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Our effort is to develop a criterion on almost surely exponential stability of numerical solution to stochastic pantograph differential
equations, with the help of the discrete semimartingale convergence theorem and the technique used in stable analysis of the
exact solution. We will prove that the Euler-Maruyama (EM) method can preserve almost surely exponential stability of stochastic
pantograph differential equations under the linear growth conditions. And the backward EMmethod can reproduce almost surely
exponential stability for highly nonlinear stochastic pantograph differential equations. A highly nonlinear example is provided to
illustrate the main theory.

1. Introduction

Stochastic unbounded delay systems play an important role
in a variety of application areas, including biology, epidemiol-
ogy, mechanic, economics, and finance. The systems provide
powerfulmodels, such as infinite delayKolmogorov-type sys-
tems inmathematic biology [1–4], stochastic neural networks
[5–8], and stochastic pantograph equations in science and
engineering.The pantograph equation which is a very special
unbounded delay equationwas used byOckendon and Tayler
[9] in 1971 to study how the electric current is collected by
the pantograph of an electric locomotive, from where it gets
its name. Such systems have received an increasing attention
(see e.g., [3, 10–13]).

Unfortunately, most of stochastic differential equations
cannot be solved explicitly. Especially, explicit solutions
can rarely be obtained for nonlinear stochastic pantograph
equations, so numericalmethods have recently receivedmore
andmore attention (see [6, 8, 13–15]). Most of research efforts
have been devoted to the convergence and mean-square
stability of various numerical methods for the linear delay
systems [14, 16–19]. Recently, several authors were devoted
to the convergence in probability of the Euler-Maruyama
(EM) method for the nonlinear delay systems. For example,

Mao [20] and Milošević [21] developed the convergence
in probability of the EM approximate solution for nonlin-
ear SDDE and neutral SDDE under the Khasminskii-type
conditions, respectively. Zhou et al. [22, 23] established the
convergence in probability of the EM approximation for
neutral stochastic functional differential equation under the
polynomial growth conditions.

Stability theory of numerical solution is one key problem
in numerical analysis. Compared with the convergence, the
study on stability of numerical methods for delay systems
is relatively scarce due to infinite time-delay that is often
the source of instability. Research efforts have been devoted
to various stabilities of numerical methods for SDEs. For
example, Higham et al. [15, 24–26] investigated stability of
numerical methods for SDEs. Pang et al. [27] showed that
the EM discretization can capture almost surely and moment
exponential stability for all sufficiently small time-step under
appropriate conditions for linear hybrid SDE. Mao et al. [28]
showed that the backward EMmethod can reproduce almost
surely exponential stability of nonlinear hybrid SDE.Mao and
Szpruch [29] developed almost surely asymptotic properties
of implicit numerical methods for nonlinear SDEs, via a
stochastic version of LaSalle principle. However, the stability
of numerical method for highly nonlinear stochastic delay
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system is less studied, due to time-delay that is often the
source of instability (see [2, 30, 31]), which is the main topic
of the present paper.

The stability of numericalmethod is inspired byWu et al.’s
paper [32], in which they first studied that the backward EM
method can reproduce almost surely exponential stability of
nonlinear stochastic differential delay system
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Wu et al.’s work is a very important contribution to numerical
SDDE theory. Certainly, we also see that the theory imposes
the one-sided linear growth on the drift coefficient (i.e., (3))
and the linear growth on the diffusion coefficient (i.e., (4)),
which are rather strong so thatmany highly nonlinear SDDEs
are excluded. Recently, Zhou et al. [33] studied exponential
stability of stochastic functional differential equation under
polynomial growth condition. To the best of author’s knowl-
edge, there is no work on stability of numerical method for
stochastic pantograph differential equations. In the paper,
our effort is to develop a new criterion on almost surely
exponential stability of numerical solution to stochastic pan-
tograph differential equations, with the help of the discrete
semimartingale convergence theorem and the technique used
in stability analysis of the exact solution. We will prove that
the Euler-Maruyama method can preserve the almost surely
exponential stability of stochastic pantograph differential
equations under the linear growth conditions. The backward
EM method can preserve almost surely exponential stability
for highly nonlinear stochastic pantograph differential equa-
tions under sufficiently small step size.

2. The Global Solution

Throughout this paper, unless otherwise specified, let |𝑥| be
the Euclidean norm in 𝑥 ∈ R𝑛. If 𝐴 is a vector or matrix,
its transpose is denoted by 𝐴

𝑇. If 𝐴 is a matrix, its trace
norm is denoted by |𝐴| = √trace(𝐴𝑇𝐴), while its operator
norm is denoted by ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| = 1}. Let
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, 𝑃) be a complete probability space with a
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increasing and right continuous and F
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Consider an 𝑛-dimensional stochastic pantograph equa-
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(H2)The Polynomial Growth Conditions. For all 𝑥 ∈ R𝑛, there
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Lemma 1 (see [1]). Let 𝛼, 𝑏 > 0, 𝜅(𝑥) ∈ 𝐶(R
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almost surely exists a unique global solution𝑥(𝑡) to (5) on 𝑡 ≥ 0.

Proof. Under (H1), applying the standing truncation tech-
nique to (5) for any initial data 𝑥

0
, there exists a unique

maximal local strong solution 0 < 𝑡 < ]
𝑒
, where ]

𝑒
is the

explosion time. To show this solution is global, we only need
to show that ]

𝑒
= ∞ a.s. Let 𝑘

0
> 0 be sufficiently large such

that 𝑘
0
> |𝑥
0
|. For each integer 𝑘 ≥ 𝑘

0
, define the stopping

time

]
𝑘
= inf {𝑡 ∈ [0, ]

𝑒
) : |𝑥 (𝑡)| ≥ 𝑘} , 𝑘 ∈ 𝑁, (10)

where throughout this paper, we set inf 0 = ∞ (as usual, 0
= the empty set). By the definition of the stopping time ]

𝑘
, it

is obvious that ]
𝑘
is an increasing function with 𝑘, so ]

𝑘
→

]
∞

≤ ]
𝑒
(𝑘 → ∞) a.s. If we can show that ]

∞
= ∞ a.s.,

then ]
𝑒
= ∞ a.s. which implies that 𝑥(𝑡) is global. In other

words, we only prove that 𝑃(]
𝑘
≤ 𝑡) → 0 (𝑘 → ∞, 𝑡 > 0).

Define 𝑉(𝑥) = |𝑥|
2, by 𝑃(]

𝑘
≤ 𝑡)𝑉(𝑥(]

𝑘
)) ≤ 𝐸𝑉(𝑥(𝑡 ∧ ]

𝑘
));

we only need to prove that 𝐸𝑉(𝑥(𝑡 ∧ ]
𝑘
)) < +∞ according

to 𝑉(𝑥(]
𝑘
)) = |𝑥(]

𝑘
)|
2
= 𝑘
2

→ ∞. For 𝜀 > 0, by the Itô
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where 𝑀(𝑡) = ∫
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which implies that there exists almost surely a unique global
solution. The proof is complete.

For stability, we need to impose a stronger condition on
the coefficients as follows.
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where 𝑀(𝑡) = ∫
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and (19), we may also estimate

𝐿𝑉 (𝑥 (𝑠) , 𝑥 (𝑞𝑠)) + 𝜀𝑉 (𝑥 (𝑠))

≤ −2𝑎|𝑥(𝑠)|
𝛼+2

+ 2𝑎 (e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛽+2
+ |𝑥(𝑠)|

𝛽+2
)

− 2𝑎|𝑥(𝑠)|
2
+ 𝑏|𝑥(𝑠)|

𝛾+2
+ 𝑏e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨

󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛾+2

+
̃
𝑏|𝑥(𝑠)|

2
+ 𝜀|𝑥(𝑠)|

2

≤

2𝑎

𝑞

(𝑞e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛽+2
− |𝑥(𝑠)|

𝛽+2
)

+

𝑏

𝑞

(𝑞e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛾+2
− |𝑥(𝑠)|

𝛾+2
) − 2𝑎|𝑥(𝑠)|

𝛼+2

− (2𝑎 −
̃
𝑏 − 𝜀) |𝑥(𝑠)|

2
+ 2𝑎(1 +

1

𝑞

) |𝑥(𝑠)|
𝛽+2

+ (𝑏 +

𝑏

𝑞

) |𝑥(𝑠)|
𝛾+2

.

(22)

Denoted by

𝐼 (𝑥 (𝑠)) = (2𝑎 −
̃
𝑏 − 𝜀) |𝑥(𝑠)|

2
+ 2𝑎|𝑥(𝑠)|

𝛼+2

− 2𝑎(1 +

1

𝑞

) |𝑥(𝑠)|
𝛽+2

− (𝑏 +

𝑏

𝑞

) |𝑥(𝑠)|
𝛾+2

.

(23)

Noting that 2𝑎 >
̃
𝑏, 2𝑎 > 2𝑎(1 + 1/𝑞) + 𝑏 + 𝑏/𝑞, 𝜀 < 2𝑎 −

̃
𝑏,

𝛼 ≥ 𝛽 ∨ 𝛾, by Lemma 1, there exists a positive 𝑐
0
such that

𝐼(𝑥(𝑠)) ≥ 𝑐
0
|𝑥(𝑠)|
2. Substitution for this and (22) into (21)

yields

e𝜀𝑡𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (0)) + 𝑀 (𝑡)

+

2𝑎

𝑞

∫

𝑡

0

e𝜀𝑠 (𝑞e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛽+2
− |𝑥(𝑠)|

𝛽+2
) d𝑠

+

𝑏

𝑞

∫

𝑡

0

e𝜀𝑠 (𝑞e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛾+2
− |𝑥(𝑠)|

𝛾+2
) d𝑠

− 𝑐
0
∫

𝑡

0

e𝜀𝑠|𝑥(𝑠)|2d𝑠.

(24)

Making use of the property of the integral, we may estimate

∫

𝑡

0

e𝜀𝑠 (𝑞e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛽+2
− |𝑥(𝑠)|

𝛽+2
) d𝑠

= ∫

𝑡

0

(𝑞e𝜀𝑞𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛽+2
− e𝜀𝑠|𝑥(𝑠)|𝛽+2) d𝑠

≤ ∫

𝑞𝑡

0

e𝜀𝑠|𝑥(𝑠)|𝛽+2d𝑠 − ∫

𝑡

0

e𝜀𝑠|𝑥(𝑠)|𝛽+2d𝑠

= −∫

𝑡

𝑞𝑡

e𝜀𝑠|𝑥(𝑠)|𝛽+2d𝑠.

(25)

Similarly,

∫

𝑡

0

e𝜀𝑠 (𝑞e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥 (𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛾+2
− |𝑥 (𝑠)|

𝛾+2
) d𝑠

≤ −∫

𝑡

𝑞𝑡

e𝜀𝑠|𝑥 (𝑠)|𝛾+2d𝑠.
(26)

Substituting for (25) and (26) into (24) yields

e𝜀𝑡𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (0)) + 𝑀 (𝑡) −

2𝑎

𝑞

∫

𝑡

𝑞𝑡

e𝜀𝑠|𝑥 (𝑠)|𝛽+2d𝑠

−

𝑏

𝑞

∫

𝑡

𝑞𝑡

e𝜀𝑠|𝑥 (𝑠)|𝛾+2d𝑠 − 𝑐
0
∫

𝑡

0

e𝜀𝑠|𝑥 (𝑠)|2d𝑠.

(27)

Applying the nonnegative semimartingale convergence theo-
rem (see [33]) in (27), we have

lim sup
𝑡→∞

e𝜀𝑡𝑉 (𝑥 (𝑡)) < ∞ a.s. (28)

That is, there is a finite positive random variable 𝐶
0

such that sup
0≤𝑡<∞

e𝜀𝑡𝑉(𝑥(𝑡)) ≤ 𝐶
0

a.s. This implies
lim sup

𝑡→∞
(1/𝑡) log |𝑥(𝑡)| ≤ −𝜀/2 a.s. The proof is com-

plete.

3. Stability of the Numerical Solution for
Linear SPDE

In the section, we will establish almost surely exponential sta-
bility of EM method numerical solution under the following
linear growth conditions.

(H4) The Linear Growth Conditions. For any 𝑥 ∈ R𝑛, there
exist positive constants 𝑎, 𝑎, 𝑐, 𝑐, 𝑏, 𝑏 such that

⟨𝑥 (𝑠) , 𝑓 (𝑥 (𝑠) , 𝑥 (𝑞𝑠))⟩ ≤ −𝑎|𝑥(𝑠)|
2
+ 𝑎e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨

󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

2
,

(29)

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥(𝑠), 𝑥(𝑞𝑠))

󵄨
󵄨
󵄨
󵄨

2
≤ 𝑐|𝑥 (𝑠)|

2
+ 𝑐e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨

󵄨
𝑥 (𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

2
, (30)

󵄨
󵄨
󵄨
󵄨
𝑔(𝑥(𝑠), 𝑥(𝑞𝑠))

󵄨
󵄨
󵄨
󵄨

2
≤ 𝑏|𝑥(𝑠)|

2
+ 𝑏e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨

󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

2
. (31)

Clearly, let 𝛼 = 𝛽 = 𝛾 = 𝑎 =
̃
𝑏 = 0 in (H2) and (H3), which

implies (H4). Similar toTheorems 2 and 3, wemay obtain the
following result.

Theorem 4. Let (H1) and (H4) hold with 2𝑎 > (2𝑎+𝑏+𝑐)/𝑞+

𝑏 + 𝑐. Then for any initial data 𝑥
0
, there almost surely exists

a unique global solution 𝑥(𝑡) to (5) on 𝑡 ≥ 0. Moreover, for
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𝜀 ≤ 2𝑎 − 𝑏 − 𝑐 − (2𝑎 + 𝑏 + 𝑐)/𝑞, the solution is almost surely
exponentially stable; that is,

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ −

𝜀

2

𝑎.𝑠. (32)

Now we define the Euler-Maruyama approximate solution
for (5). Given a step size Δ ∈ (0, 1), compute the discrete
approximations 𝑋

𝑘
≈ 𝑥
0
, 𝑡
𝑘
= 𝑘Δ by setting 𝑋

0
= 𝑥
0
and

performing

𝑋
𝑘+1

= 𝑋
𝑘
+ 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ + 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
, (33)

where the increments Δ𝑤
𝑘
= 𝑤(𝑡

𝑘+1
) − 𝑤(𝑡

𝑘
), 𝑘 = 1, . . ., are

independent 𝑁(0, Δ)-distributed Gaussian random variables
F
𝑡
𝑘

-measurable at the mesh-point 𝑡
𝑘
.

The following discrete semimartingale theorem plays an
important role in the section.

Lemma 5 (see [32]). Let {𝐴
𝑖
} and {𝑈

𝑖
} be two nonnega-

tive random variables such that both 𝐴
𝑖
and 𝑈

𝑖
are F

𝑖−1
-

measurable for 𝑖 = 1, 2, . . . with 𝐴
0
= 𝑈
0
= 0 a.s. Let {𝑀

𝑖
}

be a real-valued local martingale with 𝑀
0
= 0 a.s. Let 𝜁 be

a nonnegative F
0
-measurable random variable. Assume that

{𝑋
𝑖
} is a nonnegative semimartingale with the Doob-Mayer

decomposition𝑋
𝑖
= 𝜁 + 𝐴

𝑖
− 𝑈
𝑖
+𝑀
𝑖
. If lim

𝑡→∞
𝐴
𝑖
< ∞ a.s.,

then for almost all 𝜔 ∈ Ωlim
𝑡→∞

𝑋
𝑖
< ∞, lim

𝑡→∞
𝑈
𝑖
< ∞.

That is, all of the three processes 𝑋
𝑖
and 𝑈

𝑖
converge to finite

random variables.

Theorem 6. Let (H1) and (H4) hold with 2𝑎 > (2𝑎 + 𝑚𝑏 +

𝑐)/𝑞+𝑚𝑏+𝑐. Then for 𝜀 ≤ 2𝑎−𝑚𝑏−𝑐− (2𝑎+𝑚𝑏+𝑐)/𝑞, there
exists a sufficiently small Δ∗ ∈ (0, 1) such that the approximate
solution {𝑋

𝑘
} defined by (33) satisfies

lim sup
𝑘→∞

1

𝑘Δ

log 󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨
≤ −

𝜀

2

𝑎.𝑠. (34)

Proof. By (33) and (H4), we may compute

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
= ⟨𝑋
𝑘
+ 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ + 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
,

𝑋
𝑘
+ 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ + 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
⟩

=
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
+ 2 ⟨𝑋

𝑘
, 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

)⟩Δ

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

Δ
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)Δ𝑤
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 2 ⟨𝑋
𝑘
+ 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ, 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
⟩

=
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
+ 2⟨𝑋

𝑘
, 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

)⟩Δ

+ (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

Δ +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

)Δ

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

(Δ𝑤
𝑘

󵄨
󵄨
󵄨
󵄨

2
− 𝑚Δ)

+ 2⟨𝑋
𝑘
+ 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ, 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
⟩

= (1 − 2𝑎Δ + 𝑐Δ
2
+ 𝑚𝑏Δ)

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

+ (2𝑎 + 𝑐Δ + 𝑚𝑏) e−(1−𝑞)𝜀𝑘Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

2

Δ

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

(Δ𝑤
𝑘

󵄨
󵄨
󵄨
󵄨

2
− 𝑚Δ)

+ 2 ⟨𝑋
𝑘
+ 𝑓 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ, 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
⟩

= (1 − 2𝑎Δ + 𝑐Δ
2
+ 𝑚𝑏Δ)

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

+ (2𝑎 + 𝑐Δ + 𝑚𝑏) e−(1−𝑞)𝜀𝑘Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

2

Δ + 𝑠
𝑘
,

(35)

where 𝑠
𝑘
= |𝑔(𝑋

𝑘
, 𝑋
[𝑞𝑘]

)|
2
(|Δ𝑤
𝑘
|
2
− 𝑚Δ) + 2⟨𝑋

𝑘
+ 𝑓(𝑋

𝑘
,

𝑋
[𝑞𝑘]

)Δ, 𝑔(𝑋
𝑘
, 𝑋
[𝑞𝑘]

)Δ𝑤
𝑘
⟩. By (35), it is easy to obtain

e𝜀(𝑘+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
− e𝜀𝑘Δ󵄨󵄨󵄨

󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

= (1 − 2𝑎Δ + 𝑐Δ
2
+ 𝑚𝑏Δ − e−𝜀Δ) e𝜀(𝑘+1)Δ󵄨󵄨󵄨

󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

+ (2𝑎 + 𝑐Δ + 𝑚𝑏) e𝜀(𝑘𝑞+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

2

Δ + e𝜀(𝑘+1)Δ𝑠
𝑘
.

(36)

With the help of recursive method, it is not difficult to get

e𝜀𝑘Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

=
󵄨
󵄨
󵄨
󵄨
𝑋
0

󵄨
󵄨
󵄨
󵄨

2
+ (1 − 2𝑎Δ + 𝑐Δ

2
+ 𝑚𝑏Δ − e−𝜀Δ)

×

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
+ (2𝑎 + 𝑐Δ + 𝑚𝑏)

×

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ [e−(1−𝑞)𝜀𝑖Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

2

− e𝜀Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
] Δ

+ (2𝑎 + 𝑐Δ + 𝑚𝑏) e𝜀Δ
𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
Δ +

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ𝑠
𝑖

=
󵄨
󵄨
󵄨
󵄨
𝑋
0

󵄨
󵄨
󵄨
󵄨

2
− [2𝑎 − 𝑐Δ − 𝑚𝑏 −

1 − e−𝜀Δ

Δ

− (2𝑎 + 𝑐Δ + 𝑚𝑏) e𝜀Δ]

×

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
Δ

+

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ (e−(1−𝑞)𝜀𝑖Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

2

− e𝜀Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
)Δ

+

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ𝑠
𝑖
.

(37)



6 Abstract and Applied Analysis

Obviously, ∑𝑘−1
𝑖=0

e𝜀(𝑖+1)Δ𝑠
𝑖
is a martingale. Let [𝑞𝑖] = 𝑗; then

𝑗 ≤ 𝑞𝑖 < 𝑗 + 1, so 𝑞𝑖 − 1 < 𝑗 ≤ 𝑞𝑖. If 0 ≤ 𝑖 ≤ 𝑘 − 1, then
−1 < 𝑗 ≤ 𝑞(𝑘 − 1) ≤ [𝑞𝑘] + 1 − 𝑞 ≤ [𝑞𝑘] + 1. This implies that
𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ [e−(1−𝑞)𝜀𝑖Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

2

− e𝜀Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
] Δ

=

𝑘−1

∑

𝑖=0

e𝜀(𝑞𝑖+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

2

−

𝑘−1

∑

𝑖=0

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2

≤

[𝑞𝑘]+1

∑

𝑖=0

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
−

𝑘−1

∑

𝑖=0

e𝜀(𝑖+2)Δ|𝑋(𝑖Δ)|
𝛼+2

≤ −

𝑘−1

∑

𝑖=[𝑞𝑘]+2

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
.

(38)

Denote by

𝑓 (Δ) = 2𝑎 − 𝑐Δ − 𝑚𝑏 +

e−𝜀Δ − 1

Δ

− e𝜀Δ (2𝑎 + 𝑐Δ + 𝑚𝑏) .

(39)

By the Taylor series, we have

e−𝜀Δ = 1 − 𝜀Δ +

(𝜀Δ)
2

2

−

(𝜀Δ)
3

3!

+ 𝑜 (𝜀Δ) > 1 − 𝜀Δ,

e−𝜀Δ − 1

Δ

> −𝜀.

(40)

Therefore𝑓(Δ) > 2𝑎−𝑐Δ−𝑚𝑏−𝜀−e𝜀Δ(2𝑎+𝑐Δ+𝑚𝑏). Noting
that 2𝑎 > (2𝑎 + 𝑚𝑏 + 𝑐)/𝑞 + 𝑚𝑏 + 𝑐, 𝑞 ∈ (0, 1), for any given
𝜀, choose a sufficiently small Δ∗ (Δ∗ < Δ) such that for all
Δ < Δ

∗,

2𝑎 − 𝑐Δ − 𝑚𝑏 − 𝜀 − e𝜀Δ (2𝑎 + 𝑐Δ + 𝑚𝑏) > 0. (41)

Substituting for (38) and (41) into (37), Lemma 5 implies that
there exists a positive constant 𝐶

0
such that e𝜀𝑘Δ|𝑋

𝑘
|
2
≤ 𝐶
0
.

That is, lim sup
𝑘→∞

(1/𝑘Δ) log |𝑋
𝑘
| ≤ −𝜀/2 a.s. The proof is

complete.

4. Stability of Numerical Solution for
Highly Nonlinear SPDE

In the section, we will prove that the backward EM method
can preserve the almost surely exponential stability of the
true solution of highly nonlinear stochastic pantograph dif-
ferential equation.

(H5) The Polynomial Growth Conditions. For any 𝑥 ∈ R𝑑,
there exist positive constants 𝛼, 𝑎, 𝑎, 𝑎, 𝑏, 𝑏, ̃𝑏 such that

⟨𝑥 (𝑠) , 𝑓 (𝑥 (𝑠) , 𝑥 (𝑞𝑠))⟩

≤ −𝑎|𝑥(𝑠)|
𝛼+2

+ 𝑎e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥 (𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛼+2
− 𝑎|𝑥 (𝑠)|

2
,

(42)

󵄨
󵄨
󵄨
󵄨
𝑔(𝑥(𝑠), 𝑥(𝑞𝑠))

󵄨
󵄨
󵄨
󵄨

2

≤ 𝑏|𝑥(𝑠)|
𝛼+2

+ 𝑏e−(1−𝑞)𝜀𝑠󵄨󵄨󵄨
󵄨
𝑥(𝑞𝑠)

󵄨
󵄨
󵄨
󵄨

𝛼+2
+
̃
𝑏|𝑥(𝑠)|

2
.

(43)

ByTheorems 2 and 3, (5) has a unique global solution and the
solution is almost surely exponentially stable.

Given a step size Δ ∈ (0, 1), and for 𝑡 ∈ [0, 𝑇], 𝑀Δ = 𝑇

for some positive integer 𝑀. Let 𝑡
𝑘
= 𝑘Δ (𝑘 ≥ 0), [𝑡/Δ] be

the integer part of 𝑡/Δ. Define the backward Euler-Maruyama
method as follows:

𝑋
𝑘+1

= 𝑋
𝑘
+ 𝑓 (𝑋

𝑘+1
, 𝑋
[𝑞(𝑘+1)]

) Δ + 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤 (𝑡
𝑘
) .

(44)

To guarantee that this method is well defined, we impose
the following one-sided Lipschitz condition on the drift
coefficient 𝑓(𝑥, 𝑦).

(H6) One-Sided Lipschitz Condition. There exists a positive
constant 𝜆 > 0 such that for any 𝑥

𝑖
∈ R𝑛 (𝑖 = 1, 2)

⟨𝑥
1
− 𝑥
2
, 𝑓 (𝑥
1
, 𝑦) − 𝑓 (𝑥

2
, 𝑦)⟩ ≤ 𝜆

󵄨
󵄨
󵄨
󵄨
𝑥
1
− 𝑥
2

󵄨
󵄨
󵄨
󵄨

2
. (45)

Applying a fixed point theorem one can prove that (44) has a
unique solution𝑋

𝑘+1
; given𝑋

𝑘
if 𝜆Δ < 1, then the backward

EM scheme (44) is well defined (see, e.g., [28]). From now on
we always assume that Δ < 𝜆

−1.

Theorem7. Let (H1), (H5) and (H6) hold with 2𝑎 > 𝑚
̃
𝑏, 2𝑎 >

𝑚𝑏 + (2𝑎 + 𝑚𝑏)/𝑞; there exists a sufficiently small Δ∗ ∈

(0, 1) such that the approximate solution {𝑋
𝑘
} defined by (44)

satisfies

lim sup
𝑘→∞

1

𝑘Δ

log 󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨
≤ −

𝜀

2

𝑎.𝑠., (46)

where 𝜀 < 2𝑎 − 𝑚
̃
𝑏.

Proof. By (44) and (H5), we may compute

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
= ⟨𝑋
𝑘+1

, 𝑋
𝑘
+ 𝑓 (𝑋

𝑘+1
, 𝑋
[𝑞(𝑘+1)]

) Δ

+ 𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
⟩

= ⟨𝑋
𝑘+1

, 𝑓 (𝑋
𝑘+1

, 𝑋
[𝑞(𝑘+1)]

)⟩Δ

+ ⟨𝑋
𝑘+1

, 𝑋
𝑘
+ 𝑔 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

) Δ𝑤
𝑘
⟩

≤ −𝑎
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ + 𝑎e−𝜀(1−𝑞)(𝑘+1)Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞(𝑘+1)]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ

− 𝑎
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
Δ +

1

2

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
+

1

2

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

+

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑋
𝑘
, 𝑋
[𝑞𝑘]

)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
Δ𝑤
𝑘

󵄨
󵄨
󵄨
󵄨

2

+ ⟨𝑋
𝑘
, 𝑔 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

)⟩Δ𝑤
𝑘
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= (

1

2

− 𝑎Δ)
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
+ 𝑎e−𝜀(1−𝑞)(𝑘+1)Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞(𝑘+1)]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ

− 𝑎
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ +

1

2

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

+

1

2

(𝑏
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

𝛼+2
+ 𝑏e−𝜀(1−𝑞)𝑘Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

+
̃
𝑏
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
)

×
󵄨
󵄨
󵄨
󵄨
Δ𝑤
𝑘

󵄨
󵄨
󵄨
󵄨

2
+ ⟨𝑋
𝑘
, 𝑔 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

)⟩Δ𝑤
𝑘
.

(47)

That is,

(1 + 2𝑎Δ)
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2

= (1 + 𝑚
̃
𝑏Δ)

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
+ 2𝑎e−𝜀(1−𝑞)(𝑘+1)Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞(𝑘+1)]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ

− 2𝑎
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ + (𝑚𝑏

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

𝛼+2
+ 𝑚𝑏e−𝜀(1−𝑞)𝑘Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

)

× Δ + 𝑠
Δ

𝑘
,

(48)

where

𝑠
Δ

𝑘
= (𝑏

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

𝛼+2
+ 𝑏e−𝜀(1−𝑞)𝑘Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

+
̃
𝑏
󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
)

× (
󵄨
󵄨
󵄨
󵄨
Δ𝑤
𝑘

󵄨
󵄨
󵄨
󵄨

2
− 𝑚Δ) + 2 ⟨𝑋

𝑘
, 𝑔 (𝑋

𝑘
, 𝑋
[𝑞𝑘]

)⟩Δ𝑤
𝑘
.

(49)

According to (48), we may obtain

(1 + 2𝑎Δ) [e𝜀(𝑘+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

2
− e𝜀𝑘Δ󵄨󵄨󵄨

󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
]

= [1 + 𝑚
̃
𝑏Δ − (1 + 2𝑎Δ) e−𝜀Δ] e𝜀(𝑘+1)Δ󵄨󵄨󵄨

󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

+ 2𝑎e𝜀𝑞(𝑘+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞(𝑘+1)]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ − 2𝑎e𝜀(𝑘+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘+1

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ 𝑚𝑏e𝜀(𝑘+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ + 𝑚𝑏e−𝜀(𝑞𝑘+1)Δ󵄨󵄨󵄨󵄨

󵄨
𝑋
[𝑞𝑘]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ

+ e𝜀(𝑘+1)Δ𝑠Δ
𝑘
.

(50)

With the help of recursive method, compute

(1 + 2𝑎Δ) e𝜀𝑘Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

= (1 + 2𝑎Δ)
󵄨
󵄨
󵄨
󵄨
𝑋
0

󵄨
󵄨
󵄨
󵄨

2
+ [1 + 𝑚

̃
𝑏Δ − (1 + 2𝑎Δ) e−𝜀Δ]

×

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
− 2𝑎

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖+1

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ 2𝑎

𝑘−1

∑

𝑖=0

e𝜀𝑞(𝑖+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞(𝑖+1)]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ

+ 𝑚𝑏

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ 𝑚𝑏

𝑘−1

∑

𝑖=0

e𝜀(𝑞𝑖+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

Δ +

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ𝑠Δ
𝑖

= (1 + 2𝑎Δ)
󵄨
󵄨
󵄨
󵄨
𝑋
0

󵄨
󵄨
󵄨
󵄨

2
− [1 + 2𝑎Δ − (1 + 𝑚

̃
𝑏Δ) e𝜀Δ]

×

𝑘−1

∑

𝑖=0

e𝜀𝑖Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
− 2𝑎

𝑘

∑

𝑖=1

e𝜀𝑖Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ 𝑚𝑏

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ + 2𝑎

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ 𝑚𝑏

𝑘−1

∑

𝑖=0

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ 2𝑎

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ (e−𝜀(1−𝑞)(𝑖+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞(𝑖+1)]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

−
󵄨
󵄨
󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
)Δ

+ 𝑚𝑏

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ (e−𝜀(1−𝑞)𝑖Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

− e𝜀Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
)Δ

+ 𝑆
𝑘
,

(51)

where 𝑆
𝑘
= ∑
𝑘−1

𝑖=0
e𝜀(𝑖+1)Δ𝑠Δ

𝑘
. Obviously, 𝑆

𝑘
is a martingale. Let

[𝑞𝑖] = 𝑗; then 𝑗 ≤ 𝑞𝑖 < 𝑗+1, so 𝑞𝑖−1 < 𝑗 ≤ 𝑞𝑖. If 0 ≤ 𝑖 ≤ 𝑘−1;
then −1 < 𝑗 ≤ 𝑞(𝑘 − 1) ≤ [𝑞𝑘] + 1 − 𝑞 ≤ [𝑞𝑘] + 1. This implies

𝑘−1

∑

𝑖=0

e𝜀(𝑖+1)Δ (e−𝜀(1−𝑞)𝑖Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

− e𝜀Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
)

=

𝑘−1

∑

𝑖=0

e𝜀(1+𝑞𝑖)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

−

𝑘−1

∑

𝑖=0

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2

=

[𝑞𝑘]+1

∑

𝑖=0

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
−

𝑘−1

∑

𝑖=0

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2

≤ −

𝑘−1

∑

𝑖=[𝑞𝑘]+2

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
.

(52)

Similarly,

𝑘−1

∑

𝑖=0

e−𝜀(𝑖+1)Δ [e𝜀(1−𝑞)(𝑖+1)Δ󵄨󵄨󵄨󵄨
󵄨
𝑋
[𝑞(𝑖+1)]

)

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼+2

−
󵄨
󵄨
󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
)

≤ −

𝑘−1

∑

𝑖=[𝑞𝑘]+2

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
.

(53)

Substituting for (52) and (53) into (51) yields

(1 + 2𝑎Δ) e𝜀𝑘Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

= (1 + 2𝑎Δ)
󵄨
󵄨
󵄨
󵄨
𝑋
0

󵄨
󵄨
󵄨
󵄨

2
− [1 + 2𝑎Δ − (1 + 𝑚

̃
𝑏Δ) e𝜀Δ]

×

𝑘−1

∑

𝑖=0

e𝜀𝑖Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

2
+ (−2𝑎 + 𝑚𝑏e𝜀Δ + 2𝑎e𝜀Δ + 𝑚𝑏e2𝜀Δ)
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×

𝑘−1

∑

𝑖=1

e𝜀𝑖Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ − 2𝑎e𝜀𝑘Δ󵄨󵄨󵄨

󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

+ (2𝑎 + 𝑚𝑏 + 𝑚𝑏e𝜀Δ) e𝜀Δ󵄨󵄨󵄨
󵄨
𝑋
0

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

− 2𝑎

𝑘−1

∑

𝑖=[𝑞𝑘]+2

e𝜀(𝑖+1)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ

− 𝑚𝑏

𝑘−1

∑

𝑖=[𝑞𝑘]+2

e𝜀(𝑖+2)Δ󵄨󵄨󵄨
󵄨
𝑋
𝑖

󵄨
󵄨
󵄨
󵄨

𝛼+2
Δ + 𝑆
𝑘
.

(54)

Denote by 𝑓(Δ) = 1 + 2𝑎Δ − (1 + 𝑚
̃
𝑏Δ)e𝜀Δ. Differentiating

with respect to Δ yields

𝑓
󸀠
(Δ) = 2𝑎 − 𝑚

̃
𝑏e𝜀Δ − (1 + 𝑚

̃
𝑏Δ) 𝜀e𝜀Δ,

𝑓
󸀠󸀠
(Δ) = −2𝑚

̃
𝑏𝜀e𝜀Δ − (1 + 𝑚

̃
𝑏Δ) 𝜀
2e𝜀Δ.

(55)

Clearly, 𝑓󸀠(0) = 2𝑎 −𝑚
̃
𝑏 − 𝜀 > 0, 𝑓󸀠󸀠(0) < 0; then there exists

a Δ > 0 such that 𝑓󸀠(Δ) = 0. 𝑓(Δ) is an increase function
for Δ < Δ and noting that 𝑓(0) = 0 therefore there exists a
sufficiently small Δ∗ (Δ∗ < Δ) such that for all Δ < Δ

∗,

1 + 2𝑎Δ − (1 + 𝑚
̃
𝑏Δ) e𝜀Δ > 0. (56)

On the other hand, since 2𝑎 > (2𝑎 + 𝑚𝑏)/𝑞 + 𝑏, 𝑞 ∈ (0, 1),
then 2𝑎 > 2𝑎 + 𝑚𝑏 + 𝑚

̃
𝑏, and there exists sufficiently small

Δ < Δ
∗ such that

2𝑎 − 2𝑎e𝜀Δ − 𝑚(𝑏 + 𝑏e𝜀Δ) e𝜀Δ > 0. (57)

Substituting for (56) and (57) into (54), Lemma 5 implies that
there exists a positive constant 𝐶

0
such that

(1 + 2𝑎Δ) e𝜀𝑘Δ󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2
≤ 𝐶
0
. (58)

That is,

lim sup
𝑘→∞

1

𝑘Δ

log 󵄨󵄨󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨
≤ −

𝜀

2

a.s. (59)

The proof is complete.

Example 8. Consider the following nonlinear scalar SPDE

d𝑥 (𝑡) = [−0.5𝑥 (𝑡) − 5𝑥
5
(𝑡) + 3e−0.25𝜀𝑡𝑥5 (𝑞𝑡)] d𝑡

+ 𝑥
3
(𝑡) d𝑤 (𝑡) ,

(60)

where 𝑤(𝑡) is scalar Brownian motion. Define 𝑓(𝑥, 𝑦, 𝑡) =

−0.5𝑥 − 5𝑥
5
+ 3e−0.25𝜀𝑡𝑦5, 𝑔(𝑥, 𝑦, 𝑡) = 𝑥

3. Compute

𝑓 (𝑥
1
, 𝑦, 𝑡) − 𝑓 (𝑥

2
, 𝑦, 𝑡)

≤ −0.5 (𝑥
1
− 𝑥
2
) − 5 (𝑥

5

1
− 𝑥
5

2
)

≤ −0.5 (𝑥
1
− 𝑥
2
) [1 + 10 (𝑥

4

1
+ 𝑥
3

1
𝑥
2
+ 𝑥
2

2
𝑥
2

2

+ 𝑥
1
𝑥
3

2
+ 𝑥
4

2
)] .

(61)

Noting that 𝑎2 + 𝑏
2
≥ (𝑎 + 𝑏)

2
/2, compute

𝑥
4

1
+ 𝑥
3

1
𝑥
2
+ 𝑥
2

2
𝑥
2

2
+ 𝑥
1
𝑥
3

2
+ 𝑥
4

2

≥

(𝑥
2

1
+ 𝑥
2

2
)

2

2

+ 𝑥
1
𝑥
2
(𝑥
2

1
+ 𝑥
2

2
) + (𝑥

1
𝑥
2
)
2

≥ [

𝑥
2

1
+ 𝑥
2

2

2

+ 𝑥
1
𝑥
2
]

2

,

(62)

which implies

⟨𝑥
1
− 𝑥
2
, 𝑓 (𝑥
1
, 𝑦, 𝑡) − 𝑓 (𝑥

2
, 𝑦, 𝑡)⟩ ≤ −0.5(𝑥

1
− 𝑥
2
)
2
. (63)

That implies that 𝑓(𝑥, 𝑦, 𝑡) satisfies the one-sided growth
condition. By using the inequality 𝑎𝑝𝑏𝑞 ≤ (𝑝/(𝑝 + 𝑞))𝑎

𝑝+𝑞
+

(𝑞/(𝑝 + 𝑞))𝑏
𝑝+𝑞, it is easy to compute

⟨𝑥, 𝑓 (𝑥, 𝑦, 𝑡)⟩ ≤ −0.5𝑥
2
− 5𝑥
6
+ 3e−0.25𝜀𝑡𝑦5𝑥

≤ −0.5𝑥
2
− 4.5𝑥

6
+ 2.5𝑦

6

(64)

and |𝑔(𝑥(𝑡), 𝑦(𝑡))|
2

≤ 𝑥
6. By Theorems 2 and 7, (60) has

unique global solution and the solution is almost surely
exponentially stable.
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[18] M.Milošević andM. Jovanović, “A Taylor polynomial approach
in approximations of solution to pantograph stochastic differ-
ential equations with Markovian switching,”Mathematical and
Computer Modelling, vol. 53, no. 1-2, pp. 280–293, 2011.

[19] S. Zhou and F. Wu, “Convergence of numerical solutions to
neutral stochastic delay differential equations with Markovian
switching,” Journal of Computational and Applied Mathematics,
vol. 229, no. 1, pp. 85–96, 2009.

[20] X. Mao, “Numerical solutions of stochastic differential delay
equations under the generalized Khasminskii-type conditions,”
AppliedMathematics andComputation, vol. 217, no. 12, pp. 5512–
5524, 2011.
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