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An existence result for the solution set of symmetric vector quasi-equilibrium problems that allows for discontinuities is obtained.
Moreover, sufficient conditions for the generalized Levitin-Polyak well-posedness of symmetric vector quasi-equilibrium problems
are established.

1. Introduction

Well-posedness of optimization problems was first studied
by Tykhonov [1] in 1966. Since then, the notion of well-
posedness has been extended to different kinds of optimiza-
tion problems (see [2–5]). In the book edited by Lucchetti
and Revalski [6], Loridan gave a survey on some theoret-
ical results of well-posedness, approximate solutions, and
variational principles in vector optimization.Well-posedness
for constrained optimization problems was first studied by
Levitin and Polyak [7]. The study of Levitin-Polyak well-
posedness for convex scalar optimization problems with
functional constraints comes from [8]. Recently, this research
was extended to general constrained vector optimization
problems [9], generalized variational inequality problems
with functional constraints [10], and vector equilibrium
problems with functional constraints [11].

In 2003, Fu [12] introduced the symmetric vector quasi-
equilibrium problem (for short (SVQEP)) and studied exis-
tence conditions of (SVQEP). (SVQEP) is a generalization of
the equilibrium problem, proposed by Blum and Oettli [13],
and a unified model of several problems, for example, vector
optimization problems, problems of vector Nash equilibria,
vector variational inequalities, and vector complementarity
problems. Farajzadeh [14] considered existence theorem of
the solution of symmetric vector quasi-equilibrium problems
in the Hausdorff topological vector space and answered the
open question raised by Fu [12]. In [15], Li et al. obtained

existence results for two classes of generalized vector quasi-
equilibrium problems. Zhang [16] introduced generalized
Levitin-Polyak well-posedness for (SVQEP) and obtained
sufficient conditions for the generalized Levitin-Polyak well-
posedness of (SVQEP).

In this paper, we will introduce existence and well-
posed theorem of (SVQEP) for discontinuous vector-valued
mapping, which extend the corresponding result in [12] in
metric space. Then, by using the conditions of the existence
theorem of the solutions to (SVQEP) in [14], we obtain
sufficient conditions for the generalized Levitin-Polyak well-
posedness of (SVQEP), which improve the result of [16,
Theorem 4.1].

The paper is organized as follows. In Section 2, we present
some preliminary concepts. In Section 3, we prove the exis-
tence theorem of (SVQEP) that allows for discontinuities. In
Section 4, we obtain generalized Levitin-Polyak well-posed
results for (SVQEP).

2. Preliminaries

Let 𝑋 and 𝑌 be real locally convex Hausdorff spaces, and let
𝐶 and 𝐷 be nonempty subsets of 𝑋 and 𝑌, respectively. Let
𝑍 be a real Hausdorff topological vector space and 𝑃 ⊂ 𝑍 a
closed convex and pointed cone with 𝑘

0
∈ int𝑃.

Assume that 𝐵 ⊂ 𝑍 is a nonempty subset. A point 𝑏 ∈ 𝐵 is
called a minimal point of 𝐵, if 𝐵∩(𝑏−𝑃) = {𝑏}. A point 𝑏 ∈ 𝐵
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is called a weak minimal point of 𝐵 if 𝐵 ∩ (𝑏 − int𝑃) = 0. A
point 𝑏 ∈ 𝐵 is called an 𝜀-weak minimal point of 𝐵 if 𝐵 ∩ (𝑏 −

𝜀𝑘
0
− int𝑃) = 0. By min𝐵, min

𝑤
𝐵, and 𝜀-min

𝑤
𝐵 we denote

the sets of all minimal points, weak minimal points, and 𝜀-
weak minimal points of 𝐵, respectively. Obviously, min𝐵 ⊆

min
𝑤
𝐵 ⊆ 𝜀-min

𝑤
𝐵.

Let 𝐸 be a nonempty subset of 𝑋 and let ℎ : 𝐸 → 𝑍

be a vector-valued mapping. Consider the following vector-
valued optimization problem:

(𝐸, ℎ) : minimize ℎ (𝑥) , 𝑥 ∈ 𝐸. (1)

A point𝑦 ∈ 𝐸 is called a (weak)minimizer of (𝐸, ℎ) if ℎ(𝑦) is a
minimal point (weak minimal point) of the set ℎ(𝐸); namely,
for every 𝑥 ∈ 𝐸,

ℎ (𝑥) − ℎ (𝑦) ∉ −𝑃 \ {0}

(ℎ (𝑥) − ℎ (𝑦) ∉ − int𝑃) .
(2)

The set of all (weak) minimizers of (𝐸, ℎ) is denoted by
argmin(𝐸, ℎ)(argwmin(𝐸, ℎ)). Obviously, argmin(𝐸, ℎ) ⊆

argwmin(𝐸, ℎ).
Let 𝑆 : 𝐶 × 𝐷 → 2

𝐶 and 𝑇 : 𝐶 × 𝐷 → 2𝐷

be two set-valued mappings and let 𝑓, 𝑔 : 𝐶 × 𝐷 →

𝑍 be two vector-valued mappings. Fu [12] defined a class
of symmetric vector quasi-equilibrium problems (for short
(SVQEP)), which consist in finding (𝑥, 𝑦) ∈ 𝐶 × 𝐷 such that
𝑥 ∈ 𝑆(𝑥, 𝑦), 𝑦 ∈ 𝑇(𝑥, 𝑦), and

𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦) ∉ − int𝑃, ∀𝑥 ∈ 𝑆 (𝑥, 𝑦) ,

𝑔 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦) ∉ − int𝑃, ∀𝑦 ∈ 𝑇 (𝑥, 𝑦) .
(3)

We call (𝑥, 𝑦) a solution of (SVQEP) and denote by𝑋0×𝑌0 the
solution set of (SVQEP). The equilibrium problem contains
optimization problem as special case (see [17, 18]). The
problem is a generalization of quasi-optimization problem
proposed by Crespi and Tan [19].

Definition 1. Let (𝑍, 𝑃) be an ordered topological vector
space, let 𝐶 be a nonempty convex subset of a vector space
𝑋, and let ℎ : 𝐶 → 𝑍 be a vector mapping.

(i) ℎ is called 𝑃-convex if, for every 𝑥
1
, 𝑥
2
∈ 𝐸 and for

every 𝜆 ∈ [0, 1], one has

ℎ (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ∈ 𝜆ℎ (𝑥

1
) + (1 − 𝜆) ℎ (𝑥

2
) − 𝑃. (4)

(ii) ℎ is called proper 𝑃-quasiconvex if, for every 𝑥
1
, 𝑥
2
∈

𝑋 and 𝜆 ∈ [0, 1], one has either ℎ(𝜆𝑥
1
+ (1 − 𝜆)𝑥

2
) ∈

ℎ(𝑥
1
) − 𝑃 or ℎ(𝜆𝑥

1
+ (1 − 𝜆)𝑥

2
) ∈ ℎ(𝑥

2
) − 𝑃.

(iii) ℎ is said to be natural 𝑃-quasiconvex on 𝐸 if, for every
𝑥
1
, 𝑥
2
∈ 𝐸, 𝜆 ∈ [0, 1], there exists 𝜇 ∈ [0, 1] such that

ℎ (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ∈ 𝜇ℎ (𝑥

1
) + (1 − 𝜇) ℎ (𝑥

2
) − 𝑃. (5)

(iv) ℎ is called strict 𝑃-convex if, for every 𝑥
1
, 𝑥
2
∈ 𝐸 with

𝑥
1

̸= 𝑥
2
and for every 𝜆 ∈ (0, 1), one has

ℎ (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ∈ 𝜆ℎ (𝑥

1
) + (1 − 𝜆) ℎ (𝑥

2
) − int𝑃. (6)

Remark 2. It is clear that every strict 𝑃-convex mapping is
convex, and every convex or proper 𝑃-quasiconvex mapping
is natural𝑃-quasiconvex. A vectormappingmay be𝑃-convex
and not proper 𝑃-quasiconvex and conversely (see [20]). A
vector mappingmay be natural 𝑃-quasiconvex but neither 𝑃-
convex nor proper 𝑃-quasiconvex.

Let𝐹 : 𝑋 → 2
𝑌 be a set-valuedmap.𝐹 is said to be upper

semicontinuous (u.s.c. for short) at 𝑥 ∈ 𝑋 if, for any open set
𝑈 ⊃ 𝐹(𝑥), there exists a neighborhood 𝑉 of 𝑥 such that

⋃
𝑥∈𝑉

𝐹 (𝑥) := 𝐹 (𝑉) ⊂ 𝑈. (7)

If 𝐹 is u.s.c. at each point of 𝑋, then 𝐹 is said to be u.s.c. 𝐹 is
said to be lower semicontinuous (l.s.c. for short) at 𝑥 ∈ 𝑋 if,
for any 𝑦 ∈ 𝐹(𝑥) and any neighborhood𝑈 of 𝑦, there exists a
neighborhood 𝑉 of 𝑥 such that ∀𝑥󸀠 ∈ 𝑉; we have

𝐹 (𝑥
󸀠
) ∩ 𝑈 ̸= 0. (8)

𝐹 is said to be l.s.c. if𝐹 is l.s.c. at every point of𝑋. Moreover,𝐹
is said to be continuous if 𝐹 is both l.s.c. and u.s.c. From [21],
we can see that 𝐹 is lower semicontinuous at 𝑥

0
∈ 𝑋 if and

only if, for any 𝑦
0
∈ 𝐹(𝑥

0
) and any net {𝑥

𝑛
} with 𝑥

𝑛
→ 𝑥
0
,

there is a net {𝑦
𝑛
} such that𝑦

𝑛
∈ 𝐹(𝑥

𝑛
) and 𝑦

𝑛
→ 𝑦
0
.𝐹 is said

to be closed if the graph of 𝐹, that is, Graph(𝐹) = {(𝑥, 𝑦) : 𝑥 ∈

𝑋, 𝑦 ∈ 𝐹(𝑥)}, is a closed set in𝑋 × 𝑌.
Let 𝐹 : 𝑋 → 2

𝑋 be a set-valued map. A point 𝑥 ∈ 𝑋 is
called a fixed point of the set-valued map 𝐹 if 𝑥 ∈ 𝐹(𝑥).

Lemma 3. Let 𝑍 be a metric space, let 𝑥 ∈ 𝑋, and let {𝑥
𝑛
} be

a sequence converging to 𝑥 in 𝑋. Let 𝑎 and 𝑧 be two elements
in 𝑍 such that 𝑧 − 𝑎 ∈ int𝑃 and assume that there exist two
sequences {𝑎

𝑛
} and {𝑧

𝑛
} valued in 𝑍 such that

lim
𝑛→∞

𝑑 (𝑧, 𝑧
𝑛
− 𝑃) = 0,

lim
𝑛→∞

𝑑 (𝑎, 𝑎
𝑛
+ 𝑃) = 0,

(9)

where 𝑑(𝑧, 𝑧
𝑛
−𝑃) = min{‖𝑧− 𝑞

𝑛
‖ : 𝑞
𝑛
∈ 𝑧
𝑛
−𝑃} and 𝑑(𝑎, 𝑎

𝑛
+

𝑃) = min{‖𝑎 − 𝑙
𝑛
‖ : 𝑙
𝑛
∈ 𝑎
𝑛
+𝑃}. Then for all 𝑛 ∈ 𝑁 sufficiently

large one has 𝑧
𝑛
− 𝑎
𝑛
∈ int𝑃.

The proof of Lemma 3 is similar to that of Lemma 1 in
[22]; for details, see [22].

3. Existence Results for (SVQEP)

Throughout this section, let𝑋, 𝑌, and 𝑍 be metric spaces, let
the sets𝐶 ⊂ 𝑋 and𝐷 ⊂ 𝑌 be nonempty, convex, and compact
subsets, and let 𝑃 ⊂ 𝑍 be a closed, convex pointed cone with
int𝑃 ̸= 0.

Theorem 4. Assume that

(1) 𝑆 : 𝐶×𝐷 → 2𝐶 and 𝑇 : 𝐶×𝐷 → 2𝐷 are continuous,
and for each (𝑥, 𝑦) ∈ 𝐶 × 𝐷, 𝑆(𝑥, 𝑦), 𝑇(𝑥, 𝑦) are
nonempty, closed convex subsets;
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(2) for any (𝑥, 𝑦) ∈ 𝑆(𝑥, 𝑦)×𝑇(𝑥, 𝑦), (𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝑆(𝑥

𝑛
, 𝑦
𝑛
)×

𝑇(𝑥
𝑛
, 𝑦
𝑛
) for all 𝑛 ∈ 𝑁, and (𝑥

𝑛
, 𝑦
𝑛
) converging to

(𝑥, 𝑦), the following conditions hold:

𝑑 (𝑓 (𝑥, 𝑦) , 𝑓 (𝑥
𝑛
, 𝑦
𝑛
) − 𝑃) 󳨀→ 0,

𝑑 (𝑔 (𝑥, 𝑦) , 𝑔 (𝑥
𝑛
, 𝑦
𝑛
) − 𝑃) 󳨀→ 0;

(10)

(3) for any (𝑥, 𝑦) ∈ 𝑆(𝑥, 𝑦)×𝑇(𝑥, 𝑦) and {𝑦
𝑛
} converging to

𝑦 such that 𝑦
𝑛
∈ 𝑇(𝑥

𝑛
, 𝑦
𝑛
), there exists 𝑥

𝑛
∈ 𝑆(𝑥
𝑛
, 𝑦
𝑛
)

such that 𝑑(𝑓(𝑥, 𝑦), 𝑓(𝑥
𝑛
, 𝑦
𝑛
) + 𝑃) → 0; for any

(𝑥, 𝑦) ∈ 𝑆(𝑥, 𝑦)×𝑇(𝑥, 𝑦) and {𝑥
𝑛
} converging to 𝑥 such

that 𝑥
𝑛
∈ 𝑆(𝑥

𝑛
, 𝑦
𝑛
), there exists 𝑦

𝑛
∈ 𝑇(𝑥

𝑛
, 𝑦
𝑛
) such

that 𝑑(𝑔(𝑥, 𝑦), 𝑔(𝑥
𝑛
, 𝑦
𝑛
) + 𝑃) → 0;

(4) 𝑓(𝑆(𝑥, 𝑦), 𝑦) and 𝑔(𝑥, 𝑇(𝑥, 𝑦)) are compact sets;
(5) for any fixed 𝑦 ∈ 𝐷,𝑓(𝑥, 𝑦) is proper 𝑃-quasiconvex in

𝑥; for any fixed 𝑥 ∈ 𝐶, 𝑔(𝑥, 𝑦) is proper 𝑃-quasiconvex
in 𝑦.

Then (SVQEP) has a solution.

Proof. Let us define set-valued maps 𝐴 : 𝐶 × 𝐷 → 2
𝐶 and

𝐵 : 𝐶 × 𝐷 → 2𝐷 by

𝐴 (𝑥, 𝑦) = {𝑢 ∈ 𝑆 (𝑥, 𝑦) | 𝑓 (𝑢, 𝑦) ∈ min
𝑤
𝑓 (𝑆 (𝑥, 𝑦) , 𝑦)} ,

∀ (𝑥, 𝑦) ∈ 𝐶 × 𝐷,

𝐵 (𝑥, 𝑦) = {V ∈ 𝑇 (𝑥, 𝑦) | 𝑔 (𝑥, V) ∈ min
𝑤
𝑔 (𝑥, 𝑇 (𝑥, 𝑦))} ,

∀ (𝑥, 𝑦) ∈ 𝐶 × 𝐷.

(11)

Similar to the proof of [12, Section 2Theorem], the set𝐴(𝑥, 𝑦)
is nonempty and convex.We only need to show the following.

(I) For all (𝑥, 𝑦) ∈ 𝐶 × 𝐷, the set 𝐴(𝑥, 𝑦) is closed. In
fact, let a sequence {𝑢

𝑛
} ⊂ 𝐴(𝑥, 𝑦) and 𝑢

𝑛
→ 𝑢; we need to

show that 𝑢 ∈ 𝐴(𝑥, 𝑦). It follows from 𝑢
𝑛
∈ 𝑆(𝑥, 𝑦) and the

closedness of 𝑆(𝑥, 𝑦) that 𝑢 ∈ 𝑆(𝑥, 𝑦). Since

𝑓 (𝑢
𝑛
, 𝑦) ∈ min

𝑤
𝑓 (𝑆 (𝑥, 𝑦) , 𝑦) , (12)

we have

𝑓 (𝑢
𝑛
, 𝑦) − 𝑓 (𝑧, 𝑦) ∉ int𝑃, ∀𝑧 ∈ 𝑆 (𝑥, 𝑦) . (13)

If there exists 𝑧
0
∈ 𝑆(𝑥, 𝑦) such that

𝑓 (𝑢, 𝑦) − 𝑓 (𝑧
0
, 𝑦) ∈ int𝑃, (14)

from condition (2), 𝑑(𝑓(𝑢, 𝑦), 𝑓(𝑢
𝑛
, 𝑦) − 𝑃) → 0; thus,

𝑑 (𝑓 (𝑢, 𝑦) − 𝑓 (𝑧
0
, 𝑦) , 𝑓 (𝑢

𝑛
, 𝑦) − 𝑓 (𝑧

0
, 𝑦) − 𝑃) 󳨀→ 0.

(15)

FromLemma 3,𝑓(𝑢
𝑛
, 𝑦)−𝑓(𝑧

0
, 𝑦) ∈ int𝑃 for 𝑛 large enough.

It is a contradiction.
(II) 𝐴 is u.s.c., since 𝐶 is a compact set and 𝐴(𝑥, 𝑦) ⊂ 𝐶.

By [12, Lemma 2(ii)], we need only to show that the set-valued
map𝐴 is closed. Let a sequence {(𝑥

𝑛
, 𝑦
𝑛
)} ⊂ 𝐶×𝐷, (𝑥

𝑛
, 𝑦
𝑛
) →

(𝑥, 𝑦) and 𝑢
𝑛
∈ 𝐴(𝑥

𝑛
, 𝑦
𝑛
). Since 𝑢

𝑛
∈ 𝑆(𝑥

𝑛
, 𝑦
𝑛
) and the set-

valued map 𝑆 is continuous, we have 𝑢 ∈ 𝑆(𝑥, 𝑦). For any 𝑧 ∈

𝑆(𝑥, 𝑦), since 𝑆 is l.s.c., there is a sequence {𝑧
𝑛
}, 𝑧
𝑛
∈ 𝑆(𝑥
𝑛
, 𝑦
𝑛
)

such that 𝑧
𝑛

→ 𝑧. Since 𝑓(𝑢
𝑛
, 𝑦
𝑛
) ∈ min

𝑤
𝑓(𝑆(𝑥

𝑛
, 𝑦
𝑛
), 𝑦
𝑛
),

we get

𝑓 (𝑢
𝑛
, 𝑦
𝑛
) − 𝑓 (𝑧

𝑛
, 𝑦
𝑛
) ∉ int𝑃, ∀𝑧

𝑛
∈ 𝑆 (𝑥

𝑛
, 𝑦
𝑛
) . (16)

If there exists 𝑧 ∈ 𝐴(𝑥, 𝑦) such that 𝑓(𝑢, 𝑦) − 𝑓(𝑧, 𝑦) ∈

int𝑃, from (ii),

𝑑 (𝑓 (𝑢, 𝑦) , 𝑓 (𝑢
𝑛
, 𝑦
𝑛
) − 𝑃) 󳨀→ 0. (17)

From (iii), there exists 𝑧
𝑛
∈ 𝑆(𝑥
𝑛
, 𝑦
𝑛
) such that

𝑑 (𝑓 (𝑧, 𝑦) , 𝑓 (𝑧
𝑛
, 𝑦
𝑛
) + 𝑃) 󳨀→ 0. (18)

By Lemma 3, 𝑓(𝑢
𝑛
, 𝑦
𝑛
) − 𝑓(𝑧

𝑛
, 𝑦
𝑛
) ∈ int𝑃, which contradicts

(16).

Remark 5. It is clear that if 𝑓 and 𝑔 are continuous map-
pings and condition (1) holds, then conditions (2), (3), and
(4) of Theorem 4 hold. The following example shows that
Theorem 4 improves [12, Section 2. Theorem].

Example 6. Suppose that 𝑋 = 𝑌 = R, 𝐶 = 𝐷 = [0, 2], and
𝑃 = R2

+
and let 𝑆 : 𝐶 × 𝐷 → 2𝐶 and 𝑇 : 𝐶 × 𝐷 → 2𝐷 be

defined as 𝑆(𝑥, 𝑦) = 𝐶 and 𝑇(𝑥, 𝑦) = 𝐷, respectively. For all
(𝑥, 𝑦) ∈ R2, let

𝑓 (𝑥, 𝑦) = {
(0, 1) , if𝑥 ∈ [0, 1) ,

(𝑦, 1) , if𝑥 = [1, 2] ,

𝑔 (𝑥, 𝑦) = {
(1, 0) , if 𝑦 ∈ [0, 1) ,

(1, 𝑥) , if𝑦 ∈ [1, 2] .

(19)

It is clear that the mappings 𝑓 and 𝑔 are not continuous, but
all the conditions of Theorem 4 hold.

Moreover, let 𝑥∗ = (1, 1); we can get from [23, Lemma
2.2] that the mappings 𝑓 and 𝑔 are natural 𝑃-quasiconvex
but not demicontinuous (see [14, Definition 2.4]. Therefore,
Theorem 4 is different from [14, Theorem 3.1].

4. Well-Posedness of (SVQEP)

In this section, we discuss the notion of generalized Levitin-
Polyak well-posedness for (SVQEP).

Definition 7. A sequence {(𝑥
𝑛
, 𝑦
𝑛
)} ⊂ 𝐶 × 𝐷 is called a

Levitin-Polyak approximating solution sequence (in short LP
sequence) for (SVQEP) if there exists {𝜀

𝑛
} ⊂ R
+
with 𝜀

𝑛
→ 0

such that

𝑑 (𝑥
𝑛
, 𝑆 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
, 𝑑 (𝑦

𝑛
, 𝑇 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
,

𝑓 (𝑥, 𝑦
𝑛
) − 𝑓 (𝑥

𝑛
, 𝑦
𝑛
) + 𝜀
𝑛
𝑘
0
∉ − int𝑃, ∀𝑥 ∈ 𝑆 (𝑥

𝑛
, 𝑦
𝑛
) ,

𝑔 (𝑥
𝑛
, 𝑦) − 𝑔 (𝑥

𝑛
, 𝑦
𝑛
) + 𝜀
𝑛
𝑘
0
∉ − int𝑃, ∀𝑦 ∈ 𝑇 (𝑥

𝑛
, 𝑦
𝑛
) .

(20)

Definition 8. The problem (SVQEP) is said to be generalized
Levitin-Polyak well-posed (in short LP well-posed) if
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(i) 𝑋0 × 𝑌0 ̸= 0;
(ii) for every LP sequence {(𝑥

𝑛
, 𝑦
𝑛
)}, there exist a sub-

sequence {(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} and an element

(𝑥∗, 𝑦∗) ∈ 𝑋0 × 𝑌0 such that (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥∗, 𝑦∗).

Let us illustrate the notion of generalized LP well-
posedness by some examples.

Example 9. Let𝑋 = 𝑌 = 𝑍 = R, 𝐶 = 𝐷 = [0, 1], and 𝑃 = R
+
.

For all (𝑥, 𝑦) ∈ 𝐶×𝐷, let 𝑓(𝑥, 𝑦) = 𝑥+𝑦 and 𝑔(𝑥, 𝑦) = 𝑦−𝑥.
Set-valuedmappings 𝑆 : 𝐶×𝐷 → 2𝐶 and𝑇 : 𝐶×𝐷 → 2𝐷 are
defined by 𝑆(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) = [0, 1]; (SVQEP) is generalized
LP well-posed.

Example 10. Let 𝑋 = 𝑌 = 𝑍 = R, 𝐶 = 𝐷 = [0, 4𝜋], and
𝑃 = R

+
. For all (𝑥, 𝑦) ∈ 𝐶 × 𝐷, let 𝑓(𝑥, 𝑦) = sin𝑥𝑦 and

𝑔(𝑥, 𝑦) = cos𝑥𝑦. Set-valued mappings 𝑆 : 𝐶 × 𝐷 → 2𝐶

and 𝑇 : 𝐶 × 𝐷 → 2𝐷 are defined by 𝑆(𝑥, 𝑦) = [2𝜋, 4𝜋] and
𝑇(𝑥, 𝑦) = [1, 2]; (SVQEP) is not generalized LP well-posed.

Remark 11. (i) Generalized LP well-posedness of (SVQEP)
implies that the set𝑋0 × 𝑌0 is compact.

(ii) It is easy to see that the notion of well-posedness
of (SVQEP) generalizes the notion of generalized LP well-
posedness of vector equilibrium problem introduced in [20].

Theorem 12. Let {𝜀
𝑛
} ⊂ R

+
with 𝜀

𝑛
→ 0. Under the

assumptions of Theorem 4, (SVQEP) is generalized LP well-
posed.

Proof. Let {𝜀
𝑛
} ⊂ R
+
with 𝜀

𝑛
→ 0 and

𝑑 (𝑥
𝑛
, 𝑆 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
,

𝑓 (𝑥, 𝑦
𝑛
) − 𝑓 (𝑥

𝑛
, 𝑦
𝑛
) + 𝜀
𝑛
𝑘
0
∉ − int𝑃,

∀𝑥 ∈ 𝑆 (𝑥
𝑛
, 𝑦
𝑛
) ;

𝑑 (𝑦
𝑛
, 𝑇 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
,

𝑔 (𝑥
𝑛
, 𝑦) − 𝑔 (𝑥

𝑛
, 𝑦
𝑛
) + 𝜀
𝑛
𝑘
0
∉ − int𝑃,

∀𝑦 ∈ 𝑇 (𝑥
𝑛
, 𝑦
𝑛
) .

(21)

Since 𝑆, 𝑇 are continuous and compact-valued, there exist
a subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} and an element

(𝑥
0
, 𝑦
0
) ∈ 𝑆(𝑥

0
, 𝑦
0
) × 𝑇(𝑥

0
, 𝑦
0
) such that {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} →

(𝑥
0
, 𝑦
0
). If there exists 𝑥 ∈ 𝑆(𝑥

0
, 𝑦
0
), such that 𝑓(𝑥, 𝑦) ∈

𝑓(𝑥
0
, 𝑦
0
) − int𝑃, fromTheorem 4(ii),

𝑑 (𝑓 (𝑥
0
, 𝑦
0
) , 𝑓 (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) − 𝜀
𝑛𝑘
𝑘
0
− 𝑃) 󳨀→ 0. (22)

FromTheorem 4(iii), there exists 𝑥
𝑛𝑘
∈ 𝑆(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) such that

𝑑 (𝑓 (𝑥, 𝑦) , 𝑓 (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) + 𝑃) 󳨀→ 0. (23)

By Lemma 3,

𝑓 (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) − 𝑓 (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) + 𝜀
𝑛𝑘
𝑘
0
∈ − int𝑃 (24)

when 𝑛
𝑘
is large enough, which is a contradiction. Therefore,

𝑓 (𝑥, 𝑦
0
) − 𝑓 (𝑥

0
, 𝑦
0
) ∉ − int𝑃, ∀𝑥 ∈ 𝑆 (𝑥

0
, 𝑦
0
) . (25)

Similarly,

𝑔 (𝑥
0
, 𝑦) − 𝑔 (𝑥

0
, 𝑦
0
) ∉ − int𝑃, ∀𝑦 ∈ 𝑇 (𝑥

0
, 𝑦
0
) . (26)

From Definition 7, (SVQEP) is generalized LP well-posed.

Definition 13 (see [23]). Let 𝑋 be a topological space, and let
𝑍 be a topological vector space. A function 𝑓 : 𝑋 → 𝑍 is
said to be demicontinuous if

𝑓
−1
(𝑀) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ∈ 𝑀} (27)

is closed in𝑋 for each closed half space𝑀 ⊂ 𝑍.

Lemma 14 (see [23]). Let 𝑋 be a topological space, 𝑍 a
topological vector space, and 𝑓 : 𝑋 → 𝑍 a demicontinuous
function. Then for any 𝑥∗ ∈ 𝑍∗, the composite function 𝑥∗ ∘ 𝑓

is continuous, where 𝑍∗ is the topological dual space of 𝑍.

Let 𝑃 ⊂ 𝑍 be a closed convex and pointed cone with
int𝑃 ̸= 0 and

𝑇 = {𝑥
∗
∈ 𝑍
∗
: 𝑥
∗ separates the sets𝑃 and − int𝑃} . (28)

By [24, p. 165, Theorem 2], there exists 𝑥∗ ∈ 𝑍∗ such that

∀𝑥 ∈ 𝑃, 𝑥
∗
(𝑥) ≥ 0,

∀𝑥 ∈ − int𝑃, 𝑥
∗
(𝑥) < 0.

(29)

We get that 𝑇 ̸= 0.

Lemma 15. If (𝑥∗, 𝑥) < 0 for all 𝑥∗ ∈ 𝑇, then 𝑥 ∈ − int𝑃.

Proof. If we assume that there exists 𝑥 ∉ − int𝑃 such that
(𝑥∗, 𝑥) < 0 for all 𝑥∗ ∈ 𝑇, then we have

− int𝑃⋂{𝜆𝑥 + (1 − 𝜆) 𝑝 : 𝜆 ∈ [0, 1] , 𝑝 ∈ 𝑃} = 0. (30)

If not, there exist 𝑦 ∈ int𝑃, 𝜆 ∈ [0, 1], and 𝑝 ∈ 𝑃 such that
−𝑦 ∈ 𝜆𝑥 + (1 − 𝜆)𝑝. Thus,

𝑥 = −
1

𝜆
(𝜆 ⋅

𝑦

𝜆
+ (1 − 𝜆) 𝑝) ∈ − int𝑃. (31)

It is a contradiction.Thus, (30) holds. By [24, p. 165,Theorem
2], there exists 𝑥∗󸀠 ∈ 𝑍∗ such that, for all 𝑦 ∈ − int𝑃,

𝑥
∗󸀠
(𝑦) < 0, (32)

and for all 𝑦 ∈ {𝜆𝑥 + (1 − 𝜆)𝑝 : 𝜆 ∈ [0, 1], 𝑝 ∈ 𝑃},

𝑥
∗󸀠
(𝑦) ≥ 0. (33)

Then, 𝑥∗󸀠(𝑥) ≥ 0 and 𝑥∗󸀠 ∈ 𝑇. This, however, contradicts the
fact that (𝑥∗, 𝑥) < 0 for all 𝑥∗ ∈ 𝑇.
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Theorem 16. Assume that

(1) 𝑆 : 𝐶×𝐷 → 2𝐶 and 𝑇 : 𝐶×𝐷 → 2𝐷 are continuous,
and for each (𝑥, 𝑦) ∈ 𝐶 × 𝐷, 𝑆(𝑥, 𝑦), 𝑇(𝑥, 𝑦) are
nonempty, closed convex subsets;

(2) 𝑓, 𝑔 : 𝐶 × 𝐷 → 𝑍 are demicontinuous;
(3) for any fixed 𝑦 ∈ 𝐷, 𝑓(𝑥, 𝑦) is natural 𝑃-quasiconvex

in 𝑥; for any fixed 𝑥 ∈ 𝐶, 𝑔(𝑥, 𝑦) is natural 𝑃-
quasiconvex in 𝑦.

Then (SVQEP) is generalized LP well-posed.

Proof. From [14, Theorem 3.1], 𝑋0 × 𝑌0 ̸= 0. Let {𝜀
𝑛
} ⊂ R

+

with 𝜀
𝑛
→ 0 and

𝑑 (𝑥
𝑛
, 𝑆 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
,

𝑓 (𝑥, 𝑦
𝑛
) + 𝜀
𝑛
𝑘
0
− 𝑓 (𝑥

𝑛
, 𝑦
𝑛
) ∉ − int𝑃,

∀𝑥 ∈ 𝑆 (𝑥
𝑛
, 𝑦
𝑛
) ;

(34)

𝑑 (𝑦
𝑛
, 𝑇 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
,

𝑔 (𝑥
𝑛
, 𝑦) + 𝜀

𝑛
𝑘
0
− 𝑔 (𝑥

𝑛
, 𝑦
𝑛
) ∉ − int𝑃,

∀𝑦 ∈ 𝑇 (𝑥
𝑛
, 𝑦
𝑛
) .

(35)

Since 𝑆, 𝑇 are continuous and compact-valued, there exist
a subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} and an element

(𝑥
0
, 𝑦
0
) ∈ 𝑆(𝑥

0
, 𝑦
0
) × 𝑇(𝑥

0
, 𝑦
0
) such that (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) →

(𝑥
0
, 𝑦
0
). If there exists 𝑥 ∈ 𝑆(𝑥

0
, 𝑦
0
), such that

𝑓 (𝑥, 𝑦
0
) ∈ 𝑓 (𝑥

0
, 𝑦
0
) − int𝑃, (36)

for all 𝑥∗ ∈ 𝑇, we have

𝑥
∗
(𝑓 (𝑥, 𝑦

0
) − 𝑓 (𝑥

0
, 𝑦
0
)) < 0. (37)

Then,

𝑥
∗
(𝑓 (𝑥, 𝑦

0
)) < 𝑥

∗
(𝑓 (𝑥
0
, 𝑦
0
)) . (38)

Since 𝑆 is l.s.c. at 𝑥, there exists 𝑥
𝑛
∈ 𝑆(𝑥
𝑛
, 𝑦
𝑛
) such that 𝑥

𝑛
→

𝑥. By Lemma 14,𝑥∗(𝑓(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
))+𝑥∗(𝜀

𝑛𝑘
𝑘
0
) < 𝑥∗(𝑓(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
))

when 𝑛
𝑘
is large enough. By Lemma 15,

𝑓 (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) − 𝑓 (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) + 𝜀
𝑛𝑘
𝑘
0
∈ − int𝑃, (39)

which contradicts (34).Therefore, (SVQEP) is generalized LP
well-posed.

Let 𝐾 ⊂ R𝑛 be a closed set, let 𝑓 : 𝐾 ⊆ R𝑛 → R𝑙,
and consider a cone 𝐶 ⊆ R𝑙 to be closed, convex, pointed,
andwith nonempty interior.We consider the following vector
optimization problem.

(VP) Find 𝑥
0
∈ 𝐾 such that

𝑓 (𝑥) − 𝑓 (𝑥
0
) ∉ − int𝐶, ∀𝑥 ∈ 𝐾. (40)

As a consequence of Theorem 16, we have the following
well-posed result for the solution of (VP).

Corollary 17. Let𝐾 ⊂ R𝑛 be a compact set, and let 𝑓 : R𝑛 →

R𝑙 be demicontinuous and natural 𝐶-quasiconvex on𝐾. Then,
(VP) is generalized LP well-posed.

Remark 18. (i) From Remark 2, every strict 𝑃-convex map-
ping is natural 𝑃-quasiconvex. Then Theorem 16 improves
[16, Theorem 4.1].

(ii) From [23, Lemma 2.1(iii)], every natural 𝐶-
quasiconvex function is 𝐶-quasiconvex. In the assumption
of 𝑓 being continuous, Corollary 17 is a special case of [18,
Theorem 4.2].
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