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Based on the Hirota bilinear method and theta function identities, we obtain a new type of doubly periodic standing wave solutions
for a coupled Higgs field equation. The Jacobi elliptic function expression and long wave limits of the periodic solutions are also
presented. By selecting appropriate parameter values, we analyze the interaction properties of periodic-periodicwaves and periodic-
solitary waves by some figures.

1. Introduction

As is well known, the investigation of the explicit exact
solutions to nonlinear evolution equations (NLEEs) plays an
important role in the study of nonlinear physical phenomena
[1, 2]. In the past decades, much effort has been spent on the
construction of various forms of periodic wave solutions for
NLEEs, and many powerful methods have been developed
such as the algebrogeometrical approach [3, 4], nonlineariza-
tion approach of Lax pairs [5, 6], Weierstrass elliptic function
expansion method [7, 8], Jacobi elliptic function expansion
method [9–11], and subsidiary ordinary differential equation
methods [12–18].

In this paper, we will focus on a coupled Higgs field
equation with important physical interests [19],

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− 𝛽𝑢 + 𝛿|𝑢|

2
𝑢 − 2𝑢V = 0,

V
𝑡𝑡
+ V
𝑥𝑥
− 𝛿(|𝑢|

2
)
𝑥𝑥
= 0,

(1)

which describes a system of conserved scalar nucleons
interacting with neutral scalar mesons in particle physics.
Here 𝛽 and 𝛿 are constants, and the function V = V(𝑥, 𝑡)
represents a real scalar meson field and 𝑢 = 𝑢(𝑥, 𝑡) a complex
scalar nucleon field. Equation (1) is related to some nonlinear
models with physical interests. Equation (1) is the coupled
nonlinear Klein-Gordon equations for 𝛽 < 0 and 𝛿 < 0 and
the Higgs equations for 𝛽 > 0 and 𝛿 > 0. Much attention

has been paid to investigate exact explicit solutions and
integrable properties of (1). The symmetry reductions, the
homoclinic orbits,𝑁-soliton solutions, rogue wave solutions,
Jacobi periodic solutions, and other types of travelling wave
solutions have been presented [19–24].

The Hirota bilinear method is a powerful tool for
constructing various exact solutions for NLEEs, which
include soliton, negaton, rogue waves, rational solutions, and
quasiperiodic solutions [25–35]. Recently, bymeans of Hirota
bilinear method and theta function identities [36–38], Fan et
al. obtained a class of doubly periodic standingwave solutions
of (1) [39], which was expressed as rational functions of
elliptic/theta functions of different moduli. A significant
portion of these solutions represents travelling wave, that
is, those which will remain steady in an appropriate frame
of reference. Physically, the envelope of these oscillations
is bounded by a pattern periodic in both time and space.
The focus of this work is to investigate new types of doubly
periodic standing wave solutions for (1).

This paper is organized as follows. In Section 2, we
briefly illustrate some properties of theta functions and Jacobi
elliptic functions. In Section 3, we construct a new kind of
doubly periodic wave solutions for the coupled Higgs field
equation. In Section 4, for the obtained periodic solution, we
derive its Jacobi elliptic function representation and analyze
interaction properties by some figures. Some conclusions are
given in Section 5.
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2. The Theta and Jacobi Elliptic Functions

The main tools used in this paper are Hirota operators and
theta function formulas, which will be discussed here, to
fix the notations and make our presentation self-contained.
More formulas for the theta functions can be found in [36,
37].

The Riemann theta functions of genus one 𝜗
𝑛
(𝑥, 𝜏) (𝑛 =

1–4), the parameter 𝑞 (the nome), and 𝜏 (pure imaginary) are
defined by [40]

𝜗
1
(𝑥, 𝜏) = 2

∞

∑

𝑛=0

(−1)
𝑛
𝑞
(𝑛+1/2)

2

sin (2𝑛 + 1) 𝑥,

𝜗
2
(𝑥, 𝜏) = 2

∞

∑

𝑛=0

𝑞
(𝑛+1/2)

2

cos (2𝑛 + 1) 𝑥,

𝜗
3
(𝑥, 𝜏) = 1 + 2

∞

∑

𝑛=1

𝑞
𝑛
2

cos 2𝑛𝑥,

𝜗
4
(𝑥, 𝜏) = 1 + 2

∞

∑

𝑛=1

(−1)
𝑛
𝑞
𝑛
2

cos 2𝑛𝑥,

0 < 𝑞 < 1, 𝑞 = exp (𝑖𝜋𝜏) , 𝑞 = exp(−𝜋𝐾


𝐾

) .

(2)

Here,𝐾,𝐾 are the complete elliptic integrals of the first kind:

𝐾 = ∫

𝜋/2

0

(1 − 𝑘
2sin2𝜉)

−1/2

𝑑𝜉,

𝐾
1
= ∫

𝜋/2

0

(1 − 𝑘
2

1
sin2𝜉)

−1/2

𝑑𝜉.

(3)

𝜗
1
is an odd functionwhile the other three are even functions.

The zeros of 𝜗
1
, 𝜗
2
, 𝜗
3
, and 𝜗

4
are at𝑀𝜋+𝑁𝜋𝜏, (𝑀+(1/2))𝜋+

𝑁𝜋𝜏, (𝑀+(1/2))𝜋+(𝑁+(1/2))𝜋𝜏, and𝑀𝜋+(𝑁+(1/2))𝜋𝜏,
respectively, and𝑀 and𝑁 are integers. Since 𝜗

1
, 𝜗
2
, and (𝜗

3
,

𝜗
4
) are related by a phase shift of 𝜋/2, there are roughly two

groups of theta functions.
There exists a large class of bilinear identities involving

products of theta functions, some of which are listed here:

𝐷
2

𝑥
𝜗
1
(𝑥, 𝜏) ⋅ 𝜗

2
(𝑥, 𝜏) = (𝑏

2
+ 𝜗
4

2
(0, 𝜏)) 𝜗

1
(𝑥, 𝜏) 𝜗

2
(𝑥, 𝜏) ,

𝐷
2

𝑥
𝜗
1
(𝑥, 𝜏) ⋅ 𝜗

4
(𝑥, 𝜏) = (𝑏

2
− 𝜗
4

4
(0, 𝜏)) 𝜗

1
(𝑥, 𝜏) 𝜗

4
(𝑥, 𝜏) ,

𝐷
2

𝑥
𝜗
2
(𝑥, 𝜏) ⋅ 𝜗

3
(𝑥, 𝜏) = (𝑏

2
− 𝜗
4

4
(0, 𝜏)) 𝜗

2
(𝑥, 𝜏) 𝜗

3
(𝑥, 𝜏) ,

𝐷
2

𝑥
𝜗
1
(𝑥, 𝜏) ⋅ 𝜗

3
(𝑥, 𝜏) = 𝑏

3
𝜗
1
(𝑥, 𝜏) 𝜗

3
(𝑥, 𝜏) ,

𝐷
2

𝑥
𝜗
2
(𝑥, 𝜏) ⋅ 𝜗

4
(𝑥, 𝜏) = 𝑏

3
𝜗
2
(𝑥, 𝜏) 𝜗

4
(𝑥, 𝜏) ,

𝐷
2

𝑥
𝜗
2
(𝑥, 𝜏) ⋅ 𝜗

2
(𝑥, 𝜏) = 𝑏

2
𝜗
2

2
(𝑥, 𝜏) − 𝑏

1
𝜗
2

4
(𝑥, 𝜏) ,

𝐷
2

𝑥
𝜗
4
(𝑥, 𝜏) ⋅ 𝜗

4
(𝑥, 𝜏) = 𝑏

1
𝜗
2

2
(𝑥, 𝜏) + 𝑏

2
𝜗
2

4
(𝑥, 𝜏) ,

(4)

where for simplicity we have used the notations

𝑏
1
= 2𝜗
2

2
(0, 𝜏) 𝜗

2

4
(0, 𝜏) , 𝑏

2
= 2

𝜗


3
(0, 𝜏)

𝜗
3
(0, 𝜏)

,

𝑏
3
=

𝜗


2
(0, 𝜏)

𝜗
2
(0, 𝜏)

+

𝜗


4
(0, 𝜏)

𝜗
4
(0, 𝜏)

,

(5)

and the formulas (4) can be derived from product identities
of theta functions; the details can be found in [36, 37].

There are close connections between theta functions and
elliptic functions as follows:

𝜗
1
(𝛾𝑥, 𝜏)

𝜗
4
(𝛾𝑥, 𝜏)

= 𝑘
1/2sn (𝜆𝑥, 𝑘) ≡ 𝑆,

𝜗
2
(𝛾𝑥, 𝜏)

𝜗
4
(𝛾𝑥, 𝜏)

= 𝑘
1/2
(1 − 𝑘

2
)

−1/4

cn (𝜆𝑥, 𝑘) ≡ 𝐶,

𝜗
3
(𝛾𝑥, 𝜏)

𝜗
4
(𝛾𝑥, 𝜏)

= (1 − 𝑘
2
)

−1/4

dn (𝜆𝑥, 𝑘) ≡ 𝐷,

(6)

where 𝜆 = 𝛾𝜗2
3
(0, 𝜏) and 𝑘 = 𝜗2

2
(0, 𝜏)/𝜗

2

3
(0, 𝜏),

𝜗
1
(𝜔𝑡, 𝜏
1
)

𝜗
4
(𝜔𝑡, 𝜏
1
)

= 𝑘
1/2

1
sn (𝜌𝑡, 𝑘

1
) ≡ 𝑆
1
,

𝜗
2
(𝜔𝑡, 𝜏
1
)

𝜗
4
(𝜔𝑡, 𝜏
1
)

= 𝑘
1/2

1
(1 − 𝑘

2

1
)

−1/4

cn (𝜌𝑡, 𝑘
1
) ≡ 𝐶
1
,

𝜗
3
(𝜔𝑡, 𝜏
1
)

𝜗
4
(𝜔𝑡, 𝜏
1
)

= (1 − 𝑘
2

1
)

−1/4

dn (𝜌𝑡, 𝑘
1
) ≡ 𝐷

1
,

(7)

where 𝜌 = 𝜔𝜗
2

3
(0, 𝜏
1
) and 𝑘

1
= 𝜗
2

2
(0, 𝜏
1
)/𝜗
2

3
(0, 𝜏
1
). It is clearly

shown that arguments of the theta and elliptic functions are
related by a scale factor.

3. A New Class of Doubly Periodic
Wave Solutions

In this section, we construct a new class of doubly periodic
wave solutions by Hirota bilinear method [2]. For (1), substi-
tuting the following transformation

𝑢 (𝑥, 𝑡) =

𝑔

𝑓

, V (𝑥, 𝑡) = V
0
+ 2(ln𝑓)

𝑥𝑥 (8)

into (1) and integrating with respect to 𝑥 yield the bilinear
forms

(𝐷
2

𝑡
+ 𝐷
2

𝑥
− Λ)𝑓 ⋅ 𝑓 = 𝛿𝑔 ⋅ 𝑔

⋆
, (9)

[𝐷
2

𝑡
− 𝐷
2

𝑥
− (𝛽 + 2V

0
+ Λ)] 𝑔 ⋅ 𝑓 = 0, (10)

where V
0
is a constant, Λ = Λ(𝑡) is an integration constant,

and 𝐷 is the well-known Hirota bilinear operator. Equation
(10) is slightly different from the results given in [39] by
adding one integration constant term.

The crucial step to derive doubly periodic wave solutions
is to suppose 𝑓 and 𝑔 in (9) and (10) as suitable combination
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of different theta functions. To obtain new doubly periodic
wave solutions, we make a new ansatz,

𝑔 = 𝜂 [𝜗
3
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏)

+ 𝑖𝜗
1
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏)] exp (𝑖𝑝𝑡) ,

𝑓 = 𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏) + 𝜗

2
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏) ,

(11)

where the parameters 𝜔, 𝛾, 𝜂, and 𝑝 are constants to be
determined and the period 𝜏 in the spatial direction and
the period 𝜏

1
in the temporal direction are purely imaginary

constants.
Inserting the ansatz (11) into (9), together with the theta

function identities given in Section 2, we set the coefficients
of the terms 𝜗2

2
(𝛾𝑥, 𝜏), 𝜗2

4
(𝛾𝑥, 𝜏), and 𝜗

2
(𝛾𝑥, 𝜏)𝜗

4
(𝛾𝑥, 𝜏) to be

zero and get

(𝛾
2
𝑏
2
+ 𝜔
2̃
𝑏
2
− Λ − 𝛿𝜂

2 ̃
𝑏
4
) 𝜗
2

2
(𝜔𝑡, 𝜏
1
)

+ (𝛾
2
𝑏
1
− 𝜔
2̃
𝑏
1
− 𝛿𝜂
2̃
𝑏
5
) 𝜗
2

4
(𝜔𝑡, 𝜏
1
) = 0,

(𝛾
2
𝑏
1
− 𝜔
2̃
𝑏
1
− 𝛿𝜂
2̃
𝑏
5
) 𝜗
2

2
(𝜔𝑡, 𝜏
1
)

− (𝛾
2
𝑏
2
+ 𝜔
2̃
𝑏
2
− Λ − 𝛿𝜂

2̃
𝑏
4
) 𝜗
2

4
(𝜔𝑡, 𝜏
1
) = 0,

(𝛾
2
𝑏
3
+ 𝜔
2̃
𝑏
3
− Λ) 𝜗

2
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝜔𝑡, 𝜏
1
) = 0,

(12)

where the theta constants ̃𝑏
𝑗
(𝑗 = 1, . . . , 5) are defined by

̃
𝑏
1
= 2𝜗
2

2
(0, 𝜏
1
) 𝜗
2

4
(0, 𝜏
1
) ,

̃
𝑏
2
=

2𝜗


3
(0, 𝜏
1
)

𝜗
3
(0, 𝜏
1
)

,

̃
𝑏
3
=

𝜗


2
(0, 𝜏
1
)

𝜗
2
(0, 𝜏
1
)

+

𝜗


4
(0, 𝜏
1
)

𝜗
4
(0, 𝜏
1
)

,

̃
𝑏
4
=

𝜗
2

2
(0, 𝜏
1
)

𝜗
2

3
(0, 𝜏
1
)

,
̃
𝑏
5
=

𝜗
2

4
(0, 𝜏
1
)

𝜗
2

3
(0, 𝜏
1
)

.

(13)

Due to the linear independence of theta functions,
we set the coefficients of 𝜗

2

2
(𝜔𝑡, 𝜏
1
), 𝜗
2

4
(𝜔𝑡, 𝜏
1
), and

𝜗
2
(𝜔𝑡, 𝜏
1
)𝜗
4
(𝜔𝑡, 𝜏
1
) in (12) to be zero and obtain

𝛾
2
𝑏
1
− 𝜔
2̃
𝑏
1
− 𝛿𝜂
2̃
𝑏
5
= 0,

𝛾
2
𝑏
2
+ 𝜔
2̃
𝑏
2
− Λ − 𝛿𝜂

2̃
𝑏
4
= 0,

𝛾
2
𝑏
3
+ 𝜔
2̃
𝑏
3
− Λ = 0.

(14)

Similarly, substituting the ansatz (11) into (10) and apply-
ing identities for Hirota derivatives of theta functions yield

(𝜔
2
(
̃
𝑏
2
− 𝜗
4

4
(0, 𝜏
1
)) − 𝛾

2
𝑏
2
− (𝛽 + 2V

0
+ Λ + 𝑝

2
))

× 𝜗
2
(𝜔𝑡, 𝜏
1
) 𝜗
3
(𝜔𝑡, 𝜏
1
) 𝜗
2

2
(𝛾𝑥, 𝜏)

+ (𝛾
2
𝑏
1
− 2𝑝𝜔𝜗

2

4
(0, 𝜏
1
)) 𝜗
2
(𝜔𝑡, 𝜏
1
) 𝜗
3
(𝜔𝑡, 𝜏
1
) 𝜗
2

4
(𝛾𝑥, 𝜏)

+ (𝜔
2
(
̃
𝑏
2
+ 𝜗
4

2
(0, 𝜏
1
)) − 𝛾

2
𝑏
3
− 2𝑝𝜔𝜗

2

2
(0, 𝜏
1
)

− (𝛽 + 2V
0
+ Λ + 𝑝

2
)) 𝜗
3

× (𝜔𝑡, 𝜏
1
) 𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏) 𝜗

4
(𝛾𝑥, 𝜏)

+ 𝑖 [− (𝛾
2
𝑏
1
− 2𝑝𝜔𝜗

2

4
(0, 𝜏
1
)) 𝜗
1
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
2

2
(𝛾𝑥, 𝜏)

+ (𝜔
2
(
̃
𝑏
2
+ 𝜗
4

2
(0, 𝜏
1
)) − 𝛾

2
𝑏
3
− 2𝑝𝜔𝜗

2

2
(0, 𝜏
1
)

− (𝛽 + 2V
0
+ Λ + 𝑝

2
) )

× 𝜗
1
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏) 𝜗

4
(𝛾𝑥, 𝜏)

+ (𝜔
2
(
̃
𝑏
2
− 𝜗
4

4
(0, 𝜏
1
)) − 𝛾

2
𝑏
2
− (𝛽 + 2V

0
+ Λ + 𝑝

2
))

× 𝜗
1
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
2

4
(𝛾𝑥, 𝜏) ] = 0.

(15)

For the real part and the imaginary part of (15), set-
ting the coefficients of the terms 𝜗2

2
(𝛾𝑥, 𝜏), 𝜗2

4
(𝛾𝑥, 𝜏), and

𝜗
2
(𝛾𝑥, 𝜏)𝜗

4
(𝛾𝑥, 𝜏) to be zero yields an algebraic system as

follows:

𝛾
2
𝑏
1
− 2𝑝𝜔𝜗

2

4
(0, 𝜏
1
) = 0,

𝜔
2
(
̃
𝑏
2
− 𝜗
4

4
(0, 𝜏
1
)) − 𝛾

2
𝑏
2
− (𝛽 + 2V

0
+ Λ + 𝑝

2
) = 0,

𝜔
2
(
̃
𝑏
2
+ 𝜗
4

2
(0, 𝜏
1
)) − 𝛾

2
𝑏
3
− 2𝑝𝜔𝜗

2

2
(0, 𝜏
1
)

− (𝛽 + 2V
0
+ Λ + 𝑝

2
) = 0.

(16)

Solving the algebraic system given by (14) and (16) with
respect to the variables V

0
, 𝜂, 𝑝, 𝛾, 𝜔, 𝜏, 𝜏

1
, and Λ, one obtains

a set of nontrivial solutions:

𝜔
2
= (

𝑏
1
̃
𝑏
4
−
̃
𝑏
5
(𝑏
2
− 𝑏
3
)

̃
𝑏
1
̃
𝑏
4
+ (

̃
𝑏
2
−
̃
𝑏
3
)
̃
𝑏
5

)𝛾
2
, 𝑝 =

𝑏
1
𝛾
2

2𝜔𝜗
2

4
(0, 𝜏
1
)

,

Λ = 𝑏
3
𝛾
2
+
̃
𝑏
3
𝜔
2
, 𝜂

2
=

𝛾
2
(𝑏
2
− 𝑏
3
) + 𝜔
2
(
̃
𝑏
2
−
̃
𝑏
3
)

𝛿
̃
𝑏
4

,

V
0
=

𝜔
2
(
̃
𝑏
2
− 𝜗
4

4
(0, 𝜏
1
))

2

−

𝑏
2
𝛾
2
+ 𝛽 + Λ + 𝑝

2

2

,

(17)

where the parameters 𝛾, 𝜏, and 𝜏
1
are arbitrary constants.
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Therefore, we obtain a new doubly periodic wave solution
of (1):

𝑢 (𝑥, 𝑡)

=

𝜂 [𝜗
3
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏) + 𝑖𝜗

1
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏)] exp (𝑖𝑝𝑡)

𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏) + 𝜗

2
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏)

,

V (𝑥, 𝑡)

= V
0
+ 2 (ln [𝜗

4
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏)

+ 𝜗
2
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏)])

𝑥𝑥
,

(18)

where 𝛾, 𝜏, and 𝜏
1
are arbitrary constants, and the parameters

𝜔, 𝑝, 𝜂, V
0
, andΛ are given by (17). To the author’s knowledge,

the solution (18) is firstly reported here.
In fact, the coupled Higgs field equation (1) admits abun-

dant families of doubly periodic wave solutions. For example,
we can suppose the solutions of the bilinear equations (9) and
(10) as

𝑔 = 𝜂 [𝜗
1
(𝜔𝑡, 𝜏
1
) 𝜗
3
(𝛾𝑥, 𝜏)

+ 𝑖𝜗
2
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏)] exp (𝑖𝑝𝑡) ,

𝑓 = 𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏) + 𝜗

3
(𝜔𝑡, 𝜏
1
) 𝜗
3
(𝛾𝑥, 𝜏) ,

(19)

or
𝑔 = 𝜂 [𝜗

3
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏)

+ 𝑖𝜗
1
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏)] exp (𝑖𝑝𝑡) ,

𝑓 = 𝜗
4
(𝜔𝑡, 𝜏
1
) 𝜗
2
(𝛾𝑥, 𝜏)

+ 𝜗
2
(𝜔𝑡, 𝜏
1
) 𝜗
4
(𝛾𝑥, 𝜏) ,

(20)

and so on. For the sake of simplicity, the tedious computations
are omitted here. It is noted that these two types of periodic
solutions have also two independent periods in the spatial
and temporal directions.

4. Jacobi Elliptic Function Expressions and
Long Wave Limit

In order to analyze the periodic property by some figures, we
may first convert solution (18) into Jacobi elliptic function
expressions. Together with (6) and (7), solution (18) can be
expressed as rational forms of Jacobi elliptic functions:

𝑢 (𝑥, 𝑡)

= ±
√

𝜆
2
(1 − 2𝑘

2
) + 𝜌
2
(1 − 2𝑘

2

1
)

𝛿𝑘
1

𝐷
1
𝐶 + 𝑖𝑆

1

1 + 𝐶
1
𝐶

exp (𝑖𝑝𝑡) ,

V (𝑥, 𝑡) = V
0
+ 2𝜆
2
(1 − 𝑘

2
−

𝐸

𝐾

)

+

2𝜆
2
[𝑘√1 − 𝑘

2
(𝐶
2
− 𝐶
2

1
) + (2𝑘

2
− 1)𝐶𝐶

1
]

(1 + 𝐶
1
𝐶)
2

,

(21)

where 𝜆 is an arbitrary constant, and the parameters 𝜌, 𝑝, Λ,
and V
0
are given by

𝜌
2
= 𝜆
2
[2𝑘
2
− 1 + 2𝑘𝑘

1
(1 − 𝑘

2
)

1/2

(1 − 𝑘
2

1
)

−1/2

] ,

𝑝 =

𝜆
2

𝜌

𝑘(1 − 𝑘
2
)

1/2

(1 − 𝑘
2

1
)

−1/2

,

Λ = 𝜆
2
(1 −

2𝐸

𝐾

) + 𝜌
2
(1 −

2𝐸
1

𝐾
1

) ,

V
0
= 𝜌
2
(

(1 − 𝑘
2

1
)

2

−

𝐸
1

𝐾
1

) − 𝜆
2
(1 − 𝑘

2
−

𝐸

𝐾

) −

𝛽 + 𝑝
2
+ Λ

2

,

(22)

which indicates that the period 𝑘 in the spatial direction and
the period 𝑘

1
in the temporal direction are related by

2𝑘
2
− 1 + 2𝑘𝑘

1
(1 − 𝑘

2
)

1/2

(1 − 𝑘
2

1
)

−1/2

> 0. (23)

In (21) and (22), the complete elliptic integrals 𝐸 and 𝐸
1
are

defined by

𝐸 = ∫

𝜋/2

0

√1 − 𝑘
2sin2𝜉𝑑𝜉, 𝐸

1
= ∫

𝜋/2

0

√1 − 𝑘
2

1
sin2𝜉𝑑𝜉.

(24)

From (21), it is easy to check that

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 +

4𝐾

𝜆

, 𝑡) , |𝑢 (𝑥, 𝑡)| =










𝑢 (𝑥, 𝑡 +

4𝐾
1

𝜌

)










,

V (𝑥, 𝑡) = V (𝑥 +
4𝐾

𝜆

, 𝑡) , V (𝑥, 𝑡) = V(𝑥, 𝑡 +
4𝐾
1

𝜌

) ,

(25)

which implies that the solution (|𝑢|, V) is periodic in the
𝑥-direction with a period 4𝐾/𝜆 and the 𝑡-direction with a
period 4𝐾

1
/𝜌.

By selecting appropriate parameter values in (21), the
interactions of doubly periodic waves are shown in Figures
1 and 2. It is clearly seen that (|𝑢|, V) is periodic in the
𝑥-direction and the 𝑡-direction. For the solution in [39],
the periodic waves are both bell shaped in the spatial and
temporal directions. However, with regard to solution (21),
the periodic waves are of different shapes in the spatial and
temporal directions.

When the modulus 𝑘 → 1, (sn𝑥, cn𝑥, dn𝑥) →

(tanh𝑥, sech𝑥, sech𝑥). And if 𝑘 → 0, (sn𝑥, cn𝑥, dn𝑥) →

(sin𝑥, cos𝑥, 1).Therefore, the longwave limits of the periodic
wave solutions can be readily obtained. A long wave limit of
the solution (21) can be taken by assuming

√𝑘

(1 − 𝑘
2

1
)
1/4

= 𝑚, 0 < 𝑚 < 1. (26)
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Figure 1: Doubly periodic wave solution 𝑢(𝑥, 𝑡) given by (21) with 𝛿 = 0.2, 𝛽 = 0.4, 𝜆 = 0.2, 𝑘 = 0.8, and 𝑘
1
= 0.2.
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Figure 2: Doubly periodic wave solution V(𝑥, 𝑡) given by (21) with 𝛿 = 0.2, 𝛽 = 0.4, 𝜆 = 0.2, 𝑘 = 0.8, and 𝑘
1
= 0.2.
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Figure 3: The periodic-solitary wave solution 𝑢(𝑥, 𝑡) given by (27) with 𝛿 = 0.4, 𝛽 = 2.0, 𝜆 = 1.2, and𝑚 = 0.8.
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Figure 4: The periodic-solitary wave solution V(𝑥, 𝑡) given by (27) with 𝛿 = 0.4, 𝛽 = 2.0, 𝜆 = 1.2, and𝑚 = 0.8.
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When the modulus 𝑘 → 0 and 𝑘
1
→ 1, one obtains a new

periodic-solitary wave solution as follows:

𝑢 = 𝜂 [

𝑚 cos (𝜆𝑥) sech (𝜌𝑡) + 𝑖 tanh (𝜌𝑡)
1 + 𝑚 cos (𝜆𝑥) sech (𝜌𝑡)

] exp (𝑖𝑝𝑡) ,

V = −

𝛽

2

−

𝜆
2
(5𝑚
4
− 6𝑚
2
+ 2)

2 (2𝑚
2
− 1)

−

2𝑚𝜆
2sech (𝜌𝑡) (𝑚sech (𝜌𝑡) + cos (𝜆𝑥))
(1 + 𝑚 cos (𝜆𝑥) sech (𝜌𝑡))2

,

(27)

where the parameters 𝜌, 𝑝, and 𝜂 are given by

𝜌 = 𝜆√2𝑚
2
− 1, 𝑝 =

𝜆 𝑚
2

√2𝑚
2
− 1

,

𝜂 = 𝜆
√
2 (1 − 𝑚

2
)

𝛿

.

(28)

With proper selections of the values of 𝛽, 𝛿, 𝜆, and 𝑚,
the interactions of periodic solitary waves (27) are shown in
Figures 3 and 4. The solution (|𝑢|, V) displays the feature of
a dark soliton in the 𝑡-direction; the cosine function causes
periodicmodulation and thus it is periodic in the𝑥-direction.

With the aid of the computer algebra software Maple,
the validity of the new solutions (18) and (27) are verified by
putting them back into the original systems (1).

5. Conclusions

The combination of the Hirota bilinear method and theta
function identities is demonstrated to be a powerful tool in
finding periodic waves for the coupled Higgs field equation.
As a result, we have derived a new kind of doubly periodic
standing wave solutions for the coupled Higgs field equation,
which is different from those of the known solutions reported
in the literature. The interaction properties of periodic-
periodic waves and periodic-solitary waves are analyzed by
some figures.

The key of the combination method is that the solutions
are supposed as rational expressions of elliptic functions
of different moduli, which should be applicable to other
nonlinear evolution equations or systems with bilinear forms
in mathematical physics. The doubly periodic solutions will
prove to be beneficial and instructive in modeling and
understanding nonlinear phenomenon.
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