + 4𝑖) 𝛽 + (1 + 𝑖) 𝜃)𝑤
2
𝑧

+ (2 (1 − 2𝑖) 𝑎20 + 2 (1 + 2𝑖) 𝑏20 − (1 + 𝑖) (4𝛽 + 𝜃))𝑤𝑧
2

−2 (−𝑎
20
+ 𝑏
20
+ 𝛽 + 𝜃) 𝑧

3
) .

(16)

Direct computation can give the following theorem.

Theorem 4. The first four singular point quantities at the
origin of system (16) are as follows:

𝑢
1
=

𝑖

4𝜃2
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃) (8𝑎

20
− 8𝑏
20
− 3𝜃) ,

𝑢
2
= −

𝑖

48𝜃3
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃) (56𝛽

2
+ 57𝛽𝜃 + 10𝜃

2
) ,

𝑢
3
=

𝑖

6144𝜃5
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃) 𝑓

3
,

𝑢
4
= −

𝑖

5898240𝛽7
(−2𝑎
20
− 2𝑏
20
+ 4𝛽 + 𝜃) 𝑓

4
,

(17)

where

𝑓
3
= −143360𝑏

2

20
𝛽
2
+ 286720𝑏

20
𝛽
3
− 206080𝛽

4

− 168960𝑏
2

20
𝛽𝜃 + 355840𝑏

20
𝛽
2
𝜃 − 264320𝛽

3
𝜃

− 40960𝑏
2

20
𝜃
2
+ 103040𝑏

20
𝛽𝜃
2
− 82336𝛽

2
𝜃
2

+ 5120𝑏
20
𝜃
3
− 1939𝛽𝜃

3
+ 980𝜃

4
,

𝑓
4
= 2967207936000𝛽

10
− 9714651627520𝛽

9
𝜃

− 65013770321920𝛽
8
𝜃
2
− 124569363533824𝛽

7
𝜃
3

− 124914242976768𝛽
6
𝜃
4
− 75962577303936𝛽

5
𝜃
5

− 29760585599448𝛽
4
𝜃
6
− 7669544070125𝛽

3
𝜃
7

− 1275738647714𝛽
2
𝜃
8
− 125233021760𝛽𝜃

9

− 5502919200𝜃
10
.

(18)

While solving 𝑢
1
= 𝑢
2
= 𝑢
3
= 0 and 𝑢

4
̸= 0, we can

immediately obtain the following theorem.
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(a) (b)

Figure 1: Distribution of limit cycles.

Theorem 5. The origin of system (16) is a 4-order weak focus
if and only if

𝑎
20
=
1

8
(8𝑏
20
+ 3𝜃) , 56𝛽

2
+ 57𝛽𝜃 + 10𝜃

2
= 0,

𝑓
3
= 0.

(19)

Furthermore, the following theorem also holds for system
(14).

Theorem6. If the origin of system (14) is a 4-order weak focus,
making a small perturbation to the coefficients of system (14),
then, for perturbed system (14), in a small neighborhood of
the origin, there exist exactly 5 small amplitude limit cycles
enclosing the point (2, 2).

The results also yield that when point (1, 1) is a fourth-
order weak focus, point (2, 2) of system is a first-order weak
focus at the same time. Point (1, 1) is a first-order weak
focus when point (2, 2) is a fourth-order weak focus. Namely,
by a simultaneously perturbation, five limit cycles could be
bifurcated with two different distribution; see Figure 1.

3. Center Conditions of Two Positive
Equilibrium Points

If all Lyapunov constants are equal to zero, it will be a center
condition of a critical point. So Theorems 1 and 4 imply the
following theorem.

Theorem 7. If the origins of systems (4) and (14) are centers if
and only if

𝑎
20
=
1

2
(−2𝑏
20
+ 4𝛽 + 𝜃) . (20)

Proof. When 𝑎
20
= (1/2)(−2𝑏

20
+4𝛽+𝜃), system (4) could be

rewritten as

𝑑𝑥

𝑑𝜏
= −𝑦 −

1

2𝛽
(−2𝑏
20
𝑥
2
− 2𝑏
20
𝑥
3
+ 4𝑏
20
𝑥𝑦 + 4𝑏

20
𝑥
2
𝑦

− 2𝑏
20
𝑦
2
− 2𝑏
20
𝑥𝑦
2
− 4𝑥
2
𝛽 + 4𝑥

3
𝛽

−2𝑥
2
𝑦𝛽 − 3𝑥

2
𝜃 + 𝑥
3
𝜃 + 𝑥𝑦𝜃 + 𝑥

2
𝑦𝜃) ,

𝑑𝑦

𝑑𝜏
= 𝑥 −

1

2𝛽
(2𝑏
20
𝑥
2
− 4𝑏
20
𝑥𝑦 + 2𝑏

20
𝑥
2
𝑦 + 2𝑏

20
𝑦
2

− 4𝑏
20
𝑥𝑦
2
+ 2𝑏
20
𝑦
3
− 2𝑥𝛽 + 4𝑦

2
𝛽 + 2𝑥𝑦

2
𝛽

−4𝑦
3
𝛽 − 𝑥𝑦𝜃 + 3𝑦

2
𝜃 − 𝑥𝑦

2
𝜃 − 𝑦
3
𝜃) .

(21)

By transformation

𝑥 = −
𝑢 + V
2 (V − 1)

, 𝑦 = −
−𝑢 + V
2 (V − 1)

, 𝜏 = (V − 1)2𝑡,

(22)

system (21) becomes

𝑑𝑢

𝑑𝜏
= −V −

1

4𝛽
(−8𝑏
20
𝑢
2
+ 4𝑏
20
𝑢
4
+ 4𝑏
20
𝑢
2V − 3𝑢4𝛽

+ 4V𝛽 + 11𝑢2V𝛽 − 12V2𝛽 − 9𝑢2V2𝛽 + 9V3𝛽

−4𝑢
2
𝛽 + 11𝑢

2V𝜃 − 2V2𝜃 − 8𝑢2V2𝜃 + 3V3𝜃),

𝑑V
𝑑𝜏
= (𝑢 (−1 + V) (−4𝑏20𝑢

2
− 4𝛽 + 3𝑢

2
𝛽

+9V2𝛽 − 6V𝜃 + 8V2𝜃)) × (4𝛽)−1

(23)

which is symmetric with V-axis.
When 𝑎

20
= (1/2)(−2𝑏

20
+ 4𝛽 + 𝜃), system (14) could be

rewritten as

𝑑𝑥

𝑑𝜏

= −𝑦 −
1

2𝜃
(−4𝑏
20
𝑥
2
− 2𝑏
20
𝑥
3
+ 8𝑏
20
𝑥𝑦 + 4𝑏

20
𝑥
2
𝑦
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− 4𝑏
20
𝑦
2
− 2𝑏
20
𝑥𝑦
2
+ 6𝑥
2
𝛽 + 4𝑥

3
𝛽 − 4𝑥𝑦𝛽

−2𝑥
2
𝑦𝛽 + 𝑥

2
𝜃 + 𝑥
3
𝜃 + 3𝑥𝑦𝜃 + 𝑥

2
𝑦𝜃) ,

𝑑𝑦

𝑑𝜏

= 𝑥 +
1

2𝜃
(−4𝑏
20
𝑥
2
+ 8𝑏
20
𝑥𝑦 − 2𝑏

20
𝑥
2
𝑦 − 4𝑏

20
𝑦
2

+ 4𝑏
20
𝑥𝑦
2
− 2𝑏
20
𝑦
3
− 4𝑥𝑦𝛽 + 6𝑦

2
𝛽

−2𝑥𝑦
2
𝛽 + 4𝑦

3
𝛽 + 3𝑥𝑦𝜃 + 𝑦

2
𝜃 + 𝑥𝑦

2
𝜃 + 𝑦
3
𝜃) .

(24)

Transformations

𝑥 = −
𝑢 + V
2 (V − 1)

, 𝑦 = −
−𝑢 + V
2 (V − 1)

, 𝜏 = (V − 1)2𝑡,

(25)

bring system (24) into

𝑑𝑢

𝑑𝜏

= −V −
1

4𝜃
(−16𝑏

20
𝑢
2
+ 4𝑏
20
𝑢
4
+ 12𝑏
20
𝑢
2V

+ 10𝑢
2
𝛽 − 3𝑢

4
𝛽 − 15𝑢

2V𝛽 + 2V2𝛽 + 7𝑢2V2𝛽

−V3𝛽+2𝑢2𝜃− 7𝑢2V𝜃 − 4V2𝜃 + 4𝑢2V2𝜃 + V3𝜃),

𝑑V
𝑑𝜏
= (𝑢 (−1 + V) (4𝑏20𝑢

2
− 3𝑢
2
𝛽 − 12V𝛽

+7V2𝛽 + 4𝜃 − 10V𝜃 + 4V2𝜃)) × (4𝜃)−1

(26)

which is symmetric with V-axis. So the origin is a center of
system (14).
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