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A new interpolation spline with two parameters, called EH interpolation spline, is presented in this paper, which is the extension
of the standard cubic Hermite interpolation spline, and inherits the same properties of the standard cubic Hermite interpolation
spline. Given the fixed interpolation conditions, the shape of the proposed splines can be adjusted by changing the values of the
parameters. Also, the introduced spline could approximate to the interpolated function better than the standard cubic Hermite
interpolation spline and the quartic Hermite interpolation splines with single parameter by a new algorithm.

1. Introduction

Spline interpolation is a useful and powerful tool for curves
and surfaces modeling. Standard cubic Hermite spline is
one of those interpolation functions. But, for the given
interpolation condition, the cubic Hermite interpolation
spline is fixed; that is to say, the shape of the interpolation
curve or surface is fixed for the given interpolation data [1–
6]. Since the interpolation function is unique for the given
interpolation data, to modify the shape of the interpolation
curve to approximate the given curve seems to be impossible
and it is contradictory to the uniqueness of the interpolation
function for the given interpolation data. For the given
interpolation condition, how to improve the approximation
accuracy of the interpolation spline is an important problem
in the computer aided geometric design. In recent years,
many authors have presented some new method to modify
the shape of the interpolation curve to satisfy the industrial
product design with several kinds of new interpolation
splines with parameters [7–20].

These new splines all have similar properties of the
standard cubic Hermite spline. For example, for the given
interpolation data, if interpolation interval approaches zero,
theoretically speaking, these splines can approximate the
given curve and surfacewell. However, there exists a problem,
in the process of the actual calculation; the amount of

computation will increase dramatically if the length of the
interpolating intervals decreases. On the other hand, the
approximation accuracy of these new splines may not be
better than the standard cubic Hermite spline.

In [7–17], many rational form interpolation splines with
multiple parameters were presented. For the given interpo-
lation data, the change of the parameters causes the change
of the interpolation curve. Nevertheless, the computation of
the splines with multiple parameters is very complicated.
Several kinds of rational splines with a single parameter were
presented in the papers [18, 19], which is simple to compute,
but its approximation accuracy is not good for the given
curves and surfaces. In general, polynomial-form splines
are suitable to be used to design and compute. In [20], a
polynomial-form spline, called quartic Hermite spline with
single parameter, is presented as the extension of the standard
Hermite spline. The quartic spline has a simple form, and its
approximation rate to the given curves and surfaces is not
high.

In this paper, a class of new quartic splines with two
parameters is developed, which is the extension of the
standard cubic Hermite interpolation spline and inherits the
same properties of the standard cubic Hermite interpolation
spline. For the given interpolation conditions, the shape of
the proposed splines can be adjusted by changing the values
of the parameters. Furthermore, the introduced splines could
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approximate to the interpolated functions better than the
standard cubic Hermite interpolation splines and the quartic
Hermite interpolation splines with single parameter.

The remainder of the paper is organized as follows.
Section 2 introduces the standard cubic Hermite spline and
some of its properties. A kind of interpolation spline with two
parameters is presented in Section 3. Section 4 discusses the
approximation of the introduced spline curve with numerical
examples. In the end, a summary and conclusions are given.

2. The Standard Cubic Hermite Spline
and Its Basis Functions

Generally, for 𝑡 ∈ [0, 1], the following four basis functions,
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2
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3
,

𝛼
1
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𝛽
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3
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(1)

are called the standard cubic Hermite bases.
These bases satisfy
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(2)

For given knots 𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 and data

{(𝑥
𝑖
, 𝑦
𝑖
, 𝑑
𝑖
), 𝑖 = 0, 1, . . . , 𝑛}, where 𝑦

𝑖
and 𝑑

𝑖
are the values of

the function value and the first-order derivative value of the
function being interpolated, let ℎ

𝑖
= 𝑥
𝑖+1
− 𝑥
𝑖
, 𝑡 = (𝑥 − 𝑥

𝑖
)/ℎ
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and then the standard cubic Hermite spline in the interval
[𝑥
𝑖
, 𝑥
𝑖+1
] can be defined as follows:
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Obviously, we have𝐻
𝑖
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𝑖
) = 𝑦
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𝑖
(𝑥
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.
The standard cubic Hermite spline is C1 continuous.

However, if interpolation data is given, the shape and approx-
imation of the spline cannot be changed.

3. The EH Interpolation Spline

In order to overcome the disadvantage of the standard cubic
Hermite spline, we extend its basis functions firstly.

3.1. The Basis Functions of the EH Interpolation Spline

Definition 1. For arbitrary real number 𝜆
𝑖
, 𝜇
𝑖
and 0 ≤ 𝑡 ≤ 1,

the following four functions with parameters 𝜆
𝑖
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𝑖
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(4)

are calledbasis functions of the EH interpolation spline,
briefly EH bases.

The EH bases are the extension of the standard cubic
Hermite bases. When 𝜆

𝑖
= 𝜇
𝑖
= 0, the bases are the standard

cubic Hermite bases. The bases have the similar properties of
the standard cubic Hermite bases.
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0
(0) = 𝑒𝛼

1
(1) =

1, 𝑒𝛼
0
(1) = 𝑒𝛼

1
(0) = 0, 𝑒𝛼



1
(0) = 𝑒𝛼



1
(1) = 0, 𝑒𝛼



0
(0) =

𝑒𝛼


0
(1) = 0, 𝑒𝛽

0
(0) = 𝑒𝛽

0
(1) = 0, 𝑒𝛽

1
(0) = 𝑒𝛽

1
(1) =

0, 𝑒𝛽
0
(0) = 𝑒𝛽



1
(1) = 1, 𝑒𝛽



1
(1) = 𝑒𝛽



1
(0) = 0, and 𝑒𝛼

0
(𝑡) +

𝑒𝛼
1
(𝑡) = 1, 𝑒𝛽

0
(𝑡) + 𝑒𝛽

1
(1 − 𝑡) = 0.

When 𝜆
𝑖
= 𝜇
𝑖
, the EH bases (4) are basis functions with

single parameter in [20].
Figure 1 shows the four EHbases, where the solid lines are

the standard Hermite bases, the parameters 𝜆
𝑖
= 2, 𝜇

𝑖
= −2

are for the dot-dash lines, and 𝜆
𝑖
= −2, 𝜇

𝑖
= 2 are for dashed

line.
So, we may construct the Ferguson curve with two pa-

rameters based on the EH bases as follows:

EH
𝑖
(𝑡) = 𝑒𝛼

0
(𝑡) 𝑝
𝑖
+ 𝑒𝛼
1
(𝑡) 𝑝
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0
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𝑖
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, (5)

where 𝑝
𝑖
, 𝑝
𝑖+1

and 𝑝
𝑖
, 𝑝


𝑖+1
are two interpolation points and

their tangent vectors, respectively.
For the given two interpolation points and tangent

vectors, with the different parameters 𝜆
𝑖
, 𝜇
𝑖
, we may obtain

different shape of the Ferguson curve with two parameters
accordingly.

Figure 2 shows the Ferguson curves with different param-
eters, where the solid line is the standard Ferguson spline
curve with 𝜆

𝑖
= 𝜇
𝑖
= 0, the parameters 𝜆

𝑖
= 2, 𝜇

𝑖
= −2

are for the dot-dash line, and 𝜆
𝑖
= −2, 𝜇

𝑖
= 2 are for dashed

line.

3.2. The EH Interpolation Spline

Definition 2. Given a data set {(𝑥
𝑖
, 𝑦
𝑖
, 𝑑
𝑖
), 𝑖 = 0, 1, . . . , 𝑛},

where 𝑦
𝑖
and 𝑑

𝑖
are the values of the function value and the

first-order derivative value of the function being interpolated
and 𝑎 = 𝑥

0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 is the knot spacing, let
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Figure 1: The graph of the four EH bases.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

p
i

p
i+1

pi pi+1

Figure 2: The Ferguson curve with different parameters.

ℎ
𝑖
= 𝑥
𝑖+1

− 𝑥
𝑖
, 𝑡 = (𝑥 − 𝑥

𝑖
)/ℎ
𝑖
; then the EH interpolation

spline in the interval [𝑥
𝑖
, 𝑥
𝑖+1
] can be defined as follows:

EH (𝑥)|[𝑥𝑖 ,𝑥𝑖+1]

= 𝑦
𝑖
𝑒𝛼
0 (𝑡) + 𝑦𝑖+1𝑒𝛼1 (𝑡) + 𝑑𝑖ℎ𝑖𝑒𝛽0 (𝑡) + 𝑑𝑖+1ℎ𝑖𝑒𝛽1 (𝑡) ,

𝑖 = 0, 1, . . . , 𝑛 − 1,

(6)

where 𝑒𝛼
0
(𝑡), 𝑒𝛼

1
(𝑡), 𝑒𝛽

0
(𝑡), 𝑒𝛽

1
(𝑡) are the EH bases.

Obviously, for the data set {(𝑥
𝑖
, 𝑦
𝑖
, 𝑑
𝑖
), 𝑖 = 0, 1, . . . , 𝑛},

EH(𝑥) satisfies

RH (𝑥
𝑖
) = 𝑦
𝑖
, RH (𝑥

𝑖
) = 𝑑
𝑖
,

𝑖 = 0, 1, . . . , 𝑛.

(7)

If 𝜆
𝑖
= 𝜇
𝑖
= 0, it is just the standard cubic Hermite

spline. It is of interest that, for suitable selected parameters
𝜆
𝑖
, 𝜇
𝑖
, the piecewise interpolation function EH(𝑥) can be

𝐶
2-continuous in the interval [𝑥

0
, 𝑥
𝑛
]. In fact, denote Δ

𝑖
=

(𝑦
𝑖+1
− 𝑦
𝑖
)/ℎ
𝑖
, and let

EH (𝑥
𝑖
+) = EH (𝑥

𝑖
−) , 𝑖 = 1, 2, . . . , 𝑛 − 1; (8)

then the equations connecting the parameters 𝜆
𝑖
and 𝜇

𝑖
,

ℎ
𝑖
[Δ
𝑖−1
(𝜆
𝑖−1
+ 3) − (𝑑

𝑖
(2 − 𝜇

𝑖−1
) + 𝑑
𝑖−1
(𝜇
𝑖−1
+ 1))]

= ℎ
𝑖−1
[Δ
𝑖
(𝜆
𝑖
− 3) + (𝑑

𝑖+1
(1 + 𝜇

𝑖
) + 𝑑
𝑖
(2 − 𝜇

𝑖
))] ,

𝑖 = 1, 2, . . . , 𝑛 − 1,

(9)

may be obtained. If the successive parameters (𝜆
𝑖−1
, 𝜇
𝑖−1
)

and (𝜆
𝑖
, 𝜇
𝑖
) satisfy (9) at 𝑖 = 1, 2, . . . , 𝑛 − 1, then EH(𝑥) ∈

𝐶
2
(𝑥
0
, 𝑥
𝑛
). Furthermore, if the knots are equally spaced and

𝜆
𝑖
= 𝜇
𝑖
= 0, then (9) becomes the well-known tridiagonal

system for a cubic spline

𝑑
𝑖−1
+ 4𝑑
𝑖
+ 𝑑
𝑖+1

= 3 (Δ
𝑖−1
+ Δ
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛 − 1. (10)

Hence, if given the parameter values 𝜆
0
, 𝜇
0
in the interval

[𝑥
0
, 𝑥
1
], by (9), we may obtain the 𝜆

1
and 𝜇
1
and so on.Thus,

we can construct a 𝐶2-continuous interpolation curve.

4. The Approximation of the EH
Interpolation Spline

According to the interpolation reminder of cubic Hermite
spline, when interpolation interval approaches zero, the cubic
Hermite spline curve can approximate well to the function
being interpolated. However, for the EH interpolation spline
we constructed, it can approximate well to the function being
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Table 1: The parameters 𝜆
𝑖
and 𝜇

𝑖
for EH interpolation spline and the max error.

𝑥
𝑖

𝑦
𝑖

𝑑
𝑖

𝜆
𝑖

𝜇
𝑖

𝑅𝐻𝜀
𝑖

𝐻𝜀
𝑖

0.0000 1.0000 1.0000 0.0421 0.0412 0.2569 × 10−4 0.9062 × 10−3

0.5000 1.2071 −0.1107 0.0146 0.0129 0.2111 × 10−4 0.2569 × 10−3

1.0000 1.0000 −0.5708 0.2451 0.2783 0.3769 × 10−4 0.2569 × 10−3

1.5000 0.7955 −0.1451 0.0188 0.0192 0.2974 × 10−4 0.1069 × 10−2

2.0000 1.0000 1.0000 0.0108 0.0108 0.1735 × 10−4 0.8647 × 10−3

2.5000 1.7929 2.1107

interpolated without interpolation interval approaching zero,
and it can approximate to the interpolated functions better
than the standard cubic Hermite interpolation spline.

Firstly, we give the definition of the “good approximation.”

Definition 3. Let 𝐻
𝑖
(𝑥) be the standard cubic Hermite

spline, EH
𝑖
(𝑥) be the EH interpolation spline, and 𝑦(𝑥)

be the function being interpolated. Denoting EH𝜀
𝑖

=

max
𝑥𝑖<𝑥<𝑥𝑖+1

|EH
𝑖
(𝑥) − 𝑦(𝑥)|, 𝐻𝜀

𝑖
= max

𝑥𝑖<𝑥<𝑥𝑖+1
|𝐻
𝑖
(𝑥) −

𝑦(𝑥)|, then if EH𝜀
𝑖
< 𝐻𝜀

𝑖
, we can call RH

𝑖
(𝑥) has “good

approximation” to the interpolated function𝑦(𝑥) better than
𝐻
𝑖
(𝑥).

According to the Definition 3, if EH𝜀
𝑖
< 𝐻𝜀
𝑖
, we can get

the range of the parameters value, 𝜆
𝑖
and 𝜇

𝑖
. In the range

of the parameters value, selecting the arbitrary values of the
parameters 𝜆

𝑖
and 𝜇

𝑖
, we have a “good approximation” curve.

Example 4. Given the function 𝑦(𝑥) = 𝑥 + cos((𝜋/2)𝑥) and
knots 𝑥

𝑖
= (𝑖/2) (𝑖 = 0, 1, . . . , 5), namely, ℎ

𝑖
= (𝑖/2) (𝑖 =

0, . . . , 4). According to the inequality EH𝜀
𝑖
< 𝐻𝜀

𝑖
, we may

get the range of the parameters 𝜆
𝑖
and 𝜇

𝑖
. For the fixed

interpolation condition, the max error and the parameters 𝜆
𝑖

and 𝜇
𝑖
are given for every interval [𝑥

𝑖
, 𝑥
𝑖+1
] in Table 1. The

error curves of the EH(𝑥) and 𝐻(𝑥) to 𝑦(𝑥) are shown in
Figure 3.

By using the tensor productmethod, we can construct the
EH interpolation spline surfaces, which has the similar EH
interpolation spline curve.

Definition 5. Let Ω: [𝑎, 𝑏] × [𝑐, 𝑑] be the plane region
and 𝑓(𝑥, 𝑦) a bivariate function defined in the region Ω and
let 𝑎 = 𝑥

0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑚
= 𝑏 and 𝑐 = 𝑦

0
< 𝑦
1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
=

𝑑 be the knot sequences. Denote ℎ
𝑖
= 𝑥
𝑖+1
−𝑥
𝑖
, ℎ
𝑗
= 𝑦
𝑗+1
−𝑦
𝑗
,

𝑢 = (𝑥 − 𝑥
𝑖
)/ℎ
𝑖
, V = (𝑦 − 𝑦

𝑗
)/ℎ
𝑗
; then the EH interpolation

spline surface on the region [𝑥
𝑖
, 𝑥
𝑖+1
]×[𝑦
𝑖
, 𝑦
𝑖+1
] can be defined

as follows:

EH (𝑥, 𝑦)


[𝑦𝑖 ,𝑦𝑖+1]

[𝑥𝑖 ,𝑥𝑖+1]

= (𝑒𝛼
0 (𝑢) , 𝑒𝛼1 (𝑢) , 𝑒𝛽0 (𝑢) , 𝑒𝛽1 (𝑢))𝑀(

𝑒𝛼
0
(V)

𝑒𝛼
1
(V)

𝑒𝛽
0
(V)

𝑒𝛽
1
(V)

) ,

(11)
where

𝑀 =(

𝑓(𝑥
𝑖
, 𝑦
𝑖
) 𝑓 (𝑥

𝑖
, 𝑦
𝑖+1
) ℎ

𝑗
𝑓


V (𝑥𝑖, 𝑦𝑖) ℎ
𝑗
𝑓


V (𝑥𝑖, 𝑦𝑖+1)

𝑓 (𝑥
𝑖+1
, 𝑦
𝑖
) 𝑓 (𝑥

𝑖+1
, 𝑦
𝑖+1
) ℎ

𝑗
𝑓


V (𝑥𝑖+1, 𝑦𝑖) ℎ
𝑗
𝑓


V (𝑥𝑖+1, 𝑦𝑖+1)

ℎ
𝑖
𝑓


𝑢
(𝑥
𝑖
, 𝑦
𝑖
) ℎ

𝑖
𝑓


𝑢
(𝑥
𝑖
, 𝑦
𝑖+1
) ℎ

𝑖
ℎ
𝑗
𝑓


𝑢V (𝑥𝑖, 𝑦𝑖) ℎ
𝑖
ℎ
𝑗
𝑓


𝑢V (𝑥𝑖, 𝑦𝑖+1)

ℎ
𝑖
𝑓


𝑢
(𝑥
𝑖+1
, 𝑦
𝑖
) ℎ
𝑖
𝑓


𝑢
(𝑥
𝑖+1
, 𝑦
𝑖+1
) ℎ
𝑖
ℎ
𝑗
𝑓


𝑢V (𝑥𝑖+1, 𝑦𝑖) ℎ
𝑖
ℎ
𝑗
𝑓


𝑢V (𝑥𝑖+1, 𝑦𝑖+1)

) . (12)

Given the end-points, the first order partial derivative and
the second-order blending partial derivative of the function
interpolated, with proper parameters, the EH interpolation
spline surfaces could approximate to the bivariate functions
being interpolated better than the standard cubic Hermite
spline surfaces.

Example 6. Given the bivariate function being interpolated
𝑓(𝑥, 𝑦) = sin(𝜋/2)𝑥 cos(𝜋/2)𝑦, let 𝑎 = 0 < 1 < 2 = 𝑏 and 𝑐 =
−1 < 0 < 1 = 𝑑 be the knot sequences. Denote ℎ

𝑖
= 𝑥
𝑖+1
− 𝑥
𝑖
,

ℎ
𝑗
= 𝑦
𝑗+1
−𝑦
𝑗
, 𝑢 = (𝑥−𝑥

𝑖
)/ℎ
𝑖
, and V = (𝑦−𝑦

𝑗
)/ℎ
𝑗
. By selecting

𝜆
0
= 𝜆
1
= 0.3208, 𝜇

0
= 𝜇
1
= 0.6995, we can work out that

the max error of the EH(𝑥, 𝑦) −𝑓(𝑥, 𝑦) equals 0.5069 × 10−3,
but themax error of the𝐻(𝑥, 𝑦)−𝑓(𝑥, 𝑦) equals 0.1061× 10−1.

Figure 4 shows the error surface of the EH(𝑥, 𝑦)−𝑓(𝑥, 𝑦).
Figure 5 shows the error surface of the 𝐻(𝑥, 𝑦) − 𝑓(𝑥, 𝑦).

5. Conclusion

This paper introduced a kind of EH interpolation spline,
which is the extension of the standard cubic Hermite inter-
polation spline. The shape of the proposed splines can be
adjusted by changing the values of the parameters for the
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Figure 3: The error curves of the EH(𝑥) − 𝑦(𝑥) and𝐻(𝑥) − 𝑦(𝑥).
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Figure 4: The error surface of the EH(𝑥, 𝑦) − 𝑓(𝑥, 𝑦).
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Figure 5: The error surface of the𝐻(𝑥, 𝑦) − 𝑓(𝑥, 𝑦).

fixed interpolation conditions. Also, the introduced spline
could approximate to the interpolated function better than
the standard cubic Hermite interpolation spline.
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