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We introduce and analyze a hybrid iterative algorithm by combining Korpelevich’s extragradient method, the hybrid steepest-
descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that, under appropriate
assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of finitely many nonexpansive
mappings, the solution set of a generalized mixed equilibrium problem (GMEP), the solution set of finitely many variational
inclusions, and the solution set of a convex minimization problem (CMP), which is also a unique solution of a triple hierarchical
variational inequality (THVI) in a real Hilbert space. In addition, we also consider the application of the proposed algorithm
to solving a hierarchical variational inequality problem with constraints of the GMEP, the CMP, and finitely many variational

inclusions.

1. Introduction

Let H be a real Hilbert space with inner product (:,-) and
norm ||-||, let C be a nonempty closed convex subset of H, and
let P be the metric projection of H onto C. LetS : C — H
be a nonlinear mapping on C. We denote by Fix(S) the set
of fixed points of S and by R the set of all real numbers. A
mapping S : C — H is called L-Lipschitz continuous if there
exists a constant L > 0 such that

ISx=Sy| <L|x-y|, Vx,yeC. (1)

In particular, if L = 1 then S is called a nonexpansive
mapping; if L € (0, 1) then S is called a contraction.

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP)
[1]: find a point x € C such that

(Ax,y—x) >0, VyeC. (2)

The solution set of VIP (2) is denoted by VI(C, A).

Let ¢ C — R be a real-valued function, let A :
H — H be anonlinear mapping, andlet® : CxC — R
be a bifunction. The generalized mixed equilibrium problem
(GMEP) [2] is to find x € C such that

O(xy)+9(y) - (x) +(Ax,y—x) 20, ¥yeC. (3)

We denote the set of solutions of GMEP (3) by GMEP
(0,9, A).

In [2], it is assumed that ® : C x C — R is a bifunction
satisfying conditions (H1)-(H4) and ¢ : C — R is a lower
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semicontinuous and convex function with restriction (Al) or
(A2), where

(H1) ©(x,x) =0, forall x € C;
(H2) ® is monotone; that is, ®(x, y) + O(y, x) < 0, for any

x,y €GC;
(H3) © is upper-hemicontinuous; that is, for each x, y, z €
C)
limsup® (tz + (1 -t)x, y) < O (x,y); (4)
t—0*

(H4) ©(x,-) is convex and lower semicontinuous, for each
x €C;

(Al) for each x € H and r > 0, there exists a bounded

subset D, ¢ C and y, € C such that, for any z €
C\D,,

O(z, ) +o(ye) —9(2) + % (y,-zz-x)<0; (5

(A2) Cis abounded set.

Given a positive number r > 0, let ' : H — Cbe the
solution set of the auxiliary mixed equilibrium problem; that
is, for each x € H,

557 ()
- {y €C:0(y2)+9@) -9(y)

+%(K' (y) =K' (x),z-y) 20,Vz € C},
(6)

where K is a Fréchet differential and strongly convex function
on H. In particular, whenever K(x) = (1/2)llxI*>, Vx € H,
S®9) s rewritten as T(®9.

Let f : C — R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing f over the constraint set C:

min f (x) )

(assuming the existence of minimizers). We denote by T’ the
set of minimizers of CMP (7).

In 2011, combining the hybrid steepest-descent method in
[3], the viscosity approximation method, and averaged map-
ping approach to the gradient-projection algorithm (GPA)
in [4], Ceng et al. [5] introduced and analyzed the following
iterative algorithm:

X1 = Po [s,yVx, + (I - s,uF)T,x,], ¥Yn=0, (8)
where V: C — H is [-Lipschitzian mapping with constant
I >0and F: C — H is a k-Lipschitzian and #-strongly
monotone operator with constants K0 > 0. Assume that

0<p<2p/K’,0 <yl <t=1-+1-p@2y—u),s, =

s,(\,) = (2= A,L)/4with {A,} ¢ (0,2/L)and A, — 2/L,
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and P-(I - A,Vf) = s, I + (1 - s,)T,. Under the control

conditions that (i) s, — 0, (ii) Y 2ys, = 0o, (iii) either

Yoo lSue1 = sul <00 orlim, _, o 8,,1/s, = 1, it was proven in

[5] that the sequence {x,,} generated by (8) converges strongly
to some x* € T, which is a unique solution of the VIP

(WF-yV)x*,p-x") >0, Vpel. 9)

On the other hand, let B be a single-valued mapping of

C into H and let R be a set-valued mapping with D(R) = C.

Consider the following variational inclusion: find a point x €
C such that

0 € Bx + Rx. (10)

We denote by I(B,R) the solution set of the variational
inclusion (10). Let a set-valued mapping R : D(R) ¢ H —
2H be maximal monotone. We define the resolvent operator
Jra:H — W associated with R and A as follows:

Jra =+ AR)', VxeH, (11)

where A is a positive number.

Let S and T be two nonexpansive mappings. In 2009,
Yao et al. [6] considered the following hierarchical VIP: find
hierarchically a fixed point of T, which is a solution to the VIP
for monotone mapping I — S; namely, find ¥ € Fix(T') such
that

(I-8)%,p-X)=0, VpeFix(T). (12)
The solution set of the hierarchical VIP (12) is denoted
by A. It is not hard to check that solving the hierarchical
VIP (12) is equivalent to solving fixed point problem of the
composite mapping Py )S; that is, find ¥ € C such that
X = Pyix)SX. The authors [6] introduced and analyzed the

following iterative algorithm for solving the hierarchical VIP
(12):

Yn = ﬁnsxn + (1 - Bn) Xn>
Vn > 0.

(13)
Xn+1 = “nvxn + (1 - “n) Tym

We observed that Zeng et al. [7] introduced and consid-
ered the following triple hierarchical variational inequality
(THVI).

Problem 1. Let N be a positive integer. Assume that

(i) each S; : H — H is a nonexpansive mapping with
Ny, Fix(S;) # 0

(ii) A, : H — H is a-inverse strongly monotone;

(iii) A, : H — H is f-strongly monotone and -
Lipschitz continuous;

(iv) IV(NY, Fix(S;), A,) #0.
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Then, the objective is to

N
find x* € VI (VI (ﬂ Fix(Si),A1> ,A2>

i=1

N
= {x* eVl (ﬂ FiX(Si),A1> (A, v—x")20,

i=1

Vv € VI<ﬁFix(Si),A1>}.

i=1
(14)

The authors [7] proposed the following algorithm for
solving Problem 1.

Algorithm ZWY (see [7, Algorithm 3.2]). Let S; : H —
H(@G = 1,2,...,N) and A;+ H — H (j = 1,2) satisfy
assumptions (i)-(iv) in Problem 1. The following steps are
presented for solving Problem 1.

Step 0. Take {a,}2, < (0,11, {p}ey < (0,2a], u €
(0,28/x%), choose x, € H arbitrarily, and let 7 := 0.

Step 1. Given x,, € H, compute x,,,; € H as

Yn = S[n+1] ('xn - PnAlxn) >
(15)

Xnt1 = Vn — ‘u“nAZ)/n’

where Sy = Si oa n» for integer k > 1, with the mod
function taking values in the set {1,2,..., N}; that is, if k =
JjN + g for some integers j > 0and 0 < g < N, then §j;; = Sy
lfq = OandS[k] = Sq if1 < q< N.

Update #n := n + 1 and go to Step 1.

In this paper, we introduce and study the following triple
hierarchical variational inequality (THVI) with constraints of
GMEP (3), CMP (7), and finitely many variational inclusions.

Problem 2. Let M, N be two positive integers. Assume that

(i) S; H — H is a nonexpansive mapping, for
i=12...,N,A: H — H is {-inverse strongly
monotone, and f : C — R is a convex functional
with L-Lipschitz continuous gradient Vf;

(ii) A, H — H is a-inverse strongly monotone
and A, : H — H is f-strongly monotone and x-
Lipschitz continuous;

(iil) © is a bifunction from CxC to R satisfying (H1)-(H4)
and¢ : C — Risalower semicontinuous and convex
functional;

(iv) R, : C — 2 is a maximal monotone mapping and
B, : C — H is n-inverse strongly monotone for
k=1,2,...,M;

(v) VI(Q, ZfJ:ﬁQ), where Q =
(©,¢, ) N (ML I(By, Ry)) NT.

Ny, Fix(S;) N GMEP

Then, the objective is to
find x* € VI(VI(Q,4)), 4,)
1) :

= {x* e VI (Q,Z <K2x*, V- x*> >0, (16)

Vv e VI(Q, 4, )}.

Motivated and inspired by the above facts, we introduce
and analyze a hybrid iterative algorithm by combining Kor-
pelevich’s extragradient method, the hybrid steepest-descent
method, and the averaged mapping approach to the gradient-
projection algorithm. It is proven that under mild conditions,
the proposed algorithm converges strongly to a common
element x* € Q := (ﬁf.\:]1 Fix(§;)) N GMEP(®, ¢, A) N
(ﬂkMZII(Bk,Rk)) N T of the solution set of GMEP (3), the
solution set of CMP (7), the solution set of finitely many
variational inclusions, and the fixed point set of finitely many
nonexpansive mappings {Si}fi > which is merely a unique
solution of the THVI (16). In addition, we also consider the
application of the proposed algorithm to solving a hierarchi-
cal variational inequality problem with constraints of GMEP
(3), CMP (7), and finitely many variational inclusions. That is,
under appropriate conditions, it is proven that the proposed
algorithm converges strongly to a unique solution u* € Q
of the VIP: (A,u*,p — u*) = 0,¥p € Q; equivalently,
Po(I-A,)u* = u*. The results obtained in this paper improve
and extend the corresponding results announced by many
others. We also observe that some recent and related results
have been established in [8-14].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and | - [|, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,(x,) to denote the weak w-limit set of the sequence {x,,};
that is,

ww(xn):z{er:xnl_—*x

for some subsequence {xni} of {xn}}. w
Definition 3. A mapping A : C — H is called
(i) monotone if
(Ax - Ay, x—y) 20, Vx,yeC; (18)

(ii) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax - Ay,x—y) >n||x - y||2, Vx,yeC; (19

(iii) {-inverse strongly monotone if there exists a constant
¢ > 0 such that

(Ax - Ay,x - y) > {|Ax - Ay||2, Vx,yeC.  (20)



It is obvious that if A is {-inverse strongly monotone, then
A is monotone and 1/{-Lipschitz continuous. Moreover, we
also have that, for allu,v € Cand A > 0,

I = AA)u— (I - AA) v
(21
<u=vI> + A (A =20) | Au — Av|*.

So, if A < 2, then I — AA is a nonexpansive mapping from C
to H.

Definition 4. A differentiable function K : H — Ris called

(i) convex, if

K(y)-K(x) 2 (K (x),y-x), Vx,yeH, (22)

where K'(x) is the Frechet derivative of K at x;

(ii) strongly convex, if there exists a constant ¢ > 0 such
that

K(y)-K(x) - (K'(x),y-x) > %le—yﬂz, Vx,y € H.
(23)

It is easy to see that if K : H — R is a differentiable
strongly convex function with a constant ¢ > 0 then K’ :
H — H is strongly monotone with constant ¢ > 0.

The metric projection from H onto C is the mapping P :
H — C which assigns to each point x € H the unique point
Pcx € C satistying the property

v- el = nf v = w0y

Some important properties of projections are gathered in
the following proposition.

Proposition 5. For given x € H and z € C:

()z=Pxe(x-2z,y-2)<0,VyeC;
(i) z = Pex ol x — 2> <l x = yI>~ || y - 2, ¥y € G

(ili) (Pox — Poy,x — ¥) = |Pox — Poyl’,Vy € H (this
implies that P is nonexpansive and monotone).

By using the technique of [15], we can readily obtain the
following elementary result, where MEP(®, ¢) is the solution
set of the mixed equilibrium problem [15].

Proposition 6 (see [16, Lemma 1 and Proposition 1]). Let C
be a nonempty closed convex subset of a real Hilbert space H
and let ¢ : C — R be a lower semicontinuous and convex
function. Let ® : C x C — R be a bifunction satisfying the
conditions (H1)-(H4). Assume that

(i) K : H — R is strongly convex with constant ¢ > 0
and the function x v~ (y — x, K'(x)) is weakly upper
semicontinuous, for each y € H;
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(ii) for each x € H and r > 0 there exists a bounded subset
D, cCand y, € C such that, forany z € C\ D,,
1
O(z,y:) +o () —(2) + - <K' (z)-K' (x),y, - z> < 0.
(25)
Then, the following hold:
(a) for each x € H, S£®"”)(x) +0;
(b) S$®’(”) is single-valued;

(c) S£®"”) is nonexpansive if K' is Lipschitz continuous with
constant v > 0 and

<K, (1) = K' (%) 0y — ”2>

<(K'(u)) - K' (1), u; —w,), V(x;,%x,) € HxH,

(26)
where u; = $'©9) (x,), fori =1,2;
(d) foralls,t >0andx € H,
<K' (S§®"P)x) -K' (SEG)"P)x) ,8OPx S£®’¢)x>

S—L /et (@) ' @) ©.9)
< T<K (SS ‘Px)—K (x),S, Vx-S ‘Px>;
(27)
(e) Fix(SL®?) = MEP(®, ¢);
(f) MEP(®, ¢) is closed and convex.

In particular, whenever ® : CxC — Ris a bifunction satisfy-
ing the conditions (H1)-(H4) and K(x) = (1/2)llx|1*, Vx € H,
then we have that S£®’¢) is firmly nonexpansive and

s—1t
“ SOy S:@,qa)xn < |s — 1] 59
S

e,
(28)

Vs,t >0, x¢€H.

In this case, S£®"P) is rewritten as Tr(®"P). If, in addition, ¢ = 0,

then Tr(@)"") is rewritten as T,® (see [17, Lemma 2.1] for more
details).

Remark 7. Suppose that K : H — R s strongly convex with
constanto > 0andK' : H — H is Lipschitz continuous with
constant » > 0. Then, K' : H — H is o-strongly monotone
and »-Lipschitz continuous with positive constants o, v > 0.
Utilizing Proposition 6 (d) we obtain that, for all s,# > 0 and
x € H,

2
0||S§®’¢)x - S§®’q))x”

<K' (s§®,cp) x) _K' ( S)E@,tp) x) ’ SEG))(P) x— S£®"P)x>

IN

% <K' (S§®"”)x) _K (x),SiG)’(P)x - Sf®,¢)x> (29)

IN

IN

Bt (507x) - K o507 5]

< Bty 500 o509 50,
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which immediately implies that
s—t| v
509 - 5@ < EZ0 . Y js@0 o o)
s o

The concept of W-mapping was introduced in Atsushiba
and Takahashi [18]. It is very useful in establishing the
convergence of iterative methods for computing a common
fixed point of nonlinear mappings (see, for instance, [19, 20]).

Let g s thy - - > Ny € (0,1], n = 1. Given the nonex-
pansive mappings S;,S,,...,Sy on C, Atsushiba and Taka-

hashi define, for each n > 1, mappings U, ,,, U, ,,,..., Uy ., by
Upp = St + (1= ) I,
Uy = b Sy + (1= tip) I,

(3D

Un-1n = UN-1,1S8-1Un-2n + (1- HN—Ln) I,
Wn = UN,n = ["N,nsNUN—l,n + (1 - AHN,n) L

The W, is called the W-mapping generated by S,
Sys...»Syand yy sty s - - - 5 iy - Note that the nonexpansiv-
ity of S; implies the one of W,.

Proposition 8 (see [20]). Let C be a nonempty closed convex
subset of a Banach space X. Let S,,S,,...,Sy be a finite
family of nonexpansive mappings of C into itself such that
NY, Fix(S;) #0, and let P> Yoo - - - > U, D real numbers such
that0 < y;, <b < 1fori=1,2,...,N. Foranyn > 1, let W,
be the W-mapping of C into itself generated by S,,S,,...,Sy
and py s ty s - - - e If X is strictly convex, then Fix(W,) =
Ny, Fix(S,).

Proposition 9 (see [21, Lemma 2.8]). Let C be a nonempty
convex subset of a Banach space X. Let {S,»}f\:]1 be a finite family
of nonexpansive mappings of C into itself and let {u;,,}", be
sequences in [0,1] such that w,,, — w (i = 1,2,...,N).
Moreover, for every integer n > 1, let W and W, be the W-
mapping generated by S,,S,,...,Sy and y, y, ...,y and
S158ys .Sy and py sty s> P Tespectively. Then, for
every x € C, it follows that

Jim [[W,x - Wx| = 0. (32)

In what follows, we recall some facts and tools in a real
Hilbert space H.

Lemma 10. Let X be a real inner product space. Then, the
following inequality holds:
I+ y|” <lxl> +2 (. x+y), VxyeX (33)

Lemma 11. Let H be a real Hilbert space. Then, the following
hold:
@) llx = ylI* = Ixl* = Iyl* = 2(x = y, y), for all x, y € H;

(0) Ax + uyll* = AlxlP+ullyl*~Aullx = yI?, forall x, y €
Hand A,y € [0,1] withA +pu=1;

(c) If {x,)} is a sequence in H such that x,, — x, it follows
that

lim sup|x,, - y"2 = lim sup||x,, — x”z +|x - )’"2,
n— 0o n—00

Definition 12. A mapping T : H — H is said to be an
averaged mapping if it can be written as the average of the
identity I and a nonexpansive mapping; that is,

T=010-a)l+as, (35)

where « € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T' is «-
averaged. Thus, firmly nonexpansive mappings (in particular,
projections) are 1/2-averaged mappings.

Lemma 13 (see [22]). Let T : H — H be a given mapping.

(i) T is nonexpansive if and only if the complement I — T
is 1/2-ism.
(ii) If T is v-ism, then, for y > 0,yT is v/y-ism.
(iii) T is averaged if and only if the complement I-T is v-ism
forsomev > 1/2. Indeed, for « € (0, 1), T is a-averaged
ifand only if I = T is 1/2«-ism.

Lemma14 (see [22]). LetS, T,V : H — H be given operatots.

D) IfT = (1 - a®)S + aV for some o € (0,1) and if S is
averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement
I T is firmly nonexpansive.

(ii) f T = (1 - «)S + aV for some o € (0,1) and if S is
firmly nonexpansive and V' is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {Ti}fil
is averaged, then so is the composite Ty ---Ty. In
particular, if T} is o, -averaged and T, is «,-averaged,
where oy, «, € (0,1), then the composite T, T, is -
averaged, where o« = &, + &, — & ot,.

(v) If the mappings {Ti}f\:]] are averaged and have a
common fixed point, then

N
() Fix (T;) = Fix (T,T, -+ Ty). (36)
i=1

The notation Fix(T) denotes the set of all fixed points of the
mapping T; that is, Fix(T) = {x € H : Tx = x}.

Let f : C — R be a convex functional with L-
Lipschitz continuous gradient Vf. It is well known that the
gradient-projection algorithm (GPA) generates a sequence
{x,} determined by the gradient Vf and the metric projection
Pe:

X = Po(x, = AVf(x,)), V¥Yn=>0, (37)



or, more generally,

Xn+1 = PC (xn - Anvf (xn)) >

where, in both (37) and (38), the initial guess x, is taken
from C arbitrarily and the parameters A or A, are positive
real numbers. The convergence of algorithms (37) and (38)
depends on the behavior of the gradient Vf.

Vn >0, (38)

Lemma 15 (see [23, demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then, I-T is demiclosed.
That is, whenever {x,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges
to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma 16. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 5 (i)) implies

ueVI(CA) & u=P-(u-AAu), A>0. (39

Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0,1] and let u > 0. Associating with a nonexpansive mapping

T:C — H, we define the mapping T* : C — H by
T'x = Tx - MEF (Tx), VxeC, (40)

where F : H — H is an operator such that, for some positive
constantsk,n > 0, F is k-Lipschitzian and n-strongly monotone
on H; that is, F satisfies the conditions

(Fx -~ Fy,x - y) 2 lx -y
(41)

|Fx = Byl < x| =y,

forallx,y e H.

Lemma 17 (see [3, Lemma 3.1]). T* is a contraction provided
0 < u < 2n/x*; that is,

"TAx - TAy“ <(1-M)|x-y|, Vx,yeC, (42)

where T = 1 — 1 — u(2n — ux?) € (0, 1].

Lemma 18 (see [3]). Let {s,} be a sequence of nonnegative
numbers satisfying the conditions

Spp1 S (1 - (xn) Syt (xmBn’ Vnz1, (43)
where {«,,} and {B,,} are sequences of real numbers such that
() {e,} € [0,1] and Y2, a, = 00 or, equivalently,

n=1"n

18

Il
—

n:

(1-a,):= lim [T(1-0)=0; (44)
k=1

(i) limsup,, _, o, < 0, or X2, lev,B,] < 0.

Then, lim,, _, s, = 0.
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Recall that a Banach space X is said to satisfy Opial’s
property [23] if for any given sequence {x,} < X which
converges weakly to an element x € X, there holds the
inequality

limsup |x, — x| < limsup||x, - y|, VyeX, y#x.
n— 00 n— 00
(45)

It is well known that every Hilbert space H satisfies Opial’s
property in [23].

Finally, recall that a set-valued mapping T : D(T) c H —
2H is called monotone if for all x, y € D(T), f € Tx and

g € Ty imply
(f-g.x-y)=0. (46)

A set-valued mapping T is called maximal monotone if T is
monotone and (I + AT)D(T) = H, for each A > 0, where I is
the identity mapping of H. We denote by G(T') the graph of T.
It is known that a monotone mapping T' is maximal if and only
if, for (x, f) € HxH, (f—g,x—y) > 0forevery (y, g) € G(T)
implies f € Tx.Let A: C — H be amonotone, k-Lipschitz-
continuous mapping, and let N-v be the normal cone to C at
v € C; that is,

Nev={ueH:{(v-p,u)>0,Vp eC}. (47)
Define
Ty {Av + N, %f veC, (48)
0, ifve¢C.
Then, T is maximal monotone and
0eTveveVIC,A). (49)

Let R : D(R) ¢ H — 2 be a maximal monotone
mapping. Let A, 4 > 0 be two positive numbers.

Lemma 19 (see [24]). There holds the resolvent identity

Teax = Jng <§x + (1 - %) ]R,Ax>, VxeH.  (50)

For A, i > 0, we observe that there holds the following relation:
"]R,AX - ]R,,uy” < Jx-yl
1 1
el (5 k=l S ls=Jl). vey e
(51)

Lemma 20 (see [25]). Jp, is single-valued and firmly nonex-
pansive; that is,

(Upax = Japy»x = ¥) 2 Jrax = Jeay|’s  Vx.y € H.
(52)

Consequently, ] , is nonexpansive and monotone.



Abstract and Applied Analysis

Lemma 21 (see [26]). Let R be a maximal monotone mapping
with D(R) = C. Then, for any given A > 0, u € C is a solution
of problem (11) if and only if u € C satisfies

u=Jg, u—ABu). (53)

Lemma 22 (see [27]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous, and single-valued mapping. Then, for each z € H,
the equation z € (B+ AR)x has a unique solution x, for A > 0.

Lemma 23 (see [26]). Let R be a maximal monotone mapping
withD(R) = Candlet B: C — H be a monotone, continuous,
and single-valued mapping. Then, (I+A(R+B))C = H for each
A > 0. In this case, R + B is maximal monotone.

3. Main Results

In this section, we will introduce and analyze a hybrid
iterative algorithm for finding a solution of the THVI (16)
with constraints of several problems: the GMEP (3), the
CMP (7), and finitely many variational inclusions in a real
Hilbert space. This algorithm is based on Korpelevichs
extragradient method, hybrid steepest-descent method, and
averaged mapping approach to the gradient-projection algo-
rithm. We prove the strong convergence of the proposed
algorithm to a unique solution of THVI (16) under suitable
conditions. In addition, we also consider the application of
the proposed algorithm to solving a hierarchical VIP with the
same constraints.

We are now in a position to state and prove the first main
result in this paper.

Theorem 24. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let NN > 1 be
two integers. Let ® be a bifunction from C x C to R satisfying
(H1)-(H4), let ¢ : C — R be a lower semicontinuous and
convex functional, and let A : H — H be {-inverse strongly
monotone. Let R, : C — 2" bea maximal monotone mapping
and let B, : C — H be ny-inverse strongly monotone for
k =1,2,...,M. Let {S;}}\, be a finite family of nonexpansive
mappings on H. Let A, : H — H be a-inverse strongly
monotone and let A, : H — H be B-strongly monotone
and k-Lipschitz continuous. Assume that VI(C, Kl) + 0, where
Q := N, Fix(S;) N GMEP(®, ¢, A) N nX (B, R,) N T. Let
o€ (0,2B/K), faJod; € (0,11, {p,}e0; < (0,2al,{B,}2;
[a,b] c (0,1),{r,}02, C [e,d] € (0,20), {p}ey C les f] C
0,1), {A b2y € lag. bl € (0,2n), where k € {1,2,..., M}
andi € {1,2,...,N}. Foreveryn > 1, let W, be the W -mapping
generated by S,,S,,...,Syand py ,, ty s - - - > Uy .- Assume that

(i) K : H — R is strongly convex with a constant
o > 0 and its derivative K' is Lipschitz continuous
with a constant v > 0 such that the function x +—
(y—x,K'(x)) is weakly upper semicontinuous for each
y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that, forany y ¢ D,,

0(3,2) +9(2) -9 () + (K () - K (1),2,- ) <O
(54)

(iii) lim, _, &, = 0, Y0) &, = 00 and lim,, _, . (1/ex,)|1 -
(Pn—l/pn)| = 0;

(iv) lim,, _, oo (pu/ex,) = 0,lim, , (1/a)I(1/p,) -
(1/p,_)l =0, and lim,, _, . (1/p)I1 = (&, /ex,)| = 0;

v) hmn—»oo(lﬁn - ﬁn—l“‘xnpn) = 0and hmn—»oo(l/\k,n -
Amallayp,) =0, fork =1,2,..., M;

(vi) lim,, , ,(Ir,, — 7, 1l/a,p,) = 0 and lim, , (g, -
Yinalle,p,) =0, fori=1,2,...,N.

For arbitrarily given x, € H, let {x,} be a sequence generated

by

u, = Sin@"’]) (I-r,A)x,,

Vn = ]RM,/\MM (I - AM,nBM) ]RM,l,/\M,L,,

x (I - AM—I,HBM—I) e ]Rl)’ll,n (I - /Xl,nBl) U, (55)

Yn = ﬁnTnvn + (1 - ﬁn) Wn (Vn - anlvn) 4

Xps1 = Yo — Y, Ay Y, Vn>1,

where Po(I-A,Vf) = s, I+(1-s,)T, (here T, is nonexpansive,
s, = 2-2A,L)/4 € (0,1/2) for each A,, € (0,2/L)),
lim,_, s, = 0 (& lim,_, A, = 2/L), and lim, _, . (|s, —
Sy_1l/e,p,) = 0. Then, whenever S£®"P) is firmly nonexpansive,
the following hold:

(@) lim,, _, oo (Ix,,1 = x,0l/p,) = 0;
(ii) w,(x,) € &

(iii) w,(x,) < VI(Q, Xl) provided ||x, — y,Il = o(p,)
additionally.

Proof. Let {x*} = VI(VI(Q, A)), A,). Taking into account
that lim, _, . (p,/e,) = 0, we may assume, without loss of
generality, that p, < «, for all » > 1. Since Vf is L-
Lipschitzian, it follows that Vf is 1/L-ism. By Lemma 13 (ii)
we know that for A > 0,AVf is 1/AL-ism. So by Lemma 13
(iii) we deduce that I — AVf is AL/2-averaged. Now since the
projection P is 1/2-averaged, it is easy to see from Lemma 14
(iv) that the composite Po(I — AVf) is (2 + AL)/4-averaged
for A € (0,2/L). Hence, we obtain that, for each n > 1,
Po(I - A, Vf)is (2 + A,L)/4-averaged for each A, € (0,2/L).
Therefore, we can write

P (I -A,9f) = 2=k

2+A L
"1+ Al
4

1 “T,=s,0+(1-5s,T,
(56)

where T, is nonexpansive and s, := s,(1,,) = (2 -1,L)/4 €
(0,1/2) for each A, € (0,2/L). It is clear that

2
/\n—>z<:>sn—>0. (57)



Since A, is x-Lipschitz continuous, we get
“szn—gzx*” <k|y,-x"||, Vn>1 (58)
Put
Al; = JRoAes (I = AgB) TR A

X (I = Ay Bi) TR, (I-Ay,By)

(59)

fork = 1,2,...,M and Aon = I, where I is the identity
mapping on H. Then, we have v, = AMu,.
We divide the rest of the proof into several steps.

Step 1. We prove that {x,} is bounded.

Indeed, take p € Q arbitrarily. Since p = Ssn@’q’)( p—1,Ap),
A is {-inverse strongly monotone and 0 < r, < 2(; utilizing
the nonexpansivity of Si?""), we have, for any n > 1,

Jut, = oI =[S (1 - 1, 4) x, - 809 (1 - ,4) p||
< |1 = 7,4) x, - (I -r,A) p|°
= |(x, - p) - 7, (Ax,, - Ap)|*
= %, - pI* = 2r, (x, - p, Ax, - Ap)
+ 12l Ax, - Ap|’
< |lx, - plI* - 2r, 8| Ax, - Ap|* + 72| Ax, - Ap]
= %, = pI* + 1, (1, — 20) | Ax,, - Ap]®

2
< [lxn = I~ .
60

Utilizing (21) and Lemma 20 we have
Iv. - pll = "]RM,AW (I = ApgpBo) AN ', — TRy us
x (I = AyiuBar) A5 p
< [|(1 = ApgpBan) AN M, = (1= Ap,Bag) A3 )|

M-1 M-1
< - 2]

S ||A(i1un - Aonp = "un - P” :
(61)
Combining (60) and (61), we have
v, = pll < %, - ol (62)
Since
2
p:PC(I_/\an)p:Snp+(1_sn)Tnp’ V)‘n€<0’z)’
(63)
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where s, == s,(A,) = (2 - A,L)/4 € (0,1/2), it is clear that
T,p = pforeach A, € (0,2/L). Since A is a-inverse strongly
monotone and {p,},>, C (0,2a], utilizing the nonexpansivity
of T,,, we obtain from (21), (55), and (62) that
Iy = £l
B (T,v, = p) + (1= B,) [W, (v, - pu&iv) - 2|
< Bull T = 2l + (1= Bo) [Wa (v = puiiva) = 1
< B[y = I+ (1= B | (v~ puArvi) - £
= Bullva - pl
+ (=B (1= pA)) v, = (T-p,A,) p - pu AP
< Bulva - pl +(1-B,)
X (1= puds) v = (1= p0) o + 2 A1)
< Bulva = ol + (1= B) (Iva = 2l + pu | &)

< v =2l + pu|&1p] < I, = 2l + o |-

(64)
Utilizing Lemma 17, we obtain from (55) and p, < a, that
%1 = 2l
= |y - ue, &3, - |
< (7 - pos, A2) iy = (1 = i, A5 p
+ (- e, &) p -

< (1-a,7) |y, = pll + per, | Azp

[%2p]  (65)

< (1-0,7) [[lx, = pll + pu | A1) + otute
< (1= a,7) |x, - p| + p, | &, p|) + 0t | A5 |
)

< (1= a,7) %, - pll + o, (J& o] + 1| A2p])

) |4.p] + | 40|
= (1) [, — pl e AP
< max {”xn —P" > w} ’

where 7 := 1 — /1 — (28 — pux?). By induction, we find that

okl .,

T

[ pl < max {uxl s
(66)

Thus, {x,};2, is bounded and so are the sequences
{2 a2y and {12,
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Step 2. We prove that lim,, _, . (Ix,.,; — x,I/p,) = 0.

Indeed, put v, = v, — p,A,v, for all n > 1. Utilizing (21)

and (51), we obtain that
||Vn+1 - Vn”

= [

n+l Upi1 —

M
Anun”

M-1
= "]RM,/\M,Ml (I - )‘M,nHBM) An+1 Uy

_]RM/\M (I- AMnBM)AM lun

M-1
< "]RM,/\MMl (I - )‘M,nHBM) An+1 Upi1

M-1
+ ||]R1\,[,/\1\,L,,+l (I - ’\M,nBM) An+1 U1

“JRyA i (I- )LMnBM)AM_lun
< (T = At Bar) A s = (1= AaguBar) A s |
+ || (I - ApinBag) A ~ (I = AypnBpg) AY un"
= At

M-1
_]RM,)U\,L,VF1 (I - AM,nBM) An+1 Upi1

n+1 Upi1

|/\M,n+1

(e

1 _
+ 1 ”(I = AainBur) Al lun+1
Mn

||]RMAMn+1 (I AMHBM)Anﬂ Uil

~ (I = ApipBag) AV '

n
n+l

]RM)LM (I AMnBM)AM lun

)

<|/\Mn+1 AMn "BMAnﬂ n+1||+M)

||An+1 Uy AJ\: lun”
< |/XM,n+l Mn ("BMAn+1 Upiy | + M)
+ Aar-imer = Angoal “BMAAIZI:“:«H | + M)
||An+1 Ups1 — A?l/lizun“
< |AM,n+1 - AM,nl ("BMAI;\:I;llunH" + M)
+ Attt = At (“BM—lA]LA;lZ”nH | + M)
Tt |/\1,n+1 - Al,n' ("BIA(:’I+IMW+1 | + M)
+ |A(11+1un+1 -

M
< MOZ |/\k,n+1 - Ak,n' + "un+1 - un" >
k=1
(67)

9
where
1 —_
o0 [ Vg, (Do) il
=3 M,n+1
—(I )‘MnBM)AM 1un
)LM “ I A1\/1”31‘/1)/\1:1/{:111'41%1
e
Ty, (1= AygBag) AY! n].gji
(68)

for some M > 0 and supn>1{zk 1 ||BkAn+1un+1|| + M} < M,

for some M, > 0. Hence, it follows from (21) and {p,}*°, ¢
(0, 2] that

[P = 7
= (s = Pt A iv) = (v,
< Ver = Pusr A Vs = (v = P A1v,)|
) = (v = purv)|

< “Vn+1 - Vn” + |pn+1 - pn| ||Z1Vn"

- pnxlvn)“

+ "(Vn - Pn+1xlvn (69)

M
< MOZ |Ak,n+l - Ak,nl + “un+1 - un“
k=1

+ |pn+1 = Pn

Also, utilizing (21), {r,},2; <
we deduce that

[c,d] c (0,20), and Remark 7,

”un-f-l - un”

= Sf‘n@;l‘l’) (I - rn+1A) Xn+1 ~ Sin&q)) (I

= Srw:l ) (I - rn+1A) Xn+1 ~ Sin@j)) (I - rnA) Xn

+8209 (I = 1,A) x, = SO9 (I

£ “Sin@:fo) (I - rn+1A) Xn+1 ~ Sin@:fo) (I - rnA) xn"
+ “Sii’f’) (I-r,A)x, - Si’q@’(”) (I-r,A) xn"
= ”(I - rn+1A) Xne1 — (I - rnA) xn“

+ 29 (1 - 1,4) x, - SO (1 - 7,4) x|

< ”xn+1 - xn" + |rn+1 - rn| "Axn"

) (I -r,A)x, — Sif)’q’) (I-r,A)x,

n

< “xn+l X " + | Tpt1 rnl "Axn"

|rn+1 - rnl

Tnt1

S(®‘P (

Tl

_rnA)xn_(I_ n

O'
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= ”xn+1 - xn" + |rn+1 - rnl

S£®’¢) (I-r,A)x,—(I-r,A) Xn”>

n+l

x ([Jax, ] + =
co

< ”xn+1 - xn" + |rn+1 Ty

| My,
(70)

where sup,., {[Ax,| + (/co)ISEOP(T - r,A)x, - (I -

r,A)x, |} < M, for some M, > 0.
In the meantime, from (31), since S; and U, for i
1,2,..., N are nonexpansive, we get

W17 = W
= 1 SNUn-1ne Vo + (1= tien) Vo
~tinnSNUN-17n = (1= i) V|
< ltner = ol (7l
+ 6811 SNUN-1141 7 = bnnSNUN=1, 7 o
< ltnner = il [Pl
+ a1 SNUN-11617n = SNUN-1470)|
+ltnger = il ISNUn-1.07l
< M, |pn i1 = bl

+ UNn+ ||UN—1,n+17n - UN—1,nVn|| >

and by (31),

IUN-11417n = Un-17l
= llun-101S8-1Un-202 70 + (1 = i1 41) P
= UN-1SN-1UN-2nn = (1= o) i
< ltn-1mer = tineal 7]
N1 me1 SN U241 70 = BN-10SN-1U N2, 7|
< lun-1me1 = -l (7]
+ N1t [Sn-1UN-201 70 = SN Un- 2Vl
+ i1 = -1l [Sn1Un-a Bl
< M, |tn- 101 = Un-1al
+ N1t [UN-20017n — Un-2 7

< MZ I["N—l,n+1 - P‘N—l,n' + ||UN—2,n+lvn - UN—Z,nvn" >
(72)
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where sup,.., {[[7, + SN S U 7l < My, i=1,2,...,N
for some M, > 0. Therefore, we have
|UN 1417 = Un-1.07
< M, |un-1001 = Bin-1]
+ |[Un-21417%n = Unczn¥ul|
< M, |un-1nen = o] + My [N aen = BNl

+ ||UN—3,n+1’17n - UN73,n’17n"

N-1
< M2 Z |Mi,n+1 - tui,n| + ”Ul,n+lvn - Ul,nijn"
i=2
= ||M1,n+lslvn + (1 - Ml,n-f—l)vn - Ml,nslvn - (1 - tul,n)vn"

N-1

+ M, Z |#i,n+1 - P‘i,nl >

i=2

(73)
and hence
“UN—l,rHlvn - UN—I,n’vn”
< [t ar = ol [Vl + 00019170 = 2,817 (74)
_ N-1 _ N-1
+ MZ Z |Aui,n+1 - A”i,nl < MZ Z |/"i,n+1 - /"i,nl >
i=2 i=1
which immediately yields
”Wn+lvn+1 - ann"
< ”Wn+1?n+1 - Wn+lvn" + "Wn+lvn - ann”
< “Vn+1 - i;n” + MZ |.”N,n+1 - MN,n|
+ AMN,n+1 ||UN—1,n+lvn - UN—l,nvn“
(75)

B ||’17n+1 - vn” + Mz |P‘N,n+1 - /"N,n'
N-1

+ VN,n+1M2 Z |/’li,n+1 - .ui,n|

i=1
N
< Vs = 7 + Mzz |tii1 = Hhip] -
i=1

Furthermore, since Vf is 1/L-ism, Po(I — A, Vf) is nonexpan-
sive for A,, € (0,2/L). So, it follows that, for any given p € Q,

||Pc (I = A1 Vf) Vn"
< 1P (I = A V) v = £l + [Pl
= 1Pc (1 = 2a V) v = P (I = 1) o + ]
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< v, — 2l + 2l
< vall +2]p]- (76)

This together with the boundedness of {v,} implies that
{Pc(I = A,,,1Vf)v,} is bounded. Also, observe that

" n+1Vn Tnvn”

] H 4P (1,1 Vf) -

(2 B An+1L) IV

2+A,,L "
4P (T - A Vf) - (2-A,L)I
2+ AL n
|42 ¥) 4R (1-A,5)
- 24 A,,,L e 2+2,L '
‘2 ML 2=l
2+/1L 2+)\n+1L

= (42 +A,L) P (T = 1,1 VS) v,
~4(2+ Ay L) P (I = A, V1) v,)
x (24 A D) (2 +1,0))7

4L|/\n+1 | “ "
(2+/\n+1L)(2+A L) '

= || (4L (/\n - An+1) Pe (I - /\n+lvf) v, +4 (2 + /\n+1L)
x (PC (I - /\m—lvf) Y — PC (I - )‘nvf) Vn))
x (24 M) 2+ 1,0)) 7|

AL A = Ay v,
(2 + L) (2+2,0) """
< 4L |An B An+1| "PC (I - Aerrlvf) Vn"
(2+2A,,L)(2+A,L)

ACH YD) [P (T = A V) va=Pe (T = 1Y) i
(2+A,,,L)(2+A,L)

P =Ml
(2+/\n+1L)(2+A "

< |)‘n+1 - An|
X [LIPc (I = Aya V) v + 4 |Vf ()] + L va]]

< M;|A

ntl — n| >

(77)

1

where sup, {LIPc(I= A,y VOV +4IVF ()l + Llv, I} < M
for some M; > 0. So, we conclude that

“ +1Vn+1 Tnvn"
“ +1Vn+1 n+1v ||+|| +1V Tnvn”
F 78
< [ = vl + 55 [Ny = 4, %)

=Vl + == [s01 = 8l -

< ||Vn+1

Now, simple calculation shows that

Yn+1 — ﬂn( n+1Vn+1 ~ Tnvn)
+ (IBn+l ﬁn) ( n+1Vn1 ~ Wn+lvn+1) (79)
(1 - ﬁn) ( +1Vn+1 ann) .

So, utilizing (67)-(78), from {«,} ¢ (0,1],{p,} < (0,2«] and
u € (0, 2/3/1(2), we deduce that

11 = 22l

< BulTas Vs = Tovil
1Brr = Bal ITasr Vs = Wor V|
+ (1= B) WiV = W7

aM

—3 |Sn+1 - Snl]

|ﬂn+1 ﬁnl ” +1Vn+1 Wn+lvn+1||

<4, [nv,,ﬂ o+

N
+ (1 - ﬁn) |:||vn+1 - vn“ + MZZ I[’ti,n+1 - .”i,n|:|

i=1

_ M
= ﬁn |:MOZ |/\k,n+1 - )‘k,n|

k=1

+ "”n+1 - un" +

4M
: |5n+1 - sn|
L
+ |ﬁn+1 ﬁnl ” n+1Vnr1 — Wn+lvn+1" + (1 - ﬁn)

M
» [Moz s = Aol + s = 6]
k=1

+ |Pn+1 ~ Pn

- .ui,nl]

M
< ||un+1 - un" + MOZ I/\k,nﬂ - /\k,nl
k=1

4M. B
+ T3 |5n+1 - 5n| + |ﬂn+1 ﬁnl “ n+1Vn+1 — Wn+lvn+1”

— i

+ |pn+1 n|
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S ||xn+1 - xn” + |rn+1 - rn| Ml
M
+ M()Z Mk n+1 /\kn| +— |5n+1 5n|
k=1
+ Iﬁnﬂ ﬁn' " n+1Vne1 — Wn+1"7n+1"
s _ N
+ Ipn+1 - Pn| "Alvn" + MZZ |Mz’,n+l - /’li,nl >
i=1
(80)
and by Lemma 17,

||xn+2 — Xpt1 “

- "(I - /"anﬂxz

Vo1 — (I = po, A, 3,

Yn+1 — (I - (’wanA )yn

< (1 - (xn+1T) ||yn+1 - yn” + |(xn+1 - (Xn| H“ 'lKZyn

< (1 - (xn+lT)

"xn+1 - xn" + |rn+1 - rn| Ml

M
+MOZ |Akn+l Aknl +— |5n+1 Snl
k=1

+ |ﬁn+1 ﬁn| " n+1Vnr1 — Wn+17n+1"

+ |Pn+1 Pn 1V || + MZZ |.uz n+1 [41 nl

+ |‘Xn+1 - (an “ “ZZyVI“
< (1 - ‘Xn+lT) "xn+1 - xn"
_ . M
+ |rn+1 - rnl Ml + MOZ |/\k,n+1 - /\k,n|
k=1
4M

+—=s
L

+ |ﬁn+1 ﬂnl “ +1vn+1 Wn+lvn+l”

n+1 _sn|

N
+ |pn+1 - Pnl Alvn” + MZZ |‘ui,n+1 - n"li,n|
i=1

+ |“n+l - “n| U “Zz)’n“

< (1 = OCnJr]T) "xn+1 - xn" + |rn+1 - rnl M4

M
+ M4Z |/\k,n+1 - Ak,nl + M4 |Sn+1 - Snl
k=1
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+ |/3n+1 - ﬂnl M4 + |Pn+1 - pnl M4

N
+ M4Z |nui,n+1 - Mi,n' + |06n+1 - (an M4
i=1
= (1 - ‘xn+1T) |lxn+1 - xn"
_ M N
+ M4 (Z |Ak,n+1 - Ak,n' + Z l‘ui,n+1 - nui,n|
k=1 i=1

+ |rn+1 - rn| + |5n+1 - 5n| + |(Xn+1 - 06n|

+ |/3n+1 - ﬁnl + lpn+1 - Pn| > >

(81)

where supnzl{lp\/lv0 + Ml + Mz + (4M3/L) +T,v, - W, 7, +
A, v, + ulA,p,l} < M, for some M, > 0. Consequently,

"xn+1 B xn“

Pn

"xn xn—l"
<l-a,7) —m
( n ) 2

[ MIA, -A Nolw -
+ M4 (Z | k.n k,n—ll + Z |nuz,n p“z,n—l'
k=1 i=1 n

P

|rn - 7’n—1| + |5n - Sn—1| + |(Xn - (Xn—1|

Pn Pn Pn
| ﬁn 1| | ~ Pn- 1|>
Pn Pn
_ (1 ~Ta ) "xn _xnflll
! n—1
1 1
+(1-71a,) ||X,, — X,,— (—— >
( ) " 1" Pn Pn-1

T M4 (f |/\k,n - Ak,n71| n i |(’li,n - !"i,nfll

k=1 P i=1 Pn

|rn - rn—ll |5n - sn—ll |an - ‘xn—1|
+ + +

Pn Pn Pn
| ﬁn 1| | Pn 1|>
P P
"xn B xn—1"
<(I-7a,) ——
( ) Pn—l
M, { 1 1
+TR, — y— |— —
T Pn Pn-1
Zl/\kn Akn 1| Z|Mzn Mzn 1|
k=1 X Pr i=1 X Pn
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4 |rn _rn—ll " |Sn _Sn—ll T Iﬁn _ﬁn—1|
(xnpn “ﬂpﬂ anpn
+ 1 1_% 1 I_FE })
Pﬂ ai’l an Pﬂ
(82)

where sup, ., {llx,,.; —x,] +M4} < Ms for some Ms > 0. From
IS, = Sp_1l/0,p, — 0 and (iii)-(vi) it follows that Y, 7o, =
0o and

lim@{i ot +§M
e %n 1 Pn Pn-1 k=1 &y Pn
Z |M1n Hin— 1| | |
i=1 X Pn &, Py
+ |5“ _ S”—1| + |/3n - ﬂn—ll
X Pr XnPn
+l1—h+i1_m}:0.
Pn «, o, P

(83)
Thus, utilizing Lemma 18, we immediately conclude that

lim ”xn+1 ~ xn"

T P

=0. (84)

So, from p, — 0 it follows that

nh_%o "xnﬂ - xn“ =0. (85)
Step 3. We prove that lim,, _, llx, —u,|| = 0, lim,, _, llx, —
voll =0, 1im,  olv, = Pe( = (2/L)Vf)v,l = 0, and

lim, , ¥, - W7%,|| =0, where ¥, =v, — p,Av,.

Indeed, utilizing Lemmas 10 and 11 (b), from (55) and
(62), we get

%1 =PI

+ (1= o, &) p = ol

< |(1 - e, &) 3, = (1 = i, &)
— 2p0t, (AP, X1 = P)

< (1= a,7) [y, = pI = 218, (A, p, %1 = P)

< ”yn - P"2 - 2uay, <K2p’xn+1 - P>

= B, (Tvu = p) + (1= B.) W3, = p)I
= 200, (A, X1 = P)

= BulTv = pII” + (1= B) W, - o

=B, (1= B [T =W -

< BTy = " + (1= B) [7 - oI
= Bu (1= B [ Tva

- 21““;1 <A~2p’ Xn+1 ~ P>

-w,7,|°

+ (1 - ﬁn)
- ﬁn (1 - ﬁn) "Tnvn

= ﬁn”Tnvn - p”2

~w,| -
< :Bn”TnVn - p||2
+ (1 - ﬁn) (”Vn - P”Z - 2p, <K1

- ﬁn (1 - ﬁn) "Tnvn

vn’vn_p>)

-w,| -

< v, - plI* =20, (1= B.) (A 1v, 7 - p)
=B (1= B) [Ty - W, -
< I = 2I° =20, (1= B.) (A 1v, 7 — 1)
=B, (1= BT,

- 2.”“7:(2217’ Xn+1 — p>’

-W,5,|°

which implies that
ﬁn (1 - /3n) "Tnvn - anﬂllz
<= oI = s = I

- zpn (1 - /';n) <len

< "xn -

)

e | (10 = Pl + %0

w20, [ A 17,

Sincea, — 0,p, — 0,lx,,; — x| — Oand{
are bounded sequences, it follows from B2y < la
(0, 1) that

Jim IT,v, - W,%,| = 0.

— 2
Vo= P~ PnAlvn"

= p|| + 2pe0, | A, p| %1 - Pl

nb> V.

b

13

21““71 <Z2p’ Xp+1 — P>

Z‘MOCn <szp’ Xn+1 ~ p>

2."‘“?1 <KZP’ Xp+1 ~ P>

Z‘MOCn <Zzp’ Xn+1 ~ p>

(86)

= p) = 240, (AP, Xy — P)

(87)
{7,
J

}
c

(88)



14

On the other hand, for p € Q, we find that

s, = oI
= [0 (- r4) %, =29 (1=, 4) p||
< (1= r,4) %, ~ (1= r,8) pI )
(Ax, - Ap)|]

<[l = oI + 7, (r, = 20) [ A, — Ap][”.

:"xn_p_rn

Then, together with (61) and (86), we have

[ - I
< v - pI” = 2p, (1 = B.) (A v 7 - )
= Bu (1= BT = Wl = 2000, (A, %01 = P)
< N, - pI* + 20, | A1) 17, - 2

+ 2ua,,

ZzP" |1 = 2|

< ”xn - P"2 +1, (rn - 2() “Axn - Ap”2

+2p, Adl"n" "vn - P" + 2uay, “ZZP" "xn+1 - p“ >
(90)
which immediately yields
Ty (2( - rn) "Axn - Apllz
= ”xn - P||2 - "xn+1 - p||2 + 2Pn "len" ”7,1 - p”
T e [ o

< ”xn - xn+1" ("xn - P” + ”xn+1 - P”)

+2Pn Alvn

7 — ol + 2000, [ s | i1 — -

Sincea, — 0,p, — 0,lx,,; —x,Il = 0,and {x,}, {v,}, {¥,}
are bounded sequences, it follows from {r,},>, < [c,d] C
(0,2Q) that

lim |Ax, - Ap| = 0.

n— 00

(92)

Furthermore, from the firm nonexpansivity of %), we have

2
Jun = Pl

2
S (1= 1,4) x, = 27 (1 - 7,,A) p

Abstract and Applied Analysis

< ((T=1,4) %, ~ (1= 1, 4) pr1t, - p)
= M- raA) %, (=, A) Bl +
(1= r,4) %, = (I = 1,4) p = (u, — p)|]
A i T
=%, = w4, = 7,0 (Ax, - Ap)|’]
o1 [ P N

+ 2rn<Axn - Ap> Xy — un> - rrzt “Axn - APHZ] >
(93)
which leads to
R O R PN o
+2r, ||Axn - Ap" ||xn - un" .

From (61), (86), and (94), we have

%1 =
< v = 1" = 2p, (1 = B.) (A v 7 — )
= By (1= B Tv = Wl = 260, (A, P, %01 — P)
< |l = plI* + 20, [ & 1w, 17, -

+ 2p0, ”Zﬁ)” ”xn+1 - P“

S A

+2r, ||Axn - Ap|| ||xn - un“

sz” ||xn+1 - P“ >
(95)

+ 2Pn ||K1Vn|' ”ijn - p” + ZM(XVI

which hence yields
%, = |
< Jxu = 2l = I = I
+2r, | Ax,, = Ap]| [|x, — w
+ 20, | & | |7, = pll + 2608, | Ao p| |00 = 2]l (96)

<l = x| e = 21+ %000 = 21
+2r, "Axn - Ap" "xn - “n"

+2p, ”Klvn

7 = ol + 2000, | A | s = -

Sinced, — 0,p, — 0, x4 — x,/ — 0 and
{x,}, {u,}, {v,,}, {#,,} are bounded sequences, it follows from
(92) and {r,,};2, < [c,d] € (0,2() that

,}H%O ”xn - un” =0. (97)
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Next we show that limn_,oollAkAknun -Apl =0, k =

1,2,..., M. Observe that

[, o]
= ||ka,Ak,n (I = Ag,By) A, - Trey, (I = AenBy) P”z
< "(I = ApBi) A5 M, = (1= Ay, By) P"2

<

Sl P" + Aen (A = 2111) ”Bk 'u, —BkP”

<t = I + Men Mg = 272 “BkA L U = BkP"

< = 2l + Ak M = 21) “Bk ', —BkP“

Combining (86) and (98), we get

i1 =PI
< ”Vn - p||2 - zpn (1 - ﬁn) <len’vn - p>

- ﬁn (1 - Bn) "Tnvn - anvn"2 -

znuan <ZZP’ Xp+l — p>

“ = |+ 20, [ A0 |7 - 2

+ Z‘MOCn “KZP" "xn+1 - p”
< = plI* + A (Mg = 26 “BkAkn_lun - BkP“2

+ zpn ”A'l Vn" "’17” - p" + 21”“71 “ZZPH "xn+1 - p” >

(99)
which hence yields
M (211 = Agen) “Bk ', _BkP“
S”xn_p" _||xn+1_p|| +2pn 1Yn ~n_p"

+ 2‘1406" "szpn “xn+1 - P"
< “xn -

X | (16 = 2l + 1201 = )

n XZP“ ”xn+1 - P" .
(100)

+2p, ||X1vnH [, - 2l

Sincea, — 0,p, — 0,lx,,; —x,l — Oand {x,},{v,},{¥,}
are bounded sequences, it follows from {A;,} < [a,b] ¢
0,21.),Vk € {1,2,..., M} that

lim |B,A%

n— 00

ka|| =0, Vke{l,2,...,M}.

15

By Lemma 11 (a) and Lemma 20, we obtain
[, -
= Jrore, (I = AkBi) P“Z

< <(I — MpBe) A5, — (1= Ay, By) p A, - P>

= ”]Rk,)tk)n (I- /\k,an) Akn_lun

- % ("(I — inBi) A, = (1= Xy,By) P"2
+ | A%, - p”z
~ (7 = 2B A%, = (1= A Bi) p

o))

< 3 (I8 = ol s = o
A - AR, - A, (BeA s, - By p)||2)
< 2 (I = 7 + |40, = o
A5 - AR, — Ay (BeAS - Bep)|[)
< 3 (b= ol + 4530, - o]
A - Ny~ A (B, - B).
(102)
which implies
a5, - [
<l — PP A%~ A, g (B, ~ Bp)|
= Jxu = oI = Ay = AL,
- AL ||BenS  u, - By p||2
+ 244, (A0, — AN, BN 0, - By p)
< e, - pIP -, - M|
+ 24, A, = A | [BeA e, - Bep
103)

Combining (86) and (103) we conclude that

s = I
S "Vn - p"2 = 2p, (1 - ﬁn) <K1Vn’vn - P>
- ﬁn ﬁn ”T Y annllz

- 2/406" <A2p’ Xn+1 ~ p>
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< A%, = o+ 20, || 17 -
+2p0, "X2PH %1 = 2l

< ||xn - p||2 - ”Akn_lun - Aknun"2

+ 24, A 1, = A || BeA s, - Bep
+ an Klvn" “vn - p” + 2[/!06" XZP') “xn+l - p" >
(104)
which implies
s -
< = I = I - I
+ 24, A%, - Aknun“ ||BkA’j;1un - B, p]]
+ an Zlvn “‘17,, - p“ + 2[406,,, ZZP“ ”xn+1 - p"

< e = el (e = 2l + s = )

+ 20,

Nt 2k [, - B
+ 2pn ||leﬂn ”f‘jn - p“ + 2#06,1 ||Z2p" ”xnﬂ - P" .
(105)

Since «, — 0,p, — O0lx,, — x, — 0, and
{x,} {u,.}, {v,.}, {¥,,} are bounded sequences, it follows from
(101) and {A; .} C [a, b ] € (0,27),Vk € {1,2,..., M} that

Tim A5, - A, =0, ke {1,2,...,M}. (106)
Hence from (106) we get
||un - vn” = "A(;un - Al:l]un”
< "Aonun - Alnun + "Alnun - Aznun
(107)

+ee "AIZ_lun - Afun“ —0
as n — oo.
Thus, from (97) and (107) we obtain

Hxn - vn" < ||xn - un” + ||un - Vn” — 0 asn-— 00.
(108)

On the other hand, from (55) and [x,; — x,[ — 0 we
obtain

"xn - yn" < ”xn - xn+1" + "xn+1 - yn"

— 0

< %0 = Xt | + x| A9, (109)

as 1 — 0.

Abstract and Applied Analysis

Note that
“Tnvn - Vn” < "Tnvn - yn” + "yn - xn" + "xn - Vn”
< (1 - ﬂn) “Wrtvn - Tnvn"

+ "yn - xn" + ||xn - vn"

< "Wni}n - Tnvn" + "yn - xn" + "xn - Vn" :

(110)
Hence, from (88), (108), and (109) it follows that
lim [T, - v,[ =0. 1)
Also, observe that
1P (1= A VF) v = vl = lsav + (1= 5,) T,v, = v
= (1= 5,) [Ty = v, (112)

< ||Tnvn - vn" ,

wheres, = (2 - A,L)/4 € (0,1/2) for each A,, € (0,2/L).
Hence we have

2
o~ 2or)

< ||PC (1- %Vf) v, = Po(I= M f) v,

+ "PC (I - /\nvf) Vo = Vn"

(113)

<

2
(1= 19 ) v 1= 190w,
+ "PC (I - /\nvf) Vn = Vn"
< (2= I Gl + T =l

From the boundedness of {v,},s, — 0(e A, — 2/L) and
IT,v, - v, — 0 (due to (111)), it follows that

lim =0. (114)
n—00

2
Vy — PC (I - ZVf) Yy

Since [|[7,~x,|| < |v,~x,ll+p,IA,v,l, from (108) and p, — 0,
we get

lim |7, - x,| = 0. (115)

n— 0o
So, from (88), (111), and p, — 0 we deduce that
"ann - Vn”
< W7, = Tvall + | Tavis = vl + [V = 7
_ (116)
= "ann - Tnvn" + ||Tnvn - vn" + P, "Alvn" — 0

as 1 —> O0O.
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Step 4. We prove that w,,(x,) € Q.

Indeed, since H is reflexive and {x,} is bounded, there
exists at least a weak convergence subsequence of {x,,}. Hence
it is known that w,(x,)# 0. Now, take an arbitrary w ¢
w,,(x,). Then there exists a subsequence {x,, } of {x,,} such that
x,, — w.From (97), (106), (108), and (115),w}ve have that U, —
w, v, — w, ¥, — wand AT u, — wform=1,2,...,M.
Utilizing Lemma 15, we deduce from v, — w and (114) that
w € Fix(P-(I = (2/L)Vf)) = VI(C, Vf) = I. Now, let us show
that w € N, Fix(S)). To see this, we observe that we may
assume that (by passing to a further subsequence if necessary)

Wy, — w€©,1) (=1,2..,N). (117)

Let W be the W-mapping generated by S,,S,,...,Sy and
U1> Uy» - - - » - Then, by Proposition 9, we have, for every x €
H,

W,x — Wx asi— oo. (118)

Moreover, from Proposition 8 it follows that Fix(W) =
ﬂ{il Fix(S;). Assume that w ¢ ﬂ{il Fix(S;); then, w+ Wuw.
Since v, — wand ||V, - W, ¥,| — 0 (due to (116)), in terms
of Opial’s property of a Hilbert space, we conclude from (118)
that

lim inf
i— 00

V"i - w"
< liminf "?,L - Ww”
i— 00 '

< liminf (

1— 00

Vo = W T | + W7, = W (119)
+ ||Wniw - Ww")

= liminf |W,, %, - W, w| < liminf ¥, - w|.
i— 0o L ' i— 00 '
This is a contradiction. So, we get w € N7, Fix(S,). Next,
we prove that w € ﬂﬁf:lI(Bm, R,,). As a matter of fact, since
B,, is 1,,-inverse strongly monotone, B,, is a monotone and
Lipschitz continuous mapping. It follows from Lemma 23
that R, + B,, is maximal monotone. Let (v, g) € G(R,, + B,,),
that is, g — B,,v € R,v. Again, since Aju, = Jp ) (I -
-1 ’
A B A u,,n > 1,m € {1,2,..., M}, we have
Ny = Ay By Ay € (T4 0,,,R,) A,

n

(120)

that is,

1 _ _
(Am "uy — ATy, — Ay B AT lun) € R, A"u,. (121)

n

A

mn

In terms of the monotonicity of R,,,, we get

1
<v— Au,,g—B,v- 3
mn
122)
< (A7, — Alu, = Ay, B AT M) > >0,

17

and hence

<V - Ay:un’ g)

1
> <V—A',':un,Bmv+ T

mn

n

X (Am_lun -ATu, — /\m,anA’Z_lun) >

-1
= <v -A"u,, B, v— B, A u,+ B, ATu, — B, A" u,

+ Al (A’Z_lun—Ar::un)>

m,n

> (v = Ay, By, = B,

1 -1
+ <v -A"u,, F (A"J u, — Ar::un)> .

mn
(123)
In particular,
<v - A':x_uni,g>
> (v= At By Ay, = B A, ) (124)

1 -1
+ <v— ALy, 3 (A’Zi u, — A'Ziuni)> .

mn;

Since ||[ATu,, - A'z_lunll — 0 (due to (106)) and ||B,, A" u,, —
B, A" 'u,| — 0 (due to the Lipschitz continuity of B,,),
we conclude from A’ u, — wand {A,,,} ¢ [a,.b,] C
0,2n,,),m € {1,2,..., M} that

lim <v— A'Ziuni,g> =(v-w,g) =0.

1— 00

(125)

It follows from the maximal monotonicity of B,, + R,, that
0 € (R, + B,)w; thatis, w € I(B,,,R,,). Therefore, w €
nM I(B,,R,,).

Next, we show that w € GMEP(®, ¢, A). In fact, from
u, = Sif)"p) (I -r,A)x,, we know that

O (uy y) + ¢ (¥) — 9 (u,) + (Ax,, y —u,)

o , (126)
+—(K (u,)-K (x,),y-u,) =0, VyeC.
r

n

From (H2) it follows that
@ (y) = (u,) + (Ax,, y - uy,)
1
+— (K' (u,) =K' (x,),y-u,) 20 (y,u,), (127)

Yy eC.
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Replacing n by n;, we have

(P<u”i) + <Ax”i’y - u"i>
! _ !
+<K(un,~) K (xni)’y_uni>2®(y’uni)’

Tni

e(y) -

Vy e C.
(128)

Putu, =ty + (1 -t)wforallt € (0,1] and y € C. Then, from
(128), we have

<ut - uni,Aut>

> <ut - uni,Aut> - (u)+o (”n,.) - <ut - uni,Axni>

_<K,(un‘)_K’(xni) U, —u >+@(M u )
>t n; > “n;

T'ni

> <ut — U, Auy — A”n,.> + <ut - U, Au,,

- (u) + 9 (u,) - <K (1) =K (x"")mt - u>

- Ax”i >

T’ni

+®(ut,uni). 129)
129

Since IIuni - X, | — 0Oasi — o0, we deduce from the
Lipschitz continuity of A and K’ that IIAuni - Ax, I — 0
and IIK'(uni) - K'(xni)ll — 0asi — oo. Furthermore, from
the monotonicity of A, we have (u, —u,, , Au, — Au,, ) > 0. So,
from (H4), the weakly lower semicontinuity of ¢, (K '(uni) -
K'(x,))/r,,

— 0Oand u, — w, we have
:

as i — 00.
(130)

(U~ w, Auy) > —9 () + ¢ (W) + O (u, w),

From (H1), (H4), and (130) we also have
0=0 (u,u,) + () - ()
<10 (uy, y) + (
+(1-1) ¢ (w) - ¢ (u)
=t[®(up ) + o (y) — ¢ (u)]
+(1-1) [0 (u,w) + ¢ (w) -

1-1)0 (u,w) +19(y)

¢ (w) -9 (u)]

<t[®(u,y) +o(y) -9 (u)]
+(1-t) {u, — w, Au,)
=t[0(upy) +o(y) — @ (u)] + 1 -0t (y - w, Au),
(131)
and hence
0<0(uy) +9(y)—9(u) + (1-1)(y - w, Au) . (132)

Abstract and Applied Analysis

Lettingt — 0, we have, for each y € C,
0<0(w,y)+¢(y)-¢ W)+ {(Aw, y — w). (133)
This implies that w € GMEP(®, ¢, A). Therefore, w ¢

nY, Fix(S;) N GMEP(®, ¢, A) N N}, I(By, R,) N T := Q. This
shows that w,,(x,) C Q.

Step 5. We prove that w,(x,) ¢ VI(Q, A,) provided |x, —
vl = o(p,) additionally.

Indeed, take an arbitrary w € w,,(x,). Then, there exists
a subsequence {x,, } of {x,} such that x, — w. Since A, is
«-inverse strongly monotone, from (55) (62), and (66) we
conclude that for all p € Q

Iy, - ol
= 1B, (T, = p) + (1= B.) (W, = p)I°
< BulTv, — ol + (1= B,) [W,7, - oI
< Ballva—pl* + (1= B) I - 2

= Bullv = 2P+ (1= B) v = - puiv
<Bullv = ol +(1=B.) [Iva = I~ 20 (Z17, 7~ p) ]
= Ballva— 2"+ (1-B,)
< [Iv = 2" = 2, ({& v, v, — P
+ (A1 Ty = V)]
= Bullva - pI" + (1-B,)

x[Iv - plI* - 2,
(K vy By - p)
+ (A9, v = ) + (A = v,))]
= v = pI” - 20, (1- B,)
x ((Av, = A, p,v, = p)
—p) + (AT —v,))

< ”xn _P"2 —2‘[)”(1 _ﬁn) <K1p’ Y _P>

+ (A,p,v,

+ 2Pn (1 - :Bn) “K n Vn" 4
(134)
which implies that
(Aip.va—p)
1 2 2
< ————(|xs=2) = lyu -
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+ ”ZIV”" ||7n - vn"

“xn_yn“ 2| x 2
S ——— = (x. =P\ +11Vn— + oAV -
e (= ol =2l + 2, ||( |
135

So, from p, — 0 and the assumption |x,, — v, = o(p,), we
get

lim sup <le, v, — p> <0. (136)
n— 00

Thus, it follows from (108) that for all p € Q
(Aipw=p) = lim (A,p,x, - p)
< lim sup <Z1p, X, — p>
= hrllllsol;p (<le, v, — p> + <K1p,xn - vn>)

= lim sup <Z1p, v, — p> <0,
n— 00
(137)
that is,

(Ajpp-w) =0, VpeQ. (138)

Since A is a-inverse strongly monotone, by Minty’s Lemma
[23] we know that (138) is equivalent to the VIP

(Ajw,p-w) 20, VYpeQ. (139)

This shows that w € VI(Q,XI). Therefore, w,(x,) C
VI(Q, A)). O

Theorem 25. Assume that all the conditions in Theorem 24 are
satisfied. Then, we have that

(i) {x,} converges strongly to a point u™ € Q, which is a
unique solution of the VIP

(A, p-u") >0, Ype (140)

(ii) {x,} converges strongly to a unique solution of THVI
(16) provided ||x,, — v, || = o(p,) additionally.

Proof. Since A, is fB-strongly monotone and L-Lipschitz
continuous, there exists a unique solution u* € Q of the VIP

(Au',p-u") =0, VpeQ. (141)
Now, let us show that

lim sup <K2u*,u* - xn> <0.

n—00

(142)

Since {x,} is bounded, we may assume, without loss of
generality, that there exists a subsequence {xni} of {x,,} such
that x, — wand

lim (Au*,u" - x, )

1— 00

lim sup <A2u*, u" - xn>
n— 00

(143)

(Au",u” —w).

19

In terms of Theorem 24 (ii), we know that w € w,(x,) ¢ Q.
So, from (141) it follows that

limsup(A,u”,u” —x,) = (Au",u" —w) <0.  (144)
n— 00

Next, let us show that lim,, _, |lx,, — u*| = 0. In fact, by
utilizing Lemma 10, from (55) and (134) with p = u*, we get

)

< "(I - ‘u(xnxz)yn - (I - yangz)u* ?

- 2ua,, <Kzu*, Xy — u*>

<(1-a,1) |y, —u" ||2 - 2ua, <Zzu*,xn+l - u*>
<(1-a,r) [”xn — | -2, (1= B) (A" v, —u”)

+ 2Pn (1 - ﬁn)

|A1Vn

7 = val]
= 2p0t, (Ayu", %,y —u")

< (1-a,7) |x, - u*|
20, | Ay | v - | + 202 Ay
= 2p0t, (Ayu", x,y —u*)

=(1-a,7)|x, - u*”z

2 — 2 2
TS [ e [T PR

+ u(Autu” —xnﬂ)} ,

(145)
where T =1 - /1 — u(23 — ux?).
Since Y2 «, = 00,lim,_ (p,/o,) = 0, and

limsup, , . (A,u",u*
that Y°, o, 7 = 0o and

— X,.1) < 0 (due to (144)), we deduce

R L o [ P o
1rrlrisolg)pT o v, —u +0‘n 1V

(146)

+ (A" u" — x,,) <0,

Therefore, by applying Lemma18 to (145) we infer that

lim,, _, lx, —u*[ = 0.
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Finally, we prove that lim,_, |x,
vided |x, — yI =
VI(VI(Q, A}), A,).

Indeed, first of all, let us show that w,(x,) = {x"}. Asa
matter of fact, take an arbitrary w € w,,(x,,). Then, there exists
a subsequence {x,,j} of {x,} such that x,, — w. Moreover,

by Theorem 24 (iii) we know that w € w,,(x,) C VI(Q,KI).
Utilizing Lemmas 10 and 17, from (55) and (134), we deduce
that for all p € VI(Q, A )

- x*| = 0 pro-
o(a,) additionally, where {x"} =

e = I
- - of
=|(1-w
< (1 - s, o) 3, (1 - i, ) o

- 2[406,1 <ZZP’ Xn+1 — p>

an;{Z) yn_(I - M“nZZ) p +(I - A“an;{Z) p- P"2

< (1= a,7) |y - 2II° - 26, (AP X1 = D)
< (1= 1) [l 6l =20, 1= ) Erpuv, — )
+ 2Pn (1 - ﬁn) “Zlvn "Vn - 1}n"]

- 2[106,1 <X2P’ Xn+1 ~ P>

< %, = oI + 20, || v~ I+ 20} A0,

- 2/"“n<xzp> Xn1 — P)>
(147)

where 7 =1 — /1 — u(2f3 — ux?). So, it follows that

(A3, %11 = P)
1
2uoe,

Pu
pex,

<

(e, = 2 = e = 2I7)

+

A, p] v, - 2l + £ & v 2] (148)

Xn = Xny
< Bzl (e - )
i

P
pa,

Since o, — 0,p, = o(«,) and [Ix,,; — x,Il = o(p,), we find

that

+

1A 2] 19, - 2l + ] o

lim l|xn+1 _xn" - lim ”xn+1 _xn" &

n— 00 n— 00
a}’l pn (xn

=0. (149)
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Hence, we conclude from (148) that for all p € VI(Q, A,)
<K2P» w- P>

= lim <K2p, X, = p> < lim sup <K2p, X, — p>
j— 00 7 n— oo
_ _ (150)
= hrllllsol(l)p (<A2P) Xy~ xn+1> + <A2P’ Xne1 ~ P>)

= lim sup(A, p, x,.,; — p) <0,

n— 00

that is,
(A,pp-w) 20, VYpeVI(QA). (151)

Since A, is 8-strongly monotone and L-Lipschitz continuous,
by Minty’s Lemma [23] we know that (151) is equivalent to the
VIP

(Ayw,p-w) 20, VpeVI(QA). (152

This shows that w € VI(VI(Q, A)), A,). Considering {x*} =
VI(VI(Q, A,), A,), we know that w = x*. Thus, w,(x,) =
{x*}; that is, x,, — x™.

Next we prove that lim,, _, [Ix,, — x*|| = 0. As a matter of
fact, by utilizing (147) with p = x*, we get

[tues ="
<(1-a,1)
X [”xn - x*"2 = 2p, (1 - ﬁn) <K1x*’ Vi = X*>

+2p,(1-B,) ”Klvn "vn - 1/n"]

- 2ua, <Zf2x*, Xy — x*>

<(1-a,7)|x, - x*“z

2

+2pn Zlvn

Xlx*" v, — x*|| + 27

- 2ua, <Z2x*, X1 — x*>

=(1-a,1)|x, - x*“z

+a,T 21 P "le* v, = x|
an

T

2
+ f))T:”;{an"2 - V(sz*, Xpel — x*> .
(153)

Since Yoo e, = oo,lim,_, . (p,/er,) = 0, and lim, _
(Ayx",x" = x,,1) = 0 (due to x, — x"), we deduce that
Yol e, T = 00, and

2
lim —

Jim 2 Iy - 'l

Pn "Alx*
(Xn

(154)

P 2 — % *
Aw,| —u{Ax ,x,,,—x )| =0.

2
P
(Xn
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Therefore, applying Lemmal8 to (153) we infer that
lim,,_, . llx, — x*|| = 0. This completes the proof. O
Remark 26. In 2012, Ceng et al. [19] proposed and analyzed
the following hybrid iterative method for finding a common
element of the set of solutions of GMEP (3) and the set of fixed
points of a finite family of nonexpansive mappings {S;} .

Theorem CGY (see [19, Theorem 3.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let ® : C x
C — R be a bifunction satisfying assumptions (H1)-(H4)
and let ¢ : C — R be a lower semicontinuous and convex
function with restriction (Al) or (A2). Let the mapping A :
H — H be {-inverse strongly monotone, and let {S;}~,
be a finite family of nonexpansive mappings on H such that
(NY, Fix(S;)) N GMEP(®, 9, A)#0. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with constants
xk,1 > 0andV : H — H a p-Lipschitzian mapping with a
constant p > 0. Let 0 < u < 2n/k* and 0 < yp < T, where

T = 1 — /1 - u(2n — ux?). Suppose {o,} and {f3,} are two

sequences in (0,1), {r,} is a sequence in (0,2(], and {y,-,n}fil
is a sequence in [a,b] with 0 < a < b < 1. For every
n > 1, let W, be the W-mapping generated by S,,S,,...,Sy
and Wy, Uy s - - - - Given x; € H arbitrarily, suppose the
sequences {x,} and {u,} are generated iteratively by

O (ty y) + 9 (y) — 9 (u,) + (Ax,, y — 14

+ s (y —tyu,—x,) 20, VyeC,
T (155)
Xpe1 = ocnnyn + ﬁnxn + ((1 - /jn) I- ‘xm“F) Wnun’
Vn>1,

where the sequences {a,}, {3}, {r,}, and the finite family of
sequences {yi,n}fil satisfy the following conditions:

(i) lim,, _, &, =0and Y >, a, = 00;
(ii) 0 < liminf, , B, <limsup, _, B, < L;
(iii) 0 < liminf,_ 7, < limsup,_ 7, < 2{ and
limnHOO(rﬂ+1 - rn) = 0;

(iv) lim,, , oo (¢4 41 — i) = 0 foralli=1,2,...,N.

Then, both {x,} and {u,} converge strongly to
x* € nfil Fix(S;) N GMEP(®,¢, A), where x* =
Py, Fix(5,)NGMEP(©,p,4) (I — UF + yV)x* is a unique solution of
the VIP

(F - yV) " p-x") <0,

N (156)
Vp € (ﬂ Fix (s,.)) N GMEP (0,9, A).
i=1

It is obvious that our iterative scheme (55) is very different
from Yao, Liou, and Marino’s iterative one (13), Zeng, Wong,
and Yao’s iterative one in Algorithm ZWY. and Ceng, Guu. and
Yaos iterative one (155). Here, the two-step iterative scheme
in [7, Algorithm 3.2] is extended to develop our four-step
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iterative scheme (55) for the THVI (16) by combining Korpele-
vich’s extragradient method, hybrid steepest-descent method,
and averaged mapping approach to the gradient-projection
algorithm. The problem of finding a point x* € N Fix(S;) N
GMEP(O, ¢, A) in [19] is extended to the more general problem
of finding a point x* € (ﬁf\:]1 Fix(S;)) N GMEP(®, ¢, A) N
(n,](‘ill(Bk, R)) NT, which is involved in THVI (16). It is worth
pointing out that under the lack of the assumptions similar
to those in [6, Theorem 3.2], for example, {x,} is bounded,
Fix(T) NnintC # 0 and ||x — Tx| > kDist(x, Fix(T)),Vx € C
for some k > 0, the sequence {x,} generated by (55) converges
strongly to a point u* € (ﬂf\il Fix(S;)) N GMEP(®, ¢, A) N
(nﬁill(Bk,Rk)) NT = Q, which is a unique solution of the
VIP (A,u*, p—u*) 2 0,¥p € Q.
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