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We introduce positive linear operators which are combined with the Chlodowsky and Szász type operators and study some
approximation properties of these operators in the space of continuous functions of two variables on a compact set.The convergence
rate of these operators are obtained by means of the modulus of continuity. And we also obtain weighted approximation properties
for these positive linear operators in a weighted space of functions of two variables and find the convergence rate for these operators
by using the weighted modulus of continuity.

1. Introduction and Preliminaries

Let 𝑥 ∈ R+
0
= [0,∞) and 𝑓 ∈ 𝐶(R+

0
). The well-known

Chlodowsky polynomial of degree 𝑛, denoted by 𝐶
𝑛
(𝑓; 𝑥), is

𝐶
𝑛
(𝑓; 𝑥) =

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
(

𝑥

𝛼
𝑛

)

𝑘

(1 −

𝑥

𝛼
𝑛

)

𝑘

𝑓(

𝑘

𝑛

𝛼
𝑛
) ,

0 ≤ 𝑥 ≤ 𝛼
𝑛
,

(1)

where (𝛼
𝑛
) is a sequence of positive numbers with the

properties

lim
𝑛→∞

𝛼
𝑛
= ∞, lim

𝑛→∞

𝛼
𝑛

𝑛

= 0. (2)

Some generalization of these polynomials in the one-
dimensional case may be found in [1, 2]. Recently, in [3, 4]
some approximation theorems for different positive linear
operators in the space of continuous functions for one
variable case are done.

Let 𝑥 ∈ R+
0
and𝑓 ∈ 𝐶(R+

0
).Themodified Szász-Mirakjan

operators denoted by 𝑆
𝑛
(𝑓; 𝛽
𝑛
, 𝛾
𝑛
, 𝑥) = 𝑆(𝑓; 𝑥) are

𝑆
𝑛
(𝑓; 𝑥) = 𝑒

−𝛽
𝑛
𝑥

∞

∑

𝑗=0

(𝛽
𝑛
𝑥)
𝑘

𝑘!

𝑓(

𝑘

𝛾
𝑛

) , (3)

where (𝛽
𝑛
) and (𝛾

𝑛
) are given increasing and unbounded

sequences of positive numbers such that

lim
𝑛→∞

1

𝛾
𝑛

= 0,

𝛽
𝑛

𝛾
𝑛

= 1 + 𝑂(

1

𝛾
𝑛

) . (4)

In [5], Walczak introduced the modified Szász-Mirakjan
operators in the polynomial weighted spaces of functions of
one and two variables. He investigated approximation prop-
erties of modified Szász-Mirakjan operators in the weighted
space of continuous functions of two variables for which 𝜌𝑓
is uniformly continuous and bounded on R2

+
= R+
0
× R+
0
,

where 𝜌(𝑥, 𝑦) is a polynomial weight function. In [6], İspir
and Atakut studied the theorems on convergence of 𝑆

𝑛
(𝑓; 𝑥),

defined by (1) to 𝑓(𝑥), in the weighted spaces of continuous
and obtain the convergence rate of the operators by using
the weighted modulus of continuity on all positive semiaxis.
They also study themodified Szász-Mirakjan operators in the
polynomial weighted spaces of functions of two variables.

In this study, inspired by the operators (1) and (3),
we consider certain linear positive operators of functions
of two variables. To this end, let 𝑓 ∈ 𝐶(◻

𝛼
𝑛

), where
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◻
𝛼
𝑛

= {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 𝛼
𝑛
, 0 ≤ 𝑦 < ∞} and define the

linear positive operators 𝐿
𝑛,𝑚
(𝑓; 𝑥, 𝑦) in the following way:

𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦)

=

𝑛

∑

𝑘=0

∞

∑

𝑗=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)𝑄
𝑗
(𝛽
𝑚
𝑦)𝑓(

𝑘

𝑛

𝛼
𝑛
,

𝑗

𝛾
𝑚

) ,

(𝑥, 𝑦) ∈ ◻
𝛼
𝑛

, 𝑛, 𝑚 ∈ N

(5)

with 𝑃
𝑛,𝑘
(𝑥) = 𝐶

𝑘

𝑛
𝑥(1 − 𝑥)

𝑛−𝑘 and 𝑄
𝑗
(𝑥) = 𝑒

−𝑥
(𝑥
𝑗
/𝑗!).

If we take 𝑓(𝑥, 𝑦) := 𝑔(𝑥) and 𝑓(𝑥, 𝑦) := ℎ(𝑦) in (5), then
the operators 𝐿

𝑛,𝑚
reduce to the Chlodowsky and Szász type

operators, respectively. Approximation of functions of one or
two variables by some positive linear operators in weighted
spaces may be found in [1, 2, 5–8].

In this paper, firstly we study some approximation prop-
erties of the sequence of linear positive operators given by
(5) in the space of continuous functions on compact set
◻
𝐴𝐵

= [0, 𝐴]× [0, 𝐵] and find the order of this approximation
using full and partial modulus of continuity. We finally
investigate the convergence of the sequence of linear positive
operators 𝐿

𝑛,𝑚
, defined on a weighted space of functions of

two variables, and find the rate of this convergence by means
of weighted modulus of continuity.

Now we give some basic definitions which we will use in
our theorems.

Let 𝜌(𝑥, 𝑦) = 1 + 𝑥
2
+ 𝑦
2 and let 𝐵

𝜌
be the set of all

functions 𝑓 defined on the real axis satisfying the condition
|𝑓(𝑥, 𝑦)| ≤ 𝑀

𝑓
𝜌(𝑥, 𝑦), where 𝑀

𝑓
is a constant depending

only on 𝑓. 𝐵
𝜌
is a normed space with the norm

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝜌
= sup
(𝑥,𝑦)∈R2

+

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

𝜌 (𝑥, 𝑦)

. (6)

Let 𝑓 ∈ 𝐶
𝜌
with 𝐶

𝜌
being the subspace of all continuous

functions belonging to 𝐵
𝜌
. Then the weighted modulus of

continuity of 𝑓 defined by

Ω
𝑓
(𝛿
1
, 𝛿
2
) = sup
|ℎ
1
|≤𝛿
1
,|ℎ
2
|≤𝛿
2

(𝑥,𝑦)∈R2
+

𝑓 (𝑥 + ℎ
1
, 𝑦 + ℎ

2
) − 𝑓 (𝑥, 𝑦)

𝜌 (𝑥, 𝑦) 𝜌 (ℎ
1
, ℎ
2
)

. (7)

Let𝑓 ∈ 𝐶(◻
𝐴𝐵
).The fullmodulus of continuity of𝑓 is defined

as follows:

𝜔
𝑓
(𝛿) = max

√(𝑥
1
−𝑥
2
)
2

+(𝑦
1
−𝑦
2
)
2

≤𝛿

(𝑥,𝑦)∈◻
𝐴𝐵

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥
1
, 𝑦
1
) − 𝑓 (𝑥

2
, 𝑦
2
)
󵄨
󵄨
󵄨
󵄨
.

(8)

Partial modulus of continuity with respect to 𝑥 and 𝑦 is
defined by

𝜔
(1)

𝑓
(𝛿) = max

0≤𝑦≤𝐵

max
|𝑥
1
−𝑥
2
|≤𝛿

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥
1
, 𝑦) − 𝑓 (𝑥

2
, 𝑦)

󵄨
󵄨
󵄨
󵄨
, (9)

𝜔
(2)

𝑓
(𝛿) = max

0≤𝑥≤𝐴

max
|𝑦
1
−𝑦
2
|≤𝛿

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥, 𝑦

1
) − 𝑓 (𝑥, 𝑦

2
)
󵄨
󵄨
󵄨
󵄨
, (10)

respectively. It is known that the full modulus of continuity
and the partial modulus of continuity satisfy the following
properties:

𝜔
𝑓
(𝜆𝛿) ≤ (1 + 𝜆) 𝜔

𝑓
(𝛿) , lim

𝛿→0

𝜔
𝑓
(𝛿) = 0, (11)

𝜔
𝑓
(𝛿) ≤ 𝜔

(1)

𝑓
(𝛿) + 𝜔

(2)

𝑓
(𝛿) ≤ 2𝜔

𝑓
(𝛿) . (12)

2. Approximation Properties on ◻
𝐴𝐵

In this section we give some classical approximation proper-
ties of the operators 𝐿

𝑛,𝑚
on the compact set ◻

𝐴𝐵
.

Let 𝑒
𝑖,𝑗
(𝑡
1
, 𝑡
2
) = 𝑡
𝑖

1
𝑡
𝑗

2
. Then by simple calculations, one can

obtain the following lemmas.

Lemma 1. Let 𝐿
𝑛,𝑚

be defined by (5). Then one has for all
𝑚, 𝑛 ∈ N,

𝐿
𝑛,𝑚

(𝑒
0,0
; 𝑥, 𝑦) = 1, (13)

𝐿
𝑛,𝑚

(𝑒
1,0
; 𝑥, 𝑦) = 𝑥, (14)

𝐿
𝑛,𝑚

(𝑒
0,1
; 𝑥, 𝑦) =

𝛽
𝑚

𝛾
𝑚

𝑦, (15)

𝐿
𝑛,𝑚

(𝑒
2,0
; 𝑥, 𝑦) = (1 −

1

𝑛

) 𝑥
2

+

𝛼
𝑛

𝑛

𝑥, (16)

𝐿
𝑛,𝑚

(𝑒
0,2
; 𝑥, 𝑦) =

𝛽
2

𝑚

𝛾
2

𝑚

𝑦
2

+

𝛽
𝑚

𝛾
2

𝑚

𝑦, (17)

𝐿
𝑛,𝑚

(𝑒
3,0
; 𝑥, 𝑦)

= (

2

𝑛
2
−

3

𝑛

+ 1) 𝑥
3

+ (

3𝛼
𝑛

𝑛

−

3𝛼
𝑛

𝑛
2
)𝑥
2

+

𝛼
2

𝑛

𝑛
2
𝑥,

𝐿
𝑛,𝑚

(𝑒
0,3
; 𝑥, 𝑦) =

𝛽
3

𝑚

𝛾
3

𝑚

𝑦
3

+

3𝛽
2

𝑚

𝛾
3

𝑚

𝑦
2

+

𝛽
𝑚

𝛾
3

𝑚

𝑦,

𝐿
𝑛,𝑚

(𝑒
4,0
; 𝑥, 𝑦) = (1 −

6

𝑛

+

11

𝑛
2
−

6

𝑛
3
)𝑥
4

+ (

6𝛼
𝑛

𝑛

−

18𝛼
𝑛

𝑛
2

+

12𝛼
𝑛

𝑛
3
)𝑥
3

+ (

7𝛼
2

𝑛

𝑛
2
−

7𝛼
2

𝑛

𝑛
3
)𝑥
2

+

𝛼
3

𝑛

𝑛
3
𝑥,

𝐿
𝑛,𝑚

(𝑒
0,4
; 𝑥, 𝑦) =

𝛽
4

𝑚

𝛾
4

𝑚

𝑦
4

+

6𝛽
3

𝑚

𝛾
4

𝑚

𝑦
3

+

7𝛽
2

𝑚

𝛾
4

𝑚

𝑦
2

+

𝛽
𝑚

𝛾
4

𝑚

𝑦.

(18)

From Lemma 1, we obtain following lemmas.

Lemma 2. If the operator 𝐿
𝑛,𝑚

is defined by (5), then for all
(𝑥, 𝑦) ∈ R2

+
and 𝑛,𝑚 ∈ N,

𝐿
𝑛,𝑚

((𝑒
1,0
− 𝑥)
2

; 𝑥, 𝑦) =

𝑥 (𝛼
𝑛
− 𝑥)

𝑛

,

𝐿
𝑛,𝑚

((𝑒
0,1
− 𝑦)
2

; 𝑥, 𝑦) = (

𝛽
𝑚

𝛾
𝑚

− 1)

2

𝑦
2

+

𝛽
𝑚

𝛾
2

𝑚

𝑦,
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𝐿
𝑛,𝑚

((𝑒
1,0
− 𝑥)
4

; 𝑥, 𝑦)

= (

3

𝑛
2
−

6

𝑛
3
)𝑥
4

+ (

12𝛼
𝑛

𝑛
3

−

6𝛼
𝑛

𝑛
2
)𝑥
3

+ (

3𝛼
2

𝑛

𝑛
2
−

7𝛼
2

𝑛

𝑛
3
)𝑥
2

+

𝛼
3

𝑛

𝑛
3
𝑥,

𝐿
𝑛,𝑚

((𝑒
0,1
− 𝑦)
4

; 𝑥, 𝑦)

= (

𝛽
4

𝑚

𝛾
4

𝑚

−

4𝛽
3

𝑚

𝛾
3

𝑚

+

6𝛽
2

𝑚

𝛾
2

𝑚

−

4𝛽
𝑚

𝛾
𝑚

+ 1)𝑦
4

+ (

6𝛽
3

𝑚

𝛾
4

𝑚

−

12𝛽
2

𝑚

𝛾
3

𝑚

+

6𝛽
𝑚

𝛾
2

𝑚

)𝑦
3

+ (

7𝛽
2

𝑚

𝛾
4

𝑚

−

4𝛽
𝑚

𝛾
3

𝑚

)𝑦
2

+

𝛽
𝑚

𝛾
4

𝑚

𝑦.

(19)

Lemma 3. If the operator 𝐿
𝑛,𝑚

is defined by (5), then for all
(𝑥, 𝑦) ∈ R2

+
and sufficiently large 𝑛,𝑚,

𝐿
𝑛,𝑚

((𝑒
1,0
− 𝑥)
2

; 𝑥, 𝑦) = 𝑂(

𝛼
𝑛

𝑛

) (𝑥
2

+ 𝑥) , (20)

𝐿
𝑛,𝑚

((𝑒
0,1
− 𝑦)
2

; 𝑥, 𝑦) = 𝑂(

1

𝛾
𝑚

) (𝑦
2

+ 𝑦) , (21)

𝐿
𝑛,𝑚

((𝑒
1,0
− 𝑥)
4

; 𝑥, 𝑦) = 𝑂(

𝛼
𝑛

𝑛

) (𝑥
4

+ 𝑥
3

+ 𝑥
2

+ 𝑥) , (22)

𝐿
𝑛,𝑚

((𝑒
0,1
− 𝑦)
4

; 𝑥, 𝑦) = 𝑂(

1

𝛾
𝑚

) (𝑦
4

+ 𝑦
3

+ 𝑦
2

+ 𝑦) .

(23)

The approximation theorem for functions of two variables
is as follows.

Theorem 4 (see [8]). If {𝑇
𝑛,𝑚
} is a sequence of linear positive

operators satisfying the conditions

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑒
0,0
; 𝑥, 𝑦) − 1

󵄩
󵄩
󵄩
󵄩𝐶(𝑋)

= 0,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑒
1,0
; 𝑥, 𝑦) − 𝑥

󵄩
󵄩
󵄩
󵄩𝐶(𝑋)

= 0,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇(𝑒
0,1
; 𝑥, 𝑦) − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶(𝑋)

= 0,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑒
2

1,0
+ 𝑒
2

0,1
; 𝑥, 𝑦) − (𝑥

2

+ 𝑦
2

)

󵄩
󵄩
󵄩
󵄩
󵄩𝐶(𝑋)

= 0,

(24)

then for any function 𝑓 ∈ 𝐶(𝑋), which is bounded in R2,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑓; 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩𝐶(𝑋)

= 0, (25)

where𝑋 is a compact set.

In the following theorem we show that the linear positive
operator 𝐿

𝑛,𝑚
which we define by (5) converges to 𝑓 uni-

formly with the help of Theorem 4 given by Volkov in [8].

Theorem 5. Let 𝑓 ∈ 𝐶(R2
+
), then the operators 𝐿

𝑛,𝑚
defined

by (5) converge uniformly to 𝑓 on ◻
𝐴𝐵

⊂ R2
+
as 𝑛,𝑚 → ∞.

Proof. From (13)–(17) and conditions (2) and (4), we have

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑒
0,0
; 𝑥, 𝑦) − 1

󵄩
󵄩
󵄩
󵄩𝐶(◻
𝐴𝐵
)
= 0,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑒
1,0
; 𝑥, 𝑦) − 𝑥

󵄩
󵄩
󵄩
󵄩𝐶(◻
𝐴𝐵
)
= 0,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑒
0,1
; 𝑥, 𝑦) − 𝑦

󵄩
󵄩
󵄩
󵄩𝐶(◻
𝐴𝐵
)
= 0,

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑒
2

1,0
+ 𝑒
2

0,1
; 𝑥, 𝑦) − (𝑥

2

+ 𝑦
2

)

󵄩
󵄩
󵄩
󵄩
󵄩𝐶(◻
𝐴𝐵
)

= 0.

(26)

ApplyingTheorem 4, we obtain the desired result.

The following theorem gives the convergence rate of the
sequence of linear positive operators {𝐿

𝑛,𝑚
} to 𝑓 on ◻

𝐴𝐵
⊂

R2
+
, by means of partial and full modulus of continuity.

Theorem 6. Let 𝑓 ∈ 𝐶(◻
𝐴𝐵
); then the following inequalities

hold:

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑓; 𝑥, 𝑦) − 𝑓

󵄩
󵄩
󵄩
󵄩𝐶(◻
𝐴𝐵
)
≤ 2 [𝜔

(1)

𝑓
(𝛿
𝑛
) + 𝜔
(2)

𝑓
(𝛿
𝑚
)] , (27)

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑓; 𝑥, 𝑦) − 𝑓

󵄩
󵄩
󵄩
󵄩𝐶(◻
𝐴𝐵
)
≤ 4𝜔
(1)

𝑓
(𝛿
𝑛,𝑚
) , (28)

where 𝛿
𝑛
= √𝐴(𝛼

𝑛
/𝑛), 𝛿
𝑚
= √𝐵

2
(𝛽
2

𝑚
/𝛾
2

𝑚
) + 𝐵(𝛽

𝑚
/𝛾
2

𝑚
),𝛿
𝑛,𝑚

=

√𝐴(𝛼
𝑛
/𝑛) + 𝐵

2
(𝛽
2

𝑚
/𝛾
2

𝑚
) + 𝐵(𝛽

𝑚
/𝛾
2

𝑚
); 𝜔(1)
𝑓
, 𝜔(2)
𝑓
, and 𝜔

𝑓
are

given by (9), (10), and (11), respectively.

Proof. From (5) and (13) and using the property of the partial
modulus of continuity, we can write

󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑘=0

∞

∑

𝑗=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)𝑄
𝑗
(𝛽
𝑚
𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (

𝑘

𝑛

𝛼
𝑛
,

𝑗

𝛾
𝑚

) − 𝑓(𝑥,

𝑗

𝛾
𝑚

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑘=0

∞

∑

𝑗=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)𝑄
𝑗
(𝛽
𝑚
𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥,

𝑗

𝛾
𝑚

) − 𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜔
(1)

𝑓
(𝛿
𝑛
) [1 +

1

𝛿
𝑛

𝑛

∑

𝑘=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑘

𝑛

𝛼
𝑛
− 𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

]

+ 𝜔
(2)

𝑓
(𝛿
𝑚
)
[

[

1 +

1

𝛿
𝑚

∞

∑

𝑗=0

𝑄
𝑗
(𝛽
𝑚
𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑗

𝛾
𝑚

− 𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

]

]

;

(29)
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applying the Cauchy-Schwartz inequality, we have

󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔
(1)

𝑓
(𝛿
𝑛
)
[

[

1 +

1

𝛿
𝑛

(

𝑛

∑

𝑘=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)(

𝑘

𝑛

𝛼
𝑛
− 𝑥)

2

)

1/2

]

]

+ 𝜔
(2)

𝑓
(𝛿
𝑚
)
[

[

1 +

1

𝛿
𝑚

(

∞

∑

𝑗=0

𝑄
𝑗
(𝛽
𝑚
𝑥)(

𝑗

𝛾
𝑚

− 𝑦)

2

)

1/2

]

]

,

(30)

and using equalities (16) and (17) and choosing 𝛿
𝑛

=

√𝐴(𝛼
𝑛
/𝑛), 𝛿

𝑚
= √𝐵

2
(𝛽
2

𝑚
/𝛾
2

𝑚
) + 𝐵(𝛽

𝑚
/𝛾
2

𝑚
), we obtain ine-

quality (20). If we use inequality𝜔(1)
𝑓
(𝛿)+𝜔

(2)

𝑓
(𝛿) ≤ 2𝜔

𝑓
(𝛿)we

can easily obtain inequality (21). Thus, the proof of theorem
is completed.

Below in Example 7, we will try to see the agreement of
our linear positive operator 𝐿

𝑛,𝑚
with 𝑓(𝑥, 𝑦) = 2 − (𝑥 −

1)
2

+ (𝑦 − 1)
2 using different values of 𝑛 and 𝑚, whereas

in Example 8, we also compare 𝐿
𝑛,𝑚

with 𝑆
𝑛,𝑚

for another
function 𝑓(𝑥, 𝑦) = 𝑥3𝑒−𝑦/(1 + 𝑥4).

Example 7. For 𝑛,𝑚 = 5, 𝑛,𝑚 = 50, and 𝛼
𝑛
= √𝑛, 𝛽

𝑚
=

𝑚, 𝛾
𝑚
= 𝑚+√𝑚; the convergence of𝐿

𝑛,𝑚
(𝑓; 𝑥, 𝑦) to𝑓(𝑥, 𝑦) =

2 − (𝑥 − 1)
2

+ (𝑦 − 1)
2 is illustrated in Figure 1.

Example 8. For 𝑛,𝑚 = 30 and 𝛼
𝑛

= √𝑛, 𝛽
𝑚

= 𝑚,
𝛾
𝑚

= 𝑚 + √𝑚, the convergences of 𝐿
𝑛,𝑚
(𝑓; 𝑥, 𝑦) =

∑
𝑛

𝑘=0
∑
∞

𝑗=0
𝑃
𝑛,𝑘
(𝑥/𝛼
𝑛
)𝑄
𝑗
(𝛽
𝑚
𝑥)𝑓((𝑘/𝑛)𝛼

𝑛
,𝑗/𝛾
𝑚
) and 𝑆

𝑛,𝑚

(𝑓; 𝑥, 𝑦) = ∑
∞

𝑘=0
∑
∞

𝑗=0
𝑄
𝑗
(𝛽
𝑛
𝑥)𝑄
𝑗
(𝛽
𝑚
𝑦)𝑓(𝑘/𝛾

𝑛
, 𝑗/𝛾
𝑚
) to

𝑓(𝑥, 𝑦) = 𝑥
3
𝑒
−𝑦
/(1 + 𝑥

4
) will be illustrated in Figure 2.

3. Weighted Approximation Properties of 𝐿
𝑛,𝑚

In this section, we investigate the convergence properties of
the 𝐿

𝑛,𝑚
operators given by (5) in the weighted spaces of

continuous functions on positive semiaxis by using weighted
Korovkin type theorem. The Korovkin type theorem in
weighted spaces for linear positive operators 𝑇

𝑛,𝑚
, acting

from 𝐶
𝜌
to 𝐵
𝜌
, has been proved by Gadjiev [9], Gadjiev and

Hacısalihoğlu [10].

Theorem9 (see [10]). There exists a sequence of positive linear
operators 𝑇

𝑛,𝑚
, acting from 𝐶

𝜌
(R2
+
) to 𝐵

𝜌
(R2
+
), satisfying the

conditions

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(1; 𝑥, 𝑦) − 1

󵄩
󵄩
󵄩
󵄩𝜌
= 0, (31)

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑡
1
; 𝑥, 𝑦) − 𝑥

󵄩
󵄩
󵄩
󵄩𝜌
= 0, (32)

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑡
2
; 𝑥, 𝑦) − 𝑦

󵄩
󵄩
󵄩
󵄩𝜌
= 0, (33)

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
(𝑡
2

1
+ 𝑡
2

2
; 𝑥, 𝑦) − (𝑥

2

+ 𝑦
2

)

󵄩
󵄩
󵄩
󵄩
󵄩𝜌
= 0. (34)

f(x, y)

L50,50(f; x, y)

L5,5(f; x, y)

Figure 1: The convergence of 𝐿
𝑛,𝑚
(𝑓; 𝑥, 𝑦) to 𝑓(𝑥, 𝑦) for 𝑛,𝑚 = 5

and 𝑛,𝑚 = 50.

Then there exists a function 𝑓∗ ∈ 𝐶
𝜌
(R2
+
) for which

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
𝑓
∗

− 𝑓
∗󵄩
󵄩
󵄩
󵄩𝜌
≥ 1. (35)

Theorem 10 (see [9]). Let 𝑇
𝑛,𝑚

be a sequence of positive linear
operators acting from 𝐶

𝜌
(R2
+
) to 𝐵

𝜌
(R2
+
) and let 𝜌

1
(𝑥, 𝑦) ≥ 1

be a continuous function for which

lim
|𝜐|→∞

𝜌 (𝜐)

𝜌
1
(𝜐)

= 0, (𝑤ℎ𝑒𝑟𝑒 𝜐 = (𝑥, 𝑦)) . (36)

The conditions (31)–(34) imply

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛,𝑚
𝑓 − 𝑓

󵄩
󵄩
󵄩
󵄩𝜌
1

= 0 (37)

for all 𝑓 ∈ 𝐶
𝜌
(R2
+
).

Now, we give the following results in [9, 10] which we use
in the proofs of our main theorems.

Theorem 11. Let 𝐿
𝑛,𝑚

be the sequence of linear positive
operators defined by (5). Then for all 𝑓 ∈ 𝐶

𝜌
(R2
+
) one has

lim
𝑛,𝑚→∞

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
𝑓 − 𝑓

󵄩
󵄩
󵄩
󵄩𝜌
1

= 0, (38)

where 𝜌(𝑥, 𝑦) = 1 + 𝑥
2
+ 𝑦
2 and 𝜌

1
(𝑥, 𝑦) is the continuous

function, satisfying the condition (36).
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f(x, y)

L30,30(f; x, y)

S30,30(f; x, y)

Figure 2: The convergence of 𝐿
𝑛,𝑚
(𝑓; 𝑥, 𝑦) and 𝑆

𝑛,𝑚
(𝑓, 𝑥, 𝑦) to

𝑓(𝑥, 𝑦) for 𝑛,𝑚 = 30.

Proof. Firstly let us show that 𝐿
𝑛,𝑚

is acting from 𝐶
𝜌
(R2
+
) to

𝐵
𝜌
(R2
+
). Using (13), (16), and (17), we write

󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝜌; 𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩𝜌

≤ 1 + sup
(𝑥,𝑦)∈R2

+

[(1 −

1

𝑛

)

𝑥
2

1 + 𝑥
2
+ 𝑦
2
+

𝛼
𝑛

𝑛

𝑥

1 + 𝑥
2
+ 𝑦
2
]

+ sup
(𝑥,𝑦)∈R2

+

[

𝛽
2

𝑚

𝛾
2

𝑚

𝑦
2

1 + 𝑥
2
+ 𝑦
2
+

𝛽
𝑚

𝛾
2

𝑚

𝑦

1 + 𝑥
2
+ 𝑦
2
]

≤ 1 +

𝛼
𝑛

𝑛

+

𝛽
2

𝑚

𝛾
2

𝑚

+

𝛽
𝑚

𝛾
2

𝑚

≤ 1 + 𝜎
𝑛,𝑚
,

(39)

where 𝜎
𝑛,𝑚

= (𝛼
𝑛
/𝑛)+ (𝛽

2

𝑚
/𝛾
2

𝑚
)+ (𝛽
𝑚
/𝛾
2

𝑚
). Since 𝜎

𝑛,𝑚
→ 0 as

𝑛,𝑚 → ∞, there is a positive constant𝑀 such that𝜎
𝑛,𝑚

< 𝑀

for all natural numbers 𝑛 and𝑚. Hence we have
󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝜌; 𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩𝜌
≤ 1 +𝑀. (40)

From [10], we have 𝐿
𝑛,𝑚

: 𝐶
𝜌
(𝐼𝑅
2

+
) → 𝐵

𝜌
(𝐼𝑅
2

+
). If we prove

that the conditions (31)–(34) are satisfied then the proof is
completed byTheorem 10. By using (13), (14), and (15), we get
(31)–(33). Finally, using (16) and (17), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
𝑛,𝑚
(𝑡
2

1
+ 𝑡
2

2
; 𝑥, 𝑦) − (𝑥

2

+ 𝑦
2

)

󵄩
󵄩
󵄩
󵄩
󵄩𝜌
≤ 𝜎
𝑛,𝑚
, (41)

where 𝜎
𝑛,𝑚

= (𝛼
𝑛
/𝑛) + (𝛽

2

𝑚
/𝛾
2

𝑚
) + (𝛽

𝑚
/𝛾
2

𝑚
), and 𝜎

𝑛,𝑚
→ 0 as

𝑛,𝑚 → ∞. Thus we obtain the desired result.

Theorem 12. Let 𝑓 ∈ 𝐶
𝑘

𝜌
. For sufficiently large 𝑛,𝑚, the

inequality

sup
(𝑥,𝑦)∈R2

+

󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

𝜌
3
(𝑥, 𝑦)

≤ 𝐾Ω
𝑓
(𝛿
𝑛
, 𝛿
𝑚
) (42)

holds, where 𝛿
𝑛
= 𝛼
𝑛
/𝑛, 𝛿
𝑚

= 1/𝛾
𝑚
, and 𝐾 is a constant

independent of 𝛼
𝑛
, 𝛽
𝑚
, and 𝛾

𝑚
.

Proof. From [6, page 577], we can write

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
1
, 𝑡
2
) − 𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 8 (1 + 𝑥
2

+ 𝑦
2

)Ω
𝑓
(𝛿
𝑛
, 𝛿
𝑚
) (1 +

󵄨
󵄨
󵄨
󵄨
𝑡
1
− 𝑥

󵄨
󵄨
󵄨
󵄨

𝛿
𝑛

)

× (1 +

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑦

󵄨
󵄨
󵄨
󵄨

𝛿
𝑚

)(1 + (𝑡
1
− 𝑥)
2

) (1 + (𝑡
2
− 𝑦)
2

) .

(43)

Applying the 𝐿
𝑛,𝑚

operators on both sides of the above
inequality, we have

󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

≤ 8 (1 + 𝑥
2

+ 𝑦
2

)Ω
𝑓
(𝛿
𝑛
, 𝛿
𝑚
)

×

𝑛

∑

𝑘=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)(1+

1

𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑘

𝑛

𝛼
𝑛
−𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)(1+(

𝑘

𝑛

𝛼
𝑛
−𝑥)

2

)

×

∞

∑

𝑗=0

𝑄
𝑗
(𝛽
𝑚
𝑦) (1 +

1

𝛿
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑗

𝛾
𝑚

− 𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)(1 + (

𝑗

𝛾
𝑚

− 𝑦)

2

)

≤ 8 (1 + 𝑥
2

+ 𝑦
2

)Ω
𝑓
(𝛿
𝑛
, 𝛿
𝑚
)

×

𝑛

∑

𝑘=0

𝑃
𝑛,𝑘
(

𝑥

𝛼
𝑛

)[1 + (

𝑘

𝑛

𝛼
𝑛
− 𝑥)

2

+

1

𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑘

𝑛

𝛼
𝑛
− 𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

1

𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑘

𝑛

𝛼
𝑛
− 𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑘

𝑛

𝛼
𝑛
− 𝑥)

2

]

×

∞

∑

𝑗=0

𝑄
𝑗
(𝛽
𝑚
𝑦) [1 + (

𝑗

𝛾
𝑚

− 𝑦)

2

+

1

𝛿
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑗

𝛾
𝑚

− 𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

1

𝛿
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑗

𝛾
𝑚

− 𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑗

𝛾
𝑚

− 𝑦)

2

] ;

(44)

then, by Cauchy-Schwarz inequality,

󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

≤ 8 (1 + 𝑥
2

+ 𝑦
2

)Ω
𝑓
(𝛿
𝑛
, 𝛿
𝑚
)
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× [1 + 𝐿
𝑛,𝑚

((𝑒
1,0
− 𝑥)
2

; 𝑥, 𝑦)

+

1

𝛿
𝑛

√𝐿
𝑛,𝑚

((𝑒
1,0
− 𝑥)
2

; 𝑥, 𝑦)

+

1

𝛿
𝑛

√𝐿
𝑛,𝑚

((𝑒
1,0
−𝑥)
2

; 𝑥, 𝑦)𝐿
𝑛,𝑚
((𝑒
1,0
−𝑥)
4

; 𝑥, 𝑦)]

× [1 + 𝐿
𝑛,𝑚

((𝑒
0,1
− 𝑦)
2

; 𝑥, 𝑦)

+

1

𝛿
𝑚

√𝐿
𝑛,𝑚

((𝑒
0,1
− 𝑦)
2

; 𝑥, 𝑦)

+

1

𝛿
𝑚

√𝐿
𝑛,𝑚

((𝑒
0,1
−𝑦)
2

; 𝑥, 𝑦)𝐿
𝑛,𝑚
((𝑒
0,1
−𝑦)
4

; 𝑥, 𝑦)] ;

(45)

from equalities (20)–(23), we obtain
󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

≤ 8 (1 + 𝑥
2

+ 𝑦
2

)Ω
𝑓
(𝛿
𝑛
, 𝛿
𝑚
)

× [1 + 𝑂(

𝛼
𝑛

𝑛

) (𝑥
2

+ 𝑥) +

1

𝛿
𝑛

√𝑂(

𝛼
𝑛

𝑛

) (𝑥
2
+ 𝑥)

+

1

𝛿
𝑛

√𝑂(

𝛼
𝑛

𝑛

) (𝑥
2
+ 𝑥)𝑂(

𝛼
𝑛

𝑛

) (𝑥
4
+ 𝑥
3
+ 𝑥
2
+ 𝑥)]

× [1 + 𝑂(

1

𝛾
𝑚

) (𝑦
2

+ 𝑦) +

1

𝛿
𝑚

√𝑂(

1

𝛾
𝑚

) (𝑦
2
+ 𝑦) +

1

𝛿
𝑚

× √𝑂(

1

𝛾
𝑚

) (𝑦
2
+𝑦)𝑂(

1

𝛾
𝑚

) (𝑦
4
+𝑦
3
+𝑦
2
+𝑦)] .

(46)

Choosing 𝛿
𝑛
= 𝛼
𝑛
/𝑛 and 𝛿

𝑚
= 1/𝛾

𝑚
, for sufficiently large

𝑛,𝑚, we get
󵄨
󵄨
󵄨
󵄨
𝐿
𝑛,𝑚

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

≤ 𝐾 (1 + 𝑥
2

+ 𝑦
2

) (1 + 𝑥
2

+ 𝑦
2

)

2

Ω
𝑓
(

𝛼
𝑛

𝑛

,

1

𝛾
𝑚

)

(47)

which is the desired result.
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