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We prove strong and weak convergence results using multistep iterative sequences for countable family of multivalued quasi-
nonexpansive mappings by using some conditions in uniformly convex real Banach space. The results presented extended and
improved the corresponding result of Zhang et al. (2013), Bunyawat and Suantai (2012), and some others from finite family, one
countable family, and two countable families to 𝑘-number of countable families of multivalued quasi-nonexpansive mappings.
Also we used a numerical example in C++ computational programs to prove that the iterative scheme we used has better rate of
convergence than other existing iterative schemes.

1. Introduction

Let 𝑋 be real Banach space. The convex subset 𝐾 is called
proximal set if for each 𝑥 ∈ 𝑋 there exists at least one 𝑦 ∈ 𝐾

such that ‖𝑥 − 𝑦‖ = 𝑑(𝑥,𝐾) = inf{‖𝑥 − 𝑘‖ : 𝑘 ∈ 𝐾}. Every
closed convex subset of uniformly convex Banach spaces is
proximal. We use the following notations for multivalued
mappings:

𝐶(𝑋): collection of all nonempty compact subsets of
𝑋;
𝑃(𝑋): collection of all nonempty proximal bounded
subsets of𝑋;
𝐶𝐵(𝑋): collection of all nonempty bounded closed
subsets of𝑋.

Let 𝐻 be Hausdorff metric induced by 𝑑 of 𝐾 defined as
𝐻(𝐴, 𝐵) = max{sup

𝑦∈𝐵
𝑑(𝑥, 𝐵), sup

𝑥∈𝐴
𝑑(𝐴, 𝑦)}, for every

𝐴, 𝐵 ∈ 𝐶𝐵(𝐾). Let 𝑇 : 𝐾 → 𝑃(𝐾); a multivalued mapping
is said to be nonexpansive if 𝐻(𝑇𝑥, 𝑇𝑦) ≤ ‖𝑥 − 𝑦‖, for all
𝑥, 𝑦 ∈ 𝐾. An element 𝑝 ∈ 𝐾 is called fixed point of 𝑇 if
𝑝 ∈ 𝑇(𝑝), where the set of all fixed points of 𝑇 is denoted
by 𝐹𝑇. The mapping 𝑇 is said to be quasi nonexpansive if

𝐹𝑇 ̸= ⌀ and 𝐻(𝑇𝑥, 𝑇𝑝) ≤ ‖𝑥 − 𝑝‖ for all 𝑥 ∈ 𝐾 and
𝑝 ∈ 𝐹𝑇. It is known that every nonexpansive multivalued
mapping with 𝐹𝑇 ̸= ⌀ is quasi nonexpansive, but there exist
quasi-nonexpansivemappingswhich are not nonexpansive. It
is well known that if 𝑇 is quasi-nonexpansive mapping, then
𝐹𝑇 is closed.

Definition 1. A map 𝑇 : 𝐾 → 𝐶𝐵(𝐾) is called hemicompact
if, for any sequence {𝑥𝑛} in 𝐾 such that 𝑑(𝑥𝑛, 𝑇𝑥𝑛) → 0 as
𝑛 → ∞, there exists a subsequence {𝑥𝑛𝑘} of {𝑥𝑛} such that
𝑥𝑛𝑘

→ 𝑝 ∈ 𝐾. It is clear that if 𝐾 is compact, then every
multivalued mapping 𝑇 is hemicompact.

Definition 2. A Banach space 𝑋 is said to satisfy Opial’s
condition if 𝑧 ̸= 𝑦 imply that

lim
𝑛→∞

sup 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 < lim
𝑛→∞

sup 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 . (1)

The study of multivalued nonexpansive mappings is harder
than the corresponding theory of single-valued nonexpansive
mappings. In 1969, Nadler Jr. [1] proved the convergence
theorem for multivalued contraction mappings. Then in
1973, Markin [2] studied the multivalued contraction and
nonexpansive mappings in Hausdorff metric space. Later in
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1997, Hu et al. [3] proved the convergence theorems for find-
ing common fixed point of two multivalued nonexpansive
mappings that satisfies certain contractive conditions. Sastry
and Babu [4] proved the convergence of Mann and Ishikawa
iterates to a fixed point 𝑞 of the multivalued mapping 𝑇 with
fixed point 𝑝 under certain conditions. They proved with the
help of example that limit of the sequence is different from
the point of initial choice. Then Abbas et al. [5] introduced
the new one-step iterative processes to compute the common
fixed point of two multivalued nonexpansive mappings in a
real uniformly convex Banach space. Let 𝑆, 𝑇 : 𝐾 → 𝑃(𝐾) be
two multivalued nonexpansive mappings. They introduced
iteration as follows:

𝑥0 ∈ 𝐾,

𝑥𝑛+1 = 𝑎𝑛𝑥𝑛 + 𝑏𝑛𝑦𝑛 + 𝑐𝑛𝑧𝑛, 𝑛 ∈ 𝑁,

(2)

where 𝑦𝑛 ∈ 𝑇𝑥𝑛, 𝑧𝑛 ∈ 𝑆𝑥𝑛, such that ‖𝑦𝑛 − 𝑝‖ ≤ 𝑑(𝑝, 𝑆𝑥𝑛)

and ‖𝑧𝑛 − 𝑝‖ ≤ 𝑑(𝑝, 𝑇𝑥𝑛) for 𝑝 ∈ 𝐹(𝑆) ∩ 𝐹(𝑇) and 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 ∈
(0, 1) satisfying 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 ≤ 1. Then they obtained strong
convergence theorems for the proposed process under some
basic boundary conditions.

In 2012 Bunyawat and Suantai [6] introduced the one-step
iterative process as follows:

𝑥𝑛+1 = 𝛼𝑛,0𝑥𝑛 +

∞

∑

𝑖=1

𝛼𝑛,𝑖𝑥𝑛,𝑖, (3)

where the sequence {𝛼𝑛,𝑖}
∞

𝑖=0
⊂ [0, 1) satisfying ∑∞

𝑖=0
𝛼𝑛,𝑖 =

1 and 𝑥𝑛,𝑖 ∈ 𝑇𝑖𝑥𝑛 such that 𝑑(𝑝, 𝑥𝑛,𝑖) = 𝑑(𝑝, 𝑇𝑖𝑥𝑛) for
𝑖 ∈ 𝑁. They proved the convergence of iterative processes
to common fixed point of countable family of multivalued
quasi-nonexpansive mappings in uniformly convex Banach
space.

ThenZhang et al. in 2013 introduced the two-step iterative
process as follows:

𝑥𝑛+1 = 𝛼𝑛,0𝑥𝑛 +

∞

∑

𝑖=1

𝛼𝑛,𝑖𝑦𝑛,𝑖,

𝑦𝑛 = 𝛽𝑛,0𝑥𝑛 +

∞

∑

𝑖=1

𝛽𝑛,𝑖𝑥𝑛,𝑖,

(4)

where the sequences {𝛼𝑛,𝑖}
∞

𝑖=0
, {𝛽𝑛,𝑖}

∞

𝑖=0
⊂ [0, 1) satisfying

∑
∞

𝑖=0
𝛼𝑛,𝑖 = 1, ∑∞

𝑖=0
𝛽𝑛,𝑖 = 1, 𝑦𝑛,𝑖 ∈ 𝑇𝑖𝑦𝑛 such that 𝑑(𝑝, 𝑦𝑛,𝑖) =

𝑑(𝑝, 𝑇𝑖𝑦𝑛) and 𝑥𝑛,𝑖 ∈ 𝑇𝑖𝑥𝑛 such that 𝑑(𝑝, 𝑥𝑛,𝑖) = 𝑑(𝑝, 𝑇𝑖𝑥𝑛)

for 𝑖 ∈ 𝑁. Zhang et al. extended the results of Bunyawat and
Suantai from one countable family to two countable families
and also gave a new proof for the iteration used in the paper
of Abbas et al. [5].

In the same yearAhmed andAltwqi introduced the three-
step iterative process as follows:

𝑥𝑛+1 = 𝛼𝑛,0𝑥𝑛 +

𝑝

∑

𝑖=1

𝛼𝑛,𝑖𝑦𝑛,𝑖,

𝑦𝑛 = 𝛽𝑛,0𝑥𝑛 +

𝑝

∑

𝑖=1

𝛽𝑛,𝑖𝑧𝑛,𝑖,

𝑧𝑛 = 𝛾𝑛,0𝑥𝑛 +

𝑝

∑

𝑖=1

𝛾𝑛,𝑖𝑥𝑛,𝑖,

(5)

where 𝑧𝑛,𝑖 ∈ 𝑇𝑖𝑧𝑛, 𝑦𝑛,𝑖 ∈ 𝑇𝑖𝑦𝑛, and 𝑥𝑛,𝑖 ∈ 𝑇𝑖𝑥𝑛 and
the sequences {𝛼𝑛,𝑖}

𝑝

𝑖=0
, {𝛽𝑛,𝑖}

𝑝

𝑖=0
, {𝛾𝑛,𝑖}

𝑝

𝑖=0
⊂ [0, 1) satisfying

∑
𝑝

𝑖=0
𝛼𝑛,𝑖 = 1 ∑

𝑝

𝑖=0
𝛽𝑛,𝑖 = 1, ∑𝑝

𝑖=0
𝛾𝑛,𝑖 = 1, and proved the

strong and weak convergence results for three finite families
of multivalued nonexpansive mappings.

Different iterative processes have been used to approx-
imate fixed points of multivalued mappings. Many authors
have intensively studied the fixed point theorems and got
some results. At the same time, they extended these results
to many discipline branches, such as control theory, convex
optimization, variational inequalities, differential inclusion,
and economics (see [7–19]).

Motivated by [6, 20–22], in this paper, we extended the
result of Zhang et al. [21] from two countable families to 𝑘-
number of countable families and proved weak and strong
convergence results of two new multistep iterative processes
to common fixed point of countable family of multivalued
quasi-nonexpansive mappings in a uniformly convex Banach
space. Also with the help of numerical example we compare
the convergence step of two different multistep iterative
processes. We use the following iteration processes:

𝑥𝑛+1 = 𝛼𝑛,0𝑥𝑛 +

∞

∑

𝑖=1

𝛼𝑛,𝑖𝑢
1

𝑛,𝑖
,

𝑦
𝑗

𝑛
= 𝛽
𝑗

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑗

𝑛,𝑖
𝑢
𝑗+1

𝑛,𝑖
, 𝑗 = 1, 2, . . . , 𝑘 − 2,

𝑦
𝑘−1

𝑛
= 𝛽
𝑘−1

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
𝑢
𝑘

𝑛,𝑖
,

(6)

𝑥𝑛+1 = 𝛼𝑛,0𝑦
1

𝑛
+

∞

∑

𝑖=1

𝛼𝑛,𝑖𝑢
1

𝑛,𝑖
,

𝑦
𝑗

𝑛
= 𝛽
𝑗

𝑛,0
𝑦
𝑗+1

𝑛
+

∞

∑

𝑖=1

𝛽
𝑗

𝑛,𝑖
𝑢
𝑗+1

𝑛,𝑖
, 𝑗 = 1, 2, . . . , 𝑘 − 2,

𝑦
𝑘−1

𝑛
= 𝛽
𝑘−1

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
𝑢
𝑘

𝑛,𝑖
,

(7)

where 𝑢𝑗
𝑛,𝑖

∈ 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛
, 𝑗 = 1, 2, . . . , 𝑘 − 1 such that 𝑑(𝑝, 𝑢𝑗

𝑛,𝑖
) =

𝑑(𝑝, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛
), 𝑗 = 1, 2, . . . , 𝑘 − 1 and 𝑢

𝑘

𝑛,𝑖
∈ 𝑇
𝑘

𝑖
𝑥𝑛 such that

𝑑(𝑝, 𝑢
𝑘

𝑛,𝑖
) = 𝑑(𝑝, 𝑇

𝑘

𝑖
𝑥𝑛), {𝛼𝑛,𝑖}

∞

𝑖=0
, and {𝛽𝑗

𝑛,𝑖
}
∞

𝑖=0
, 𝑗 = 1, 2, . . . , 𝑘 −

1 are sequences in [0, 1] which satisfies ∑∞
𝑖=0

𝛼𝑛,𝑖 = 1 and
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∑
∞

𝑖=0
𝛽
𝑗

𝑛,𝑖
= 1, 𝑗 = 1, 2, . . . , 𝑘 − 1, lim sup

𝑛→∞
𝛼𝑛,0 <

1 and lim sup
𝑛→∞

𝛽
𝑗

𝑛,0
< 1, 𝑗 = 1, 2, . . . , 𝑘 − 2, and

lim inf𝑛→∞𝛼𝑛,0𝛼𝑛,𝑚 > 0 and lim inf𝑛→∞𝛽
𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑚
> 0, 𝑗 =

1, 2, . . . , 𝑘 − 1.

Remark 3. If 𝑘 = 1 and 2, thenmultistep iteration (6) reduces
to one-step and two-step iterations (3) and (4) defined by
Bunyawat and Suantai and Zhang et al. whereas for 𝑘 = 3,
𝑖 = 𝑝 multistep iteration (6) reduces to finite three-step
iteration (5) defined by Ahmed and Altwqi.

Lemma 4 (see [6]). Let 𝑋 be a uniformly convex Banach
space, 𝑟 > 0 a positive number, and 𝐵𝑟(0) a closed ball of 𝑋.
Then, for any given sequence {𝑥𝑛}

∞

𝑛=1
⊂ 𝐵𝑟(0) and for any given

sequence {𝜆𝑖}
∞

𝑖=1
of positive number with ∑∞

𝑛=1
𝜆𝑛 = 1, there

exists a continuous, strictly increasing, and convex function
𝑔 : [0, 2𝑟) → [0,∞) with 𝑔(0) = 0 such that, for any positive
integer 𝑖, 𝑗 with 𝑖 ̸= 𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑛=1

𝜆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

∞

∑

𝑛=1

𝜆𝑛
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩
2
− 𝜆𝑖𝜆𝑗𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
) . (8)

Lemma 5 (see [23]). Suppose that 𝑋 is a uniformly convex
Banach space and 0 < 𝑝 ≤ 𝑡𝑛 ≤ 𝑞 < 1 for all positive
integers 𝑛. Also suppose that {𝑥𝑛} and {𝑦𝑛} are two sequences
of 𝐸 such that lim sup

𝑛→∞
‖𝑥𝑛‖ ≤ 𝑟, lim sup

𝑛→∞
‖𝑦𝑛‖ ≤ 𝑟,

and lim𝑛→∞‖𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛‖ = 𝑟 hold for some 𝑟 ≥ 0; then
lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ = 0.

Lemma 6 (see [24, 25]). Let {𝑎𝑛} be a sequence of nonnegative
real numbers satisfying the following property: 𝑎𝑛+1 ≤ (1 −

𝑡𝑛)𝑎𝑛 + 𝑏𝑛 + 𝑡𝑛𝑐𝑛, where {𝑡𝑛}, {𝑏𝑛}, and {𝑐𝑛} satisfy the following
restrictions:

(i) ∑∞
𝑛=1

𝑡𝑛 = ∞;

(ii) ∑∞
𝑛=1

𝑏𝑛 < ∞;

(iii) lim sup
𝑛→∞

𝑐𝑛 ≤ 0.

Then, {𝑎𝑛} converges to zero as 𝑛 → ∞.

2. Main Results

2.1. Weak and Strong Convergence Results for New Multistep
Iterative Scheme (6)

Theorem 7. Let 𝐾 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 with Opial’s condition.
For 𝑖 ∈ 𝑁, let {𝑇

𝑗

𝑖
}
𝑘

𝑗=1
be 𝑘 sequences of multivalued

quasi-nonexpansive mappings from 𝐾 into 𝑃(𝐾) with 𝐹 =

∩
𝑘

𝑗=1
[∩
∞

𝑖=1
𝑇
𝑗

𝑖
] ̸= ⌀ and 𝑝 ∈ 𝐹. Let {𝑥𝑛} be the sequence defined

by (6) and then it converges weakly to a point 𝑞 ∈ 𝐹.

Proof. Let 𝑝 ∈ 𝐹; first we prove that {𝑥𝑛} is bounded and
lim𝑛→∞‖𝑥𝑛 −𝑝‖ exists. Now from Lemma 5 and (6), we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−1

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
𝑢
𝑘

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
(𝑑 (𝑢
𝑘

𝑛,𝑖
, 𝑇
𝑘

𝑖
𝑝))
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
(𝐻 (𝑇

𝑘

𝑖
𝑥𝑛, 𝑇
𝑘

𝑖
𝑝))
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(9)

From (6), we get

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−2

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
𝑢
𝑘−1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘−1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
(𝑑 (𝑢
𝑘−1

𝑛,𝑖
, 𝑇
𝑘−1

𝑖
𝑝))
2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
(𝐻 (𝑇

𝑘−1

𝑖
𝑦
𝑘−1

𝑛
, 𝑇
𝑘−1

𝑖
𝑝))
2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)
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≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)]

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− (1 − 𝛽

𝑘−2

𝑛,0
) 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(10)

Similarly, we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−3

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
𝑢
𝑘−2

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘−2

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
(𝑑 (𝑢
𝑘−2

𝑛,𝑖
, 𝑇
𝑘−2

𝑖
𝑝))
2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
(𝐻 (𝑇

𝑘−2

𝑖
𝑦
𝑘−2

𝑛
, 𝑇
𝑘−2

𝑖
𝑝))
2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

(11)

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛽
𝑘−2

𝑛,0
) 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)]

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛽
𝑘−3

𝑛,0
) (1 − 𝛽

𝑘−2

𝑛,0
) 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(12)

Now continuing like this at last, we get
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛽
1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
)

× (1 − 𝛽
𝑘−2

𝑛,0
) 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

(13)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼𝑛,0𝑥𝑛 +

∞

∑

𝑖=1

𝛼𝑛,𝑖𝑢
1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛼𝑛,𝑖
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛼𝑛,𝑖 (𝑑 (𝑢
1

𝑛,𝑖
, 𝑇
1

𝑖
𝑝))
2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛼𝑛,𝑖 (𝐻 (𝑇
1

𝑖
𝑦
1

𝑛
, 𝑇
1

𝑖
𝑝))
2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛼𝑛,𝑖
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

.

(14)

By putting (13) in (14), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼𝑛,0) (1 − 𝛽
1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
)

× (1 − 𝛽
𝑘−2

𝑛,0
) 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(15)

So from (15), we say that {‖𝑥𝑛 − 𝑝‖} is nondecreasing and
bounded and hence, {𝑥𝑛} is bounded and lim𝑛→∞‖𝑥𝑛 − 𝑝‖

exists.
Now we prove that lim𝑛→∞‖𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚
‖ = 0 and

lim𝑛→∞‖𝑦
𝑗

𝑛
− 𝑢
𝑗

𝑛,𝑚
‖ = 0, where 𝑗 = 1, 2, . . . , 𝑘 − 1.

From (15), we can write as

(1 − 𝛼𝑛,0) (1 − 𝛽
1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
)

× (1 − 𝛽
𝑘−2

𝑛,0
) 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
.

(16)

Sincewe assume that lim sup
𝑛→∞

𝛼𝑛,0 < 1, lim sup
𝑛→∞

𝛽
𝑗

𝑛,0
<

1, 𝑗 = 1, 2, . . . , 𝑘 − 2, lim inf𝑛→∞𝛼𝑛,0𝛼𝑛,𝑚 > 0,
lim inf𝑛→∞𝛽

𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0, 𝑗 = 1, 2, . . . , 𝑘 − 1, and lim𝑛→∞‖𝑥𝑛 −

𝑝‖ exist, we have lim𝑛→∞𝑔(‖𝑥𝑛 − 𝑢
𝑘

𝑛,𝑚
‖) = 0 and from the

continuity of 𝑔, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, for each 𝑚 ∈ 𝑁. (17)

Now we will prove that lim𝑛→∞‖𝑥𝑛 − 𝑢
𝑗

𝑛,𝑚
‖ = 0, for each

𝑗 = 1, 2, . . . , 𝑘 − 1.
From (9) and (10), we have
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) . (18)
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Now, by putting (10) in (12), we have
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛽
𝑘−3

𝑛,0
) 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(19)

Now continuing like this at last, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼𝑛,0) (1 − 𝛽
1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
)

× 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑘
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) ;

(20)

we can write it as

(1 − 𝛼𝑛,0) (1 − 𝛽
1

𝑛,0
) ⋅ ⋅ ⋅ (1 − 𝛽

𝑘−3

𝑛,0
) 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑘
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
.

(21)

Sincewe assume that lim sup
𝑛→∞

𝛼𝑛,0 < 1, lim sup
𝑛→∞

𝛽
𝑗

𝑛,0
<

1, 𝑗 = 1, 2, . . . , 𝑘 − 2, lim inf𝑛→∞𝛼𝑛,0𝛼𝑛,𝑚 > 0,
lim inf𝑛→∞𝛽

𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0, 𝑗 = 1, 2, . . . , 𝑘 − 1, and lim𝑛→∞‖𝑥𝑛 −

𝑝‖ exists, we have lim𝑛→∞𝑔(‖𝑥𝑛 − 𝑢
𝑘−1

𝑛,𝑚
‖) = 0 and from the

continuity of 𝑔, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, for each 𝑚 ∈ 𝑁. (22)

So by repeating these steps for different values of 𝑗 =

1, 2, . . . , 𝑘 − 2, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑗

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, for each 𝑚 ∈ 𝑁,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
(23)

Next, we prove that lim𝑛→∞‖𝑦
𝑗

𝑛
− 𝑢
𝑗

𝑛,𝑚
‖ = 0, for each𝑚 ∈ 𝑁,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
From (6), we have

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑗

𝑛

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑗

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑗

𝑛,𝑖
𝑢
𝑗+1

𝑛,𝑖
− 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

∞

∑

𝑖=1

𝛽
𝑗

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑗+1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
,

where 𝑗 = 1, 2, . . . , 𝑘 − 2.

(24)

From (23), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑗

𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, where 𝑗 = 1, 2, . . . , 𝑘 − 1. (25)

By using triangle inequality, we have
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛
− 𝑢
𝑗

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛
− 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑗

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
. (26)

Together with (23) and (25), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛
− 𝑢
𝑗

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, where 𝑗 = 1, 2, . . . , 𝑘 − 1,

for each 𝑚 ∈ 𝑁.

(27)

Now, we prove that {𝑥𝑛} converges weakly to a point 𝑞 ∈ 𝐹.
Since we have proved that {𝑥𝑛} is bounded, there exists a
subsequence {𝑥𝑛𝑘}

∞

𝑘=1
of {𝑥𝑛} such that 𝑥𝑛𝑘 converges weakly

to 𝑞 ∈ 𝐾; using (25), we can say that 𝑦𝑗
𝑛𝑘
converges weakly to

𝑞 ∈ 𝐾, for 𝑗 = 1, 2, . . . , 𝑘 − 1. Now suppose that there exist
𝑖 ∈ 𝑁, such that 𝑇𝑗

𝑖
𝑞 ̸= 𝑞, for 𝑗 = 1, 2, . . . , 𝑘; then by Opial’s

condition we have

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩 (28)

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
(29)

As {𝑇𝑗
𝑖
}
𝑘

𝑗=1
are 𝑘-multivalued quasi-nonexpansive mappings,

we have

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘 ,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

𝑛𝑘,𝑖
− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘 ,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑇

𝑘

𝑖
𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘 ,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝐻 (𝑇

𝑘

𝑖
𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘 ,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

𝑛𝑘,𝑖
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑇

𝑗

𝑖
𝑦
𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝐻 (𝑇

𝑗

𝑖
𝑦
𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(30)

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
Taking lim sup

𝑘→∞
of both sides of (30) and from (17)

and (27), we have

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
, (31)

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
. (32)

Now combining (28) with (31) and (29) with (32), we have

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
,

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(33)

which gives contradiction, so we have 𝑇𝑗
𝑖
𝑞 = 𝑞, for 𝑗 =

1, 2, . . . , 𝑘 and 𝑖 ∈ 𝑁; this implies 𝑞 ∈ 𝐹. Now we prove that
{𝑥𝑛} converges weakly to 𝑞. Let {𝑥𝑚𝑘} be another subsequence
of {𝑥𝑛} that converges weakly to some 𝑟 ∈ 𝐾. Again as above
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we conclude that 𝑟 ∈ 𝐹. We show that 𝑞 = 𝑟. Let 𝑞 ̸= 𝑟, since
lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exists for every 𝑝 ∈ 𝐹. From (1), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 = lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑟
󵄩󵄩󵄩󵄩󵄩

= lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑚𝑘

− 𝑟
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑚𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(34)

It implies that lim𝑛→∞‖𝑥𝑛 − 𝑞‖ < lim𝑛→∞‖𝑥𝑛 − 𝑞‖, a
contradiction. So we have 𝑞 = 𝑟. It means that {𝑥𝑛} converges
weakly to 𝑞 as 𝑛 → ∞.

For 𝑇1
𝑖
= 𝑇, 𝑇𝑗

𝑖
= 𝑆, 𝑗 = 1, 2, . . . , 𝑘 − 1, and 𝑇𝑘

𝑖
= 𝑊,

Theorem 7 reduces to the following corollary.

Corollary 8. Let 𝐾 be a nonempty closed convex subset of a
uniformly convex Banach space𝑋withOpial’s condition. Let𝑇,
𝑆, and 𝑊 be three multivalued quasi-nonexpansive mappings
from 𝐾 into 𝑃(𝐾) with 𝐹 = 𝐹(𝑇) ∩ 𝐹(𝑆) ∩ 𝐹(𝑊) ̸= ⌀ and
𝑝 ∈ 𝐹. Let {𝑥𝑛} be the iteration defined as

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑇𝑦𝑛,

𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑆𝑧𝑛,

𝑧𝑛 = 𝛾𝑛𝑥𝑛 + (1 − 𝛾𝑛)𝑊𝑥𝑛,

(35)

where 𝑦𝑛 ∈ 𝑇𝑦𝑛 such that 𝑑(𝑝, 𝑦𝑛) = 𝑑(𝑝, 𝑇𝑦𝑛), 𝑧𝑛 ∈ 𝑆𝑧𝑛
such that 𝑑(𝑝, 𝑧𝑛) = 𝑑(𝑝, 𝑆𝑧𝑛), and 𝑥𝑛 ∈ 𝑊𝑥𝑛 such that
𝑑(𝑝, 𝑥𝑛) = 𝑑(𝑝,𝑊𝑥𝑛), {𝛼𝑛}, {𝛽𝑛}, and {𝛾𝑛} are sequences in
[0, 1]which satisfies lim sup

𝑛→∞
𝛼𝑛 < 1 and lim sup

𝑛→∞
𝛽𝑛 <

1, lim inf𝑛→∞𝛼𝑛(1 − 𝛼𝑛) > 0, lim inf𝑛→∞𝛽𝑛(1 −𝛽𝑛) > 0, and
lim inf𝑛→∞𝛾𝑛(1 − 𝛾𝑛) > 0; then {𝑥𝑛} converges weakly to a
point 𝑞 ∈ 𝐹.

Theorem 9. Let 𝑋 be a uniformly convex real Banach space
and let 𝐾 be a bounded and closed convex subset of 𝑋. For
𝑖 ∈ 𝑁, let {𝑇𝑗

𝑖
}
𝑘

𝑗=1
be a sequence of multivalued quasi-

nonexpansive and continuousmappings from𝐾 into𝑃(𝐾)with
𝐹 := ∩

∞

𝑖=1
𝐹(𝑇
𝑗

𝑖
) ̸= ⌀, 𝑗 = 1, 2, . . . , 𝑘 and 𝑝 ∈ 𝐹. Let {𝑥𝑛}

be a sequence defined by (2) with {𝛼𝑛,𝑖}
∞

𝑖=0
and {𝛽𝑗

𝑛,𝑖
}
∞

𝑖=0
, 𝑗 =

1, 2, . . . , 𝑘−1 are sequences in [0, 1]which satisfies∑∞
𝑖=0

𝛼𝑛,𝑖 = 1

and ∑
∞

𝑖=0
𝛽
𝑗

𝑛,𝑖
= 1, 𝑗 = 1, 2, . . . , 𝑘 − 1, lim sup

𝑛→∞
𝛼𝑛,0 <

1 and lim sup
𝑛→∞

𝛽
𝑗

𝑛,0
< 1, 𝑗 = 1, 2, . . . , 𝑘 − 2, and

lim inf𝑛→∞𝛼𝑛,0𝛼𝑛,𝑚 > 0 and lim inf𝑛→∞𝛽
𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0, 𝑗 =

1, 2, . . . , 𝑘 − 1, for all 𝑖 ∈ 𝑁. Assume that one of 𝑇𝑗
𝑖
is

hemicompact. Then {𝑥𝑛} converges strongly to common fixed
point of {𝑇𝑗

𝑖
}.

Proof. Let 𝑇𝑗
𝑖
is hemicompact for some 𝑖, 𝑗 ∈ 𝑁, then

from (17) and (27), we have lim𝑛→∞ 𝑑(𝑥𝑛, 𝑇
𝑘

𝑖
𝑥𝑛) = 0, for

all 𝑖 ∈ 𝑁, and lim𝑛→∞ 𝑑(𝑦
𝑗

𝑛
, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛
) = 0, for all 𝑖 ∈ 𝑁,

𝑗 = 1, 2, . . . , 𝑘 − 1. So there exists a subsequence {𝑥𝑛𝑘
}

of {𝑥𝑛} such that lim𝑘→∞ 𝑥𝑛𝑘 = 𝑞 ∈ 𝐾; using (25), we
can say that lim𝑘→∞ 𝑦

𝑗

𝑛𝑘
= 𝑞 ∈ 𝐾. From continuity of

{𝑇
𝑗

𝑖
}
𝑘

𝑗=1
, 𝑖 ∈ 𝑁, we have lim𝑚→∞ 𝑑(𝑥𝑛𝑚 , 𝑇

𝑘

𝑖
𝑥𝑛𝑚

) → 𝑑(𝑞, 𝑇
𝑘

𝑖
𝑞)

and lim𝑚→∞ 𝑑(𝑦
𝑗

𝑛𝑚
, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛𝑚
) → 𝑑(𝑞, 𝑇

𝑗

𝑖
𝑞). This implies that

𝑑(𝑞, 𝑇
𝑗

𝑖
𝑞) = 0, 𝑗 = 1, 2, . . . , 𝑘, and 𝑞 ∈ 𝐹. Since lim𝑛→∞‖𝑥𝑛 −

𝑞‖ exists, it follows that {𝑥𝑛} converges strongly to 𝑞.

Theorem 10. Let 𝑋 be a uniformly convex real Banach space
and let 𝐾 be a compact convex subset of 𝑋. For 𝑖 ∈ 𝑁,
let {𝑇𝑗
𝑖
}
𝑘

𝑗=1
be a sequence of multivalued quasi-nonexpansive

mappings from 𝐾 into 𝑃(𝐾) with 𝐹 := ∩
∞

𝑖=1
𝐹(𝑇
𝑗

𝑖
) ̸= ⌀,

𝑗 = 1, 2, . . . , 𝑘, and 𝑝 ∈ 𝐹. Let {𝑥𝑛} be a sequence defined by
(2) with {𝛼𝑛,𝑖}

∞

𝑖=0
and {𝛽𝑗

𝑛,𝑖
}
∞

𝑖=0
, 𝑗 = 1, 2, . . . , 𝑘 − 1 are sequences

in [0, 1] which satisfies ∑∞
𝑖=0

𝛼𝑛,𝑖 = 1 and ∑∞
𝑖=0

𝛽
𝑗

𝑛,𝑖
= 1, 𝑗 =

1, 2, . . . , 𝑘 − 1, lim sup
𝑛→∞

𝛼𝑛,0 < 1 and lim sup
𝑛→∞

𝛽
𝑗

𝑛,0
<

1, 𝑗 = 1, 2, . . . , 𝑘 − 2, and lim inf𝑛→∞ 𝛼𝑛,0𝛼𝑛,𝑚 > 0 and
lim inf𝑛→∞ 𝛽

𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0, 𝑗 = 1, 2, . . . , 𝑘 − 1, for all 𝑖 ∈ 𝑁.

Then {𝑥𝑛} converges strongly to common fixed point of {𝑇𝑗
𝑖
}.

Proof. Since𝐾 is compact, there exists a subsequence {𝑥𝑛𝑘} of
{𝑥𝑛} such that lim𝑘→∞‖𝑥𝑛𝑘 − 𝑞‖ = 0 for some 𝑞 ∈ 𝐾; also
from (25), we can say that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑗 = 1, 2, . . . , 𝑘 − 1. (36)

Now, we have

𝑑 (𝑞, 𝑇
𝑘

𝑖
𝑞) ≤ 𝑑 (𝑞, 𝑥𝑛𝑘

) + 𝑑 (𝑥𝑛𝑘
, 𝑇
𝑘

𝑖
𝑥𝑛𝑘

) + 𝐻(𝑇
𝑘

𝑖
𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑞)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑥𝑛𝑘
) 󳨀→ 0 as 𝑘 󳨀→ ∞,

𝑑 (𝑞, 𝑇
𝑗

𝑖
𝑞) ≤ 𝑑 (𝑞, 𝑦

𝑗

𝑛𝑘
) + 𝑑 (𝑥𝑛𝑘

, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛𝑘
) + 𝐻(𝑇

𝑗

𝑖
𝑦
𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑞)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑦

𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛𝑘
) 󳨀→ 0 as 𝑘 󳨀→ ∞,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
(37)

Hence this implies that 𝑞 ∈ 𝐹 and {𝑥𝑛} converges strongly to
common fixed point of {𝑇𝑗

𝑖
}.

Remark 11. If in iterative process defined by (6) we use 𝑘 = 1
and 2, Theorems 7, 9, and 10 reduce into convergence results
proved by Bunyawat and Suantai [6, 22] and Zhang et al. [21].

For 𝑘 = 3 and 𝑖 = 𝑝 (any finite number), Theorems 7, 9,
and 10 reduce into result proved by Ahmed and Altwqi [26].

2.2. Strong and Weak Convergence Results for New Multistep
Iterative Scheme (7)

Theorem 12. Let 𝐾 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 with Opial’s condition.
For 𝑖 ∈ 𝑁, let {𝑇𝑗

𝑖
}
𝑘

𝑗=1
be 𝑘 sequences of multivalued quasi-

nonexpansive mappings from 𝐾 into (𝐾) with 𝐹 =

∩
𝑘

𝑗=1
[∩
∞

𝑖=1
𝑇
𝑗

𝑖
] ̸= ⌀ and 𝑝 ∈ 𝐹. Let {𝑥𝑛} be the sequence defined

by (7); then it converges weakly to a point 𝑞 ∈ 𝐹.
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Proof. Let 𝑝 ∈ 𝐹, first we prove that {𝑥𝑛} is bounded and
lim𝑛→∞‖𝑥𝑛−𝑝‖ exists. Now, from Lemma 5 and (7), we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−1

𝑛,0
𝑥𝑛 +

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
𝑢
𝑘

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
(𝑑 (𝑢
𝑘

𝑛,𝑖
, 𝑇
𝑘

𝑖
𝑝))
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
(𝐻 (𝑇

𝑘

𝑖
𝑥𝑛, 𝑇
𝑘

𝑖
𝑝))
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) ,

(38)

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−2

𝑛,0
𝑦
𝑘−1

𝑛
+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
𝑢
𝑘−1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘−1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
(𝑑 (𝑢
𝑘−1

𝑛,𝑖
, 𝑇
𝑘−1

𝑖
𝑝))
2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
(𝐻 (𝑇

𝑘−1

𝑖
𝑦
𝑘−1

𝑛
, 𝑇
𝑘−1

𝑖
𝑝))
2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(39)

Similarly, we get

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽
𝑘−3

𝑛,0
𝑦
𝑘−2

𝑛
+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
𝑢
𝑘−2

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘−2

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑢
𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
(𝑑 (𝑢
𝑘−2

𝑛,𝑖
, 𝑇
𝑘−2

𝑖
𝑝))
2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑢
𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖
(𝐻 (𝑇

𝑘−2

𝑖
𝑦
𝑘−2

𝑛
, 𝑇
𝑘−2

𝑖
𝑝))
2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑢
𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑘−3

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛽
𝑘−3

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑢
𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑢
𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) ,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

− 𝛽
𝑘−3

𝑛,0
𝛽
𝑘−3

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑢
𝑘−2

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(40)
Now continuing like this at last, we have

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) , (41)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼𝑛,0𝑦
1

𝑛
+

∞

∑

𝑖=1

𝛼𝑛,𝑖𝑢
1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛼𝑛,𝑖
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛,𝑖
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛼𝑛,𝑖 (𝑑 (𝑢
1

𝑛,𝑖
, 𝑇
1

𝑖
𝑝))
2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛼𝑛,𝑖 (𝐻 (𝑇
1

𝑖
𝑦
1

𝑛
, 𝑇
1

𝑖
𝑝))
2

≤ 𝛼𝑛,0
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛼𝑛,𝑖
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

.

(42)
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By putting (41) in (42), we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) . (43)

So from (43), we say that {‖𝑥𝑛 − 𝑝‖} is nondecreasing and
bounded and hence, {𝑥𝑛} is bounded and lim𝑛→∞‖𝑥𝑛 − 𝑝‖

exists.
Nowwe prove that lim𝑛→∞‖𝑥𝑛−𝑢

𝑘

𝑛,𝑚
‖ = 0, lim𝑛→∞‖𝑥𝑛−

𝑦
𝑗

𝑛
‖ = 0 and lim𝑛→∞‖𝑦

𝑗

𝑛
−𝑢
𝑗

𝑛,𝑚
‖ = 0, where 𝑗 = 1, 2, . . . , 𝑘−1.

From (43), we can write as

𝛽
𝑘−1

𝑛,0
𝛽
𝑘−1

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
. (44)

Now from (7), as we assume that the following conditions
hold: lim sup

𝑛→∞
𝛼𝑛,0 < 1, lim sup

𝑛→∞
𝛽
𝑗

𝑛,0
< 1, 𝑗 =

1, 2, . . . , 𝑘 − 2, lim inf𝑛→∞𝛼𝑛,0𝛼𝑛,𝑚 > 0, lim inf𝑛→∞𝛽
𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
>

0, 𝑗 = 1, 2, . . . , 𝑘 − 1, and lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exist. So from
these conditions, we have lim𝑛→∞ 𝑔(‖𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚
‖) = 0 and

then using the continuity of 𝑔, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, for each 𝑚 ∈ 𝑁. (45)

From (38) and (39), we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−2

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(46)

Now by putting (39) in (40), we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−3

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) .

(47)

Now continuing like this at last, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
− 𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) ;

(48)

we can write it as

𝛽
𝑘−2

𝑛,0
𝛽
𝑘−2

𝑛,𝑚
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
) ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
.

(49)

Since we assume that lim inf𝑛→∞𝛽
𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0, 𝑗 = 1, 2, . . . , 𝑘−

1 and lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exists, we have lim𝑛→∞ 𝑔(‖𝑦
𝑘−1

𝑛
−

𝑢
𝑘−1

𝑛,𝑚
‖) = 0 and from the continuity of 𝑔, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, for each 𝑚 ∈ 𝑁. (50)

So by repeating these steps for different values of 𝑗 =

1, 2, . . . , 𝑘 − 2, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛
− 𝑢
𝑗

𝑛,𝑚

󵄩󵄩󵄩󵄩󵄩
= 0, for each 𝑚 ∈ 𝑁,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
(51)

Now, we prove that lim𝑛→∞‖𝑥𝑛 − 𝑦
𝑗

𝑛
‖ = 0, from (7), we have

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥𝑛 − 𝛽
𝑘−1

𝑛,0
𝑥𝑛 −

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖
𝑢
𝑘

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

where 𝑢𝑘
𝑛,𝑖
∈ 𝑇
𝑘

𝑖
𝑥𝑛,

(52)

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
≤ 𝛽
𝑘−1

𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 +

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩

≤

∞

∑

𝑖=1

𝛽
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
.

(53)

Taking limit 𝑛 → ∞ of both sides of (53) and using (45), we
have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (54)

Again using (7), we have

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑘−2

𝑛

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥𝑛 − 𝛽
𝑘−2

𝑛,0
𝑦
𝑘−1

𝑛
−

∞

∑

𝑖=1

𝛽
𝑘−2

𝑛,𝑖
𝑢
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽
𝑘−2

𝑛,0

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝛽
𝑘−2

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑢

𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑘−1

𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘−1

𝑛
− 𝑢
𝑘−1

𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
.

(55)

From (51) and (54), we have lim𝑛→∞‖𝑥𝑛 −𝑦
𝑘−2

𝑛
‖ = 0. Now by

repeating these steps for all values of 𝑗 = 1, 2, . . . , 𝑘−3, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛 − 𝑦

𝑗

𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, where 𝑗 = 1, 2, . . . , 𝑘 − 1. (56)

Now to prove weak convergence of {𝑥𝑛} to a point 𝑞 ∈ 𝐹,
we will use (43); that is, {𝑥𝑛} is bounded, so there exists a
subsequence {𝑥𝑛𝑘}

∞

𝑘=1
of {𝑥𝑛} such that 𝑥𝑛𝑘 converges weakly

to 𝑞 ∈ 𝐾; then using (56), we claim that 𝑦𝑗
𝑛𝑘
converges weakly

to 𝑞 ∈ 𝐾, for 𝑗 = 1, 2, . . . , 𝑘 − 1. Now assume that there exist
𝑖 ∈ 𝑁, such that 𝑇𝑗

𝑖
𝑞 ̸= 𝑞, for 𝑗 = 1, 2, . . . , 𝑘; then by Opial’s

condition we have

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
, (57)

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
(58)
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As {𝑇𝑗
𝑖
}
𝑘

𝑗=1
are 𝑘-multivalued quasi nonexpansive mappings,

we have
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

𝑛𝑘,𝑖
− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑇

𝑘

𝑖
𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝐻 (𝑇

𝑘

𝑖
𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑢
𝑘

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

𝑛𝑘,𝑖
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑇

𝑗

𝑖
𝑦
𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝐻 (𝑇

𝑗

𝑖
𝑦
𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑞)

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑢
𝑗

𝑛𝑘,𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(59)

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
Taking lim sup

𝑘→∞
of both sides of (59) and from (45)

and (51), we have

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑇
𝑘

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
, (60)

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑇
𝑗

𝑖
𝑞
󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
. (61)

Now combining (57) with (60) and (58) with (61), we have

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
,

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
,

(62)

which gives contradiction, so we have 𝑇𝑗
𝑖
𝑞 = 𝑞, for 𝑗 =

1, 2, . . . , 𝑘 and 𝑖 ∈ 𝑁; this implies that 𝑞 ∈ 𝐹. Now we
prove that {𝑥𝑛} converges weakly to 𝑞. Let {𝑥𝑚𝑘} be another
subsequence of {𝑥𝑛} that converges weakly to some 𝑟 ∈ 𝐾.
Again as above we conclude that 𝑟 ∈ 𝐹. We show that 𝑞 = 𝑟.
Let 𝑞 ̸= 𝑟, since lim𝑛→∞‖𝑥𝑛 −𝑝‖ exists for every 𝑝 ∈ 𝐹. From
(1), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 = lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑟
󵄩󵄩󵄩󵄩󵄩

= lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑚𝑘

− 𝑟
󵄩󵄩󵄩󵄩󵄩
< lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑚𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 .

(63)

It implies that lim𝑛→∞‖𝑥𝑛 − 𝑞‖ < lim𝑛→∞‖𝑥𝑛 − 𝑞‖, a
contradiction. So we have 𝑞 = 𝑟. It means that {𝑥𝑛} converges
weakly to 𝑞 as 𝑛 → ∞.

Theorem 13. Let 𝑋 be a uniformly convex real Banach space
and let 𝐾 be a bounded and closed convex subset of 𝑋.
For 𝑖 ∈ 𝑁, let {𝑇𝑗

𝑖
}
𝑘

𝑗=1
be a sequence of multivalued quasi-

nonexpansive and continuousmappings from𝐾 into𝑃(𝐾)with

𝐹 := ∩
∞

𝑖=1
𝐹(𝑇
𝑗

𝑖
) ̸= ⌀, 𝑗 = 1, 2, . . . , 𝑘 and 𝑝 ∈ 𝐹. Let {𝑥𝑛}

be a sequence defined by (7) with {𝛼𝑛,𝑖}
∞

𝑖=0
and {𝛽𝑗

𝑛,𝑖
}
∞

𝑖=0
, 𝑗 =

1, 2, . . . , 𝑘−1 are sequences in [0, 1]which satisfies∑∞
𝑖=0

𝛼𝑛,𝑖 = 1

and ∑∞
𝑖=0

𝛽
𝑗

𝑛,𝑖
= 1, 𝑗 = 1, 2, . . . , 𝑘 − 1, lim inf𝑛→∞𝛽

𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0,

𝑗 = 1, 2, . . . , 𝑘 − 1, for all 𝑖 ∈ 𝑁. Assume that one of 𝑇𝑗
𝑖
is

hemicompact. Then {𝑥𝑛} converges strongly to common fixed
point of {𝑇𝑗

𝑖
}.

Proof. Let 𝑇𝑗
𝑖
is hemicompact for some 𝑖, 𝑗 ∈ 𝑁; then from

(45) and (50), we have lim𝑛→∞ 𝑑(𝑥𝑛, 𝑇
𝑘

𝑖
𝑥𝑛) = 0, for all

𝑖 ∈ 𝑁, and lim𝑛→∞ 𝑑(𝑦
𝑗

𝑛
, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛
) = 0, for all 𝑖 ∈ 𝑁,

𝑗 = 1, 2, . . . , 𝑘 − 1. So there exists a subsequence {𝑥𝑛𝑘
}

of {𝑥𝑛} such that lim𝑘→∞ 𝑥𝑛𝑘 = 𝑞 ∈ 𝐾 using (56); we
can say that lim𝑘→∞ 𝑦

𝑗

𝑛𝑘
= 𝑞 ∈ 𝐾. From continuity of

{𝑇
𝑗

𝑖
}
𝑘

𝑗=1
, 𝑖 ∈ 𝑁, we have lim𝑚→∞ 𝑑(𝑥𝑛𝑚 , 𝑇

𝑘

𝑖
𝑥𝑛𝑚

) → 𝑑(𝑞, 𝑇
𝑘

𝑖
𝑞)

and lim𝑚→∞ 𝑑(𝑦
𝑗

𝑛𝑚
, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛𝑚
) → 𝑑(𝑞, 𝑇

𝑗

𝑖
𝑞). This implies that

𝑑(𝑞, 𝑇
𝑗

𝑖
𝑞) = 0, 𝑗 = 1, 2, . . . , 𝑘 and 𝑞 ∈ 𝐹. Since lim𝑛→∞‖𝑥𝑛−𝑞‖

exists, it follows that {𝑥𝑛} converges strongly to 𝑞.

Theorem 14. Let 𝑋 be a uniformly convex real Banach space
and let𝐾 be a compact convex subset of𝑋. For 𝑖 ∈ 𝑁, let {𝑇𝑗

𝑖
}
𝑘

𝑗=1

be a sequence of multivalued quasi-nonexpansive mappings
from 𝐾 into 𝑃(𝐾) with 𝐹 := ∩

∞

𝑖=1
𝐹(𝑇
𝑗

𝑖
) ̸= ⌀, 𝑗 = 1, 2, . . . , 𝑘

and 𝑝 ∈ 𝐹. Let {𝑥𝑛} be a sequence defined by (7) with {𝛼𝑛,𝑖}
∞

𝑖=0

and {𝛽𝑗
𝑛,𝑖
}
∞

𝑖=0
, 𝑗 = 1, 2, . . . , 𝑘 − 1 are sequences in [0, 1] which

satisfies ∑∞
𝑖=0

𝛼𝑛,𝑖 = 1 and ∑∞
𝑖=0

𝛽
𝑗

𝑛,𝑖
= 1, 𝑗 = 1, 2, . . . , 𝑘 − 1,

lim inf𝑛→∞𝛽
𝑗

𝑛,0
𝛽
𝑗

𝑛,𝑖
> 0, 𝑗 = 1, 2, . . . , 𝑘 − 1, for all 𝑖 ∈ 𝑁. Then

{𝑥𝑛} converges strongly to common fixed point of {𝑇𝑗
𝑖
}.

Proof. Since𝐾 is compact, there exists a subsequence {𝑥𝑛𝑘} of
{𝑥𝑛}, such that lim𝑘→∞‖𝑥𝑛𝑘 − 𝑞‖ = 0 for some 𝑞 ∈ 𝐾; also
from (56), we can say that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑗 = 1, 2, . . . , 𝑘 − 1. (64)

Now, we have

𝑑 (𝑞, 𝑇
𝑘

𝑖
𝑞) ≤ 𝑑 (𝑞, 𝑥𝑛𝑘

) + 𝑑 (𝑥𝑛𝑘
, 𝑇
𝑘

𝑖
𝑥𝑛𝑘

) + 𝐻(𝑇
𝑘

𝑖
𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑞)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

− 𝑞
󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑥𝑛𝑘

, 𝑇
𝑘

𝑖
𝑥𝑛𝑘
) 󳨀→ 0 as 𝑘 󳨀→ ∞,

𝑑 (𝑞, 𝑇
𝑗

𝑖
𝑞) ≤ 𝑑 (𝑞, 𝑦

𝑗

𝑛𝑘
) + 𝑑 (𝑥𝑛𝑘

, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛𝑘
) + 𝐻(𝑇

𝑗

𝑖
𝑦
𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑞)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗

𝑛𝑘
− 𝑞

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑦

𝑗

𝑛𝑘
, 𝑇
𝑗

𝑖
𝑦
𝑗

𝑛𝑘
) 󳨀→ 0 as 𝑘 󳨀→ ∞,

where 𝑗 = 1, 2, . . . , 𝑘 − 1.
(65)

Hence this implies that 𝑞 ∈ 𝐹 and {𝑥𝑛} converges strongly to
common fixed point of {𝑇𝑗

𝑖
}.
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Table 1: Showing the convergence of different iterative sequences to common fixed point {0} of countable family of multivalued quasi
nonexpansive mappings. From the table we can compare the converging step of one-step, two-step, multistep (6), and multistep (7) iterative
schemes and conclude that multistep iterative scheme (7) converges faster than one-step, two-step, and multistep iterative schemes (6).

𝑁
Multistep iterative scheme (6) Multistep iterative scheme (7)

1-step 2-step 3-step 5-step 3-step 5-step
1 0.104167 8.09766𝑒 − 007 5.00012𝑒 − 008 5.00001𝑒 − 008 1.28445𝑒 − 012 3.09053𝑒 − 024

2 0.0425347 1.31144𝑒 − 012 5.00024𝑒 − 015 5.00002𝑒 − 015 3.29962𝑒 − 024 1.91028𝑒 − 047

3 0.0173683 2.12392𝑒 − 018 5.00036𝑒 − 022 5.00002𝑒 − 022 8.47637𝑒 − 036 1.18075𝑒 − 070

11 1.34239𝑒 − 005 1.0052𝑒 − 064 5.00133𝑒 − 078 5.00008𝑒 − 078 1.60762𝑒 − 128 2.51572𝑒 − 256

12 5.48141𝑒 − 006 1.62795𝑒 − 070 5.00145𝑒 − 085 5.00009𝑒 − 085 4.12981𝑒 − 140 1.55498𝑒 − 279

13 2.23824𝑒 − 006 2.63652𝑒 − 076 5.00157𝑒 − 092 5.0001𝑒 − 092 1.06091𝑒 − 151 9.61145𝑒 − 303

14 9.13948𝑒 − 007 4.26993𝑒 − 082 5.00169𝑒 − 099 5.00011𝑒 − 099 2.72536𝑒 − 163 0
15 3.73196𝑒 − 007 6.91528𝑒 − 088 5.00181𝑒 − 106 5.00011𝑒 − 106 7.00116𝑒 − 175 0
16 1.52388𝑒 − 007 1.11995𝑒 − 093 5.00193𝑒 − 113 5.00012𝑒 − 113 1.79852𝑒 − 186 0
27 8.01889𝑒 − 012 2.25155𝑒 − 157 5.00325𝑒 − 190 5.00021𝑒 − 190 5.78269𝑒 − 314 0
28 3.27438𝑒 − 012 3.64645𝑒 − 163 5.00338𝑒 − 197 5.00021𝑒 − 197 0 0
29 1.33704𝑒 − 012 5.90554𝑒 − 169 5.0035𝑒 − 204 5.00022𝑒 − 204 0 0
46 3.26134𝑒 − 019 2.14229𝑒 − 267 4.94066𝑒 − 323 4.94066𝑒 − 323 0 0
47 1.33171𝑒 − 019 3.4695𝑒 − 273 0 0 0 0
48 5.43783𝑒 − 020 5.61897𝑒 − 279 0 0 0 0
55 1.02927𝑒 − 022 8.79091𝑒 − 320 0 0 0 0
56 4.20286𝑒 − 023 0 0 0 0 0
57 1.71617𝑒 − 023 0 0 0 0 0
829 4.94066𝑒 − 324 0 0 0 0 0
830 0 0 0 0 0 0
831 0 0 0 0 0 0

Remark 15. Since iterations used in [4–6, 15, 21] are special
case of iterative scheme (6), motivated from them, we
generalize in the following sense.

(1) Since we prove our result for quasi-nonexpansive
mappings so generalizes from nonexpansive to quasi
nonexpansive.

(2) We generalize from single-valued to multivalued
mappings.

(3) Our results extended from one and two countable
families to 𝑘-number of countable families of multi-
valued quasi-nonexpansive mappings.

(4) We prove weak and strong convergence results
for new multistep iterative scheme (7). With the
help of numerical example of multivalued quasi-
nonexpansive mappings and computational program
in C++ we prove fast rate of convergence of new
multistep iterative scheme (7).

3. Numerical Computation

We use the following numerical example of finite family
of multivalued quasi-nonexpansive mappings to compare
the converging steps of one-step, two-step, and two new
multistep iterative procedures. Let {𝑇𝑗

𝑖
} : [0, 1] → [0, 1]

be 𝑘-countable family of multivalued quasi-nonexpansive
mappings defined as

𝑇
𝑗

𝑖
𝑥 = [0,

𝑥

𝑖+𝑗+1
] , where 𝑥∈[0, 1] , 𝑖∈𝑁, 𝑗=1, 2, . . . , 𝑘.

(66)

Now using the initial value 𝑥0 = 0.5 and different initial
conditions used in result proved above in C++ program, we
get the following observation for different iterations.

4. Conclusion

After analyzing the comparison shown in Table 1 we conclude
that the iterative scheme (7) converges faster than other
existing iterative schemes and rate of convergence increases
as the number of step of iterations increases for multivalued
quasi-nonexpansive mappings.
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